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guidance in my research.



2



Contents

1 Introduction 5

2 Goals of the thesis 10

3 A survey of one-factor short rate models 12

4 Approximate analytical solution for a class of one-factor models 18
4.1 Uniqueness of solution to PDE for bond prices . . . . . . . . . . . . . . 19
4.2 Error estimates for the approximate analytical solution . . . . . . . . . 22
4.3 Improved higher order approximation formula . . . . . . . . . . . . . . 24
4.4 Comparison of approximations to the exact solution for the CIR model 26
4.5 Properties of the approximate term structures . . . . . . . . . . . . . . 26

5 Calibration of one-factor models 30
5.1 Nowman’s Gaussian estimates . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Discrete approximation of the model . . . . . . . . . . . . . . . 31
5.1.2 Examples of calibration . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 The condition for existence of the log-likelihood function max-

imum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.4 A theoretical example of nonexistence of maximum of the log-

likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.5 Existence and nonexistence of the log-likelihood function max-

imum for real market data . . . . . . . . . . . . . . . . . . . . . 41
5.2 Comparison with whole term structures . . . . . . . . . . . . . . . . . 41
5.3 Proposed method of calibration and results . . . . . . . . . . . . . . . 42

6 A survey of two-factor short rate models 47
6.1 A stochastic parameter generalization of a one-factor model . . . . . . 49
6.2 A stochastic variable related to the short rate . . . . . . . . . . . . . . 50
6.3 Construction of the short rate from several processes. . . . . . . . . . . 52

7 The two-factor Vasicek Model 55
7.1 Statistical properties of bond prices and interest rates . . . . . . . . . . 56
7.2 Averaged values and confidence intervals . . . . . . . . . . . . . . . . . 60

3



7.3 Relation of averaged values to one-factor models . . . . . . . . . . . . 61

8 The two-factor Cox Ingersoll Ross model 65
8.1 Distribution of bond prices and interest rates . . . . . . . . . . . . . . . 66
8.2 Averaged values and confidence intervals . . . . . . . . . . . . . . . . . 69
8.3 Relation of averaged values to one-factor models . . . . . . . . . . . . 71

9 The Fong-Vasicek model with stochastic volatility 78
9.1 Qualitative properties of bond prices and term structures . . . . . . . . 79
9.2 Distribution of stochastic bond prices and interest rates . . . . . . . . 81
9.3 Averaged bond prices and term structures. Confidence intervals. . . . . 82
9.4 Relation of averaged bond prices and one-factor models . . . . . . . . 85
9.5 Fast mean reverting volatility . . . . . . . . . . . . . . . . . . . . . . . 87
9.6 Volatility clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Conclusion 99

11 List of symbols 100

Bibliography 101

4



Chapter 1

Introduction

Term structure models describe a functional dependence between the time to matu-
rity of a discount bond and its present price. Yield of bonds, as a function of maturity,
forms a term structure of interest rates. Figure 1.1 shows the different shapes of term
structures observed on the market based on data by Bloomberg1.

Continuous interest rate models are often formulated in terms of stochastic dif-
ferential equations for the instantaneous interest rate (or short rate) as well as equa-
tions for other relevant quantities like e.g. volatility of the short rate process. In
one-factor models there is a single stochastic differential equation for the short rate.
The volatility of the short rate process is given in a deterministic way. It is assumed
to be constant (the Vasicek model) or it is a function of the short rate itself (the Cox,
Ingersoll, and Ross model). Beside these two simple models there is a wide range of
other models including, in particular, the Chan-Karolyi-Longstaff-Sanders model, the
Hull-White model and many others. Based on this assumption made on the form of
the short rate process one-can derive a linear scalar parabolic equation for the bond
price as function of the current short rate and time to maturity. The reader is referred
to the books by Kwok [29] and Brigo and Mercurio [12] for detailed discussion on
applications and properties of one-factor interest rate models.

In one-factor models, term structure of interest rates is a function of a short rate
and model parameters. However, it means that once the parameters of the model are
given, the term structure corresponding to a given short rate is uniquely determined.
This is a simplification of the reality, as it can be seen in Figures 1.2 and 1.3, showing

1http://www.bloomberg.com/
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Figure 1.1: Examples of yield curves of governmental bonds: Australia, Brazil, Japan,
United Kingdom (27th May 2008).
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Figure 1.2: Examples of real Bribor term structures.

the examples from Bribor2 and Euribor3 data. To capture this feature, two-factor
models are introduced. In the two-factor models there are two sources of uncertainty
yielding different term structures for the same short rate. They may depend on the
value of the other factor. Moreover, two-factor models have more variety of possible
shapes of term structures. Again, the reader is referred to the books by Kwok [29] and
Brigo and Mercurio [12] for detailed discussion on two-factor interest rate models.

There are several ways of incorporating the second stochastic factor. It is reason-
able to conjecture that the market changes the volatility of the underlying process
for the short rate. In the so-called two-factor models with a stochastic volatility we
allow the volatility to have a stochastic behavior driven by another stochastic dif-
ferential equation. We focus our attention on the Fong-Vasicek model in which the
volatility of the short rate process satisfies a Bessel square root stochastic differential
equation. As a consequence of the multidimensional Itō’s lemma the corresponding
equation for the bond price is a linear parabolic equation in two space dimensions.
These spatial dimensions correspond to the short rate and volatility. It is well known
that its density distribution of a stochastic process is a solution to the Fokker-Planck
partial differential equation and can be expressed analytically in the case the volatil-
ity undergoes the Bessel square root process (see e.g. [27]). Knowing the density
distribution of the stochastic volatility we are yet able to perform averaging of the
bond price and the term structure with respect to volatility. Unlike the short rate
which is known from the market data on daily basis, the volatility of the short rate
process is unknown. Therefore such a volatility averaging is of special importance

2http://www.nbs.sk
3http://www.euribor.org/
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Figure 1.3: Examples of real Euribor term structures.

for practitioners.
Another popular approach in two-factor models is based on describing the short

rate as a sum of two components, each of them driven by a stochastic process. These
two factors can be interpreted as trend and speculative components. We will study
two-factor Vasicek and Cox-Ingersoll-Ross models constructed in this way. The bond
prices are again solutions of a linear parabolic equation in two space dimensions
where the dimensions correspond to the two factors of the short rate. The density
distribution of the factors can be derived and we consider the conditional distribution
with respect to the observed level of the short rate. Afterwards, we study averaging
of the bond price and the term structure with respect this conditional distribution,
as it is only the short rate (and not its two factors) that is observable variable on the
market.

The thesis is organized as follows. In the following section we present goals of
the thesis in a more detail. In the third section we do a survey of one-factor mod-
els. Fourth and fifth sections contain results regarding one-factor models. In fourth
section we study the approximate analytical solution for a class of one-factor models
for which the closed form bond prices are not available. We summarize results of the
recent author’s paper [47]. These approximations are used in fifth chapter to cali-
brate the models. Sixth chapter gives a survey of two-factor models. The next three
chapters deal with three particular two-factor models - two-factor Vasicek (chapter
7), two-factor Cox-Ingersoll-Ross (chapter 8) and Fong-Vasicek (chapter 9) models
- and the averaged bond prices and term structures with respect to unobservable
quantities of the models. Results of these chapters are based on author’s papers [42],
[45] and [46]. In the case of Fong-Vasicek model we study also the fast mean revert-
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ing volatility (according to author’s paper [44]). Then we generalize this model to
capture volatility clustering, showing the results from [43].



Chapter 2

Goals of the thesis

In the thesis we study and analyze several questions and problems that are related
to short rate interest rate models. The main goals of the thesis can be summarized as
follows:

1. Approximate analytical solution for one-factor models. We study the ap-
proximate analytical solution for bond prices derived by Choi and Wirjanto in
[17]. We prove the order of accuracy of their formula and present numeri-
cal examples. Afterwards, we provide a new approximation of higher order of
accuracy.

2. Calibration of one-factor models. We use the approximate analytical solution
mentioned above to calibrate one-factor models. We use Nowman’s Gaussian
estimates to estimate the volatility and the comparison of real term structures
with theoretical ones to estimate the drift. Here we also study the question of
existence of the estimates, i.e. the existence of maximum of likelihood function.
Then we consider different weights when comparing the term structures and
we see the differences in estimates caused by different criteria used.

3. Averaging in two-factor models. We consider the following two-factor mod-
els: two-factor Vasicek, two-factor Cox-Ingersoll-Ross and Fong-Vasicek. In all
these models, not all of the factors is are observable on the market. We consider
their limiting distribution and compute the distribution of bond priced and in-
terest rates. Afterwards, we compute their averaging, i.e. the expected values
with respect to limiting distribution of unobservable factors. The averaged bond
prices are functions of maturity and short rate. It is the same dependence as in

10
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one-factor models. Hence we study the question, whether there exists a one-
factor model, which yields the same bond prices as the averaged values from
the two-factor model. In all the models considered, the answer is negative.



Chapter 3

A survey of one-factor short rate
models

In this chapter we describe the most widely used one-factor interest rate models.
We consider continuous models for the short rate process in the form

dr = µ(t, r)dt+ σ(t, r)dw, (3.1)

where w is a Wiener process. Recall that a stochastic process {w(t), t ≥ 0} is called
a Wiener process if w(0) = 0, every increment w(t + ∆t) − w(t) has the normal
distribution N(0,∆t), the increments w(tn)−w(tn−1), w(tn−1)−w(tn−2), . . . , w(t2)−
w(t1) for 0 ≤ t1 < · · · < tn are independent and paths of the process are continuous
(see e.g. [29]). Function µ in (3.1) determines the trend in evolution of the short
rate, function σ the nature of stochastic fluctuations. The price of a discount bond
P (τ, r) with time to maturity τ when the value of short rate is r, is known to be a
solution of the partial differential equation

−∂P
∂τ

+ (µ(t, r)− λ(t, r)σ(t, r))
∂P

∂r
+
σ2(t, r)

2

∂2P

∂r2
− rP = 0, (3.2)

P (0, r) = 1.

In derivation of the above equation we employ the method used in [29]. It is based
on construction of a riskless portfolio and elimination of a possibility of arbitrage.
The main mathematical tool in the derivation is the so-called Itō’s lemma. According
to Itō’s lemma, if the stochastic differential equation (SDE) for a process x is given
by

dx = µ(t, x)dt+ σ(t, x)dw,

12
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then the process f(t, x) (where f is a C2 smooth function) satisfies the SDE

df =

(
∂f

∂t
+ µ(t, x)

∂f

∂x
+

1

2
σ2(t, x)

∂2f

∂x2

)
dt+ σ(t, x)

∂f

∂x
dw,

(see e.g. [37]).
If we assume that the short rate follows the process (3.1), then the bond price

P (t, r) follows - according to Itō’s lemma - a stochastic differential equation

dP =

(
∂P

∂t
+ µ

∂P

∂r
+
σ2

2

∂2P

∂r2

)
dt+ σ

∂P

∂r
dw

= µB(t, r, T )dt+ σB(t, r, T ), (3.3)

where µB(t, r, T ) and σB(t, r, T ) denote a drift and volatility of a process describing
the price of a bond with the maturity T . We construct a portfolio of two bonds with
different maturities. The portfolio is constructed from one bond with maturity T1 and
∆ bonds with maturity T2. Hence its value π is:

π = P (t, r, T1) + ∆P (t, r, T2) (3.4)

and the change dπ of its value is given by

dπ = dP (t, r, T1) + ∆dP (t, r, T2)

= (µB(t, r, T1) + ∆µB(t, r, T2)) dt+ (σB(t, r, T1) + ∆σB(t, r, T2)) dw. (3.5)

By choosing ∆ such that

∆ = −σB(t, r, T1)

σB(t, r, T2)
(3.6)

we eliminate the stochastic part in (3.5). We then obtain a riskless portfolio satisfying

dπ =

(
µB(t, r, T1)− σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T1)

)
dt.

To avoid a possibility of arbitrage, the return on the portfolio π must be equal to the
riskless instantaneous interest rate r. Hence

µB(t, r, T1)− σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T1) = rπ,

from which, after substituting the value of the portfolio π from (3.4) and (3.6), we
obtain

µB(t, r, T1)− σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T1) = r

(
P (t, r, T1)− σB(t, r, T1)

σB(t, r, T2)
P (t, r, T2)

)
.

This equality implies that

µB(t, r, T1)− rP (t, r, T1)

σB(t, r, T1)
=
µB(t, r, T2)− rP (t, r, T2)

σB(t, r, T2)
.
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Since maturities T1 and T2 were chosen arbitrarily, the above expression has to be
independent of the maturity of a bond, i.e. there is a function λ(t, r) such that

λ(t, r) =
µB(t, r, T )− rP (t, r, T )

σB(t, r, T )
(3.7)

for every maturity T . It is called a market price of risk, as it provides an expected rise
of the bond return for the unit rise of risk (see e.g. [29]). Substituting functions µB,
σB into (3.7) yields a partial differential equation (3.2) for bond prices.

Bond prices determine interest rates R(τ, r) by the formula P = e−Rτ , i.e.

R(τ, r) = −1

τ
logP (τ, r).

One of the first models of the class (3.1) was the Vasicek model [51]. The short
rate process follows a stochastic differential equation

dr = κ(θ − r)dt+ σdw.

Deterministic part of the process κ(θ − r) defines a mean reversion process with a
limit θ. The speed of reversion is given by the parameter κ > 0. In this model, for a
constant market price of risk λ, the PDE for bond prices (3.2) has an explicit solution
of the form

P (τ, r) = A(τ)e−B(τ)r. (3.8)

Substituting it into equation (3.2) we obtain a system of ordinary differential equa-
tions

dA(τ)

dτ
= (λσ − κθ)A(τ)B(τ) +

1

2
σ2A(τ)B2(τ),

dB(τ)

dτ
= −κB(τ) + 1,

and initial conditions A(0) = 1, B(0) = 0. A solution A, B is given by

B(τ) =
1− e−κτ

κ
, A(τ) = exp

[
(B(τ)− τ)

(
θ − σ2

2κ2
− σλ

κ

)
− σ2B(τ)2

4κ

]
. (3.9)

For a fixed r, interest rates R(τ, r) are functions of the maturity τ . As τ → ∞, they
converge to the value

R∞ := lim
τ→∞

R(τ, r) = θ − σλ

κ
− σ2

2κ2
, (3.10)

which does not depend on r. Depending on the relation between the beginning of
the short rate r and the limit R∞, the term structure has one of the following shapes:
it is increasing for r ≤ R∞ − σ2

4κ2 , decreasing for r ≥ R∞ + σ2

2κ2 or having a hump
(firstly increasing and then decreasing) for r from the interval (R∞ − σ2

4κ2 , R∞ + σ2

2κ2 ).
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A disadvantage of the Vasicek model consists in its constant volatility (it does not
depend on the short rate level) and possibility of negative values of the short rate.
These problems have been overcome by the short rate model due to Cox, Ingersoll
and Ross [19], in which we assume

dr = κ(θ − r)dt+ σ
√
rdw.

If this process starts from a positive value, then its values in future times are non-
negative. Moreover, if 2κθ ≥ σ2, then these values are positive almost surely (see
[19]). Similarly as for the Vasicek, the CIR model also admits an explicit solution to
equation (3.2). If the market price of risk λ(t, r) equals λ

√
r, where λ is a constant,

then the solution has a form (3.8), where functions A and B satisfy the system of
ODEs:

dA(τ)

dτ
= −κθA(τ)B(τ),

dB(τ)

dτ
= −(κ+ λσ)B(τ)− 1

2
σ2B(τ)2 + 1,

and initial conditions A(0) = 1, B(0) = 0. A solution is given by

A(τ) =

[
2ξe(ξ+ψ)τ/2

(ξ + ψ)(eξτ − 1) + 2ξ

]2κθ/σ2

, B(τ) =
2(eξτ − 1)

(ξ + ψ)(eξτ − 1) + 2ξ
, (3.11)

where
ψ = κ+ λσ, ξ =

√
ψ2 + 2σ2.

The limit of term structures for τ →∞ is 2κ
ξ+ψ

θ (see [29]).
There are several other models, where the SDE for short rate is given by

dr = (a+ br)dt+ σrγdw. (3.12)

Comparison of these models is a topic of the paper by Chan, Karolyi, Longstaff and
Sanders [15]. Using generalized method of moments they estimated the model
(3.12) and they studied restrictions on parameters imposed on this models. Their
result that the optimal value of the parameter γ is approximately 3/2 (which is more
than previous models assumed), started a broad discussion on the correct form of
volatility. Let us note that their result is not universal, e.g. in [3], using the same
estimation methodology but for LIBOR rates, γ was estimated to be less than unity
(which means that volatility is less than proportional to short rate, unlike in the result
due to Chan, Karolyi, Longstaff and Sanders). A modification of generalized method
of moments (so called robust generalized method of moments), which is robust to a
presence of outliers, was developed in [22].

Another popular method for parameter estimation are Nowmans’ Gaussian esti-
mates [32], based on approximating the likelihood function. They were used in [23]
for a wide range of interest rate markets. For a similar sample of countries, in [50]
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authors studied the robustness of the estimates with respect to a sample period and
use of interest rates with different maturities as short rate proxies. Similarly, different
kinds of interest rates as short rate proxies were used in [33] for the Japanese finan-
cial market. Estimations for UK and USA data and subsequent study of forecasting
power of the models were performed in [14].

There are several other methods based on short rate process, such as quasi max-
imum likelihood, maximum likelihood based on series expansion of likelihood func-
tion by Ait-Sahalia [7], Bayesian methods and others.

Term structure can be computed analytically in the case of Vasicek and CIR mod-
els. This feature was used in the calibration methodologies discussed in [48] and
[49]. They are based on the minimization of weighted squares of differences between
real and theoretical interest rates, followed by optimizing Nowman’s likelihood func-
tion. For general term structure models, numerical techniques for solving the partial
differential equation for bond prices can be used. Frequently used method is the
Crank-Nicolson scheme, see e.g. [18]. In [41] and its earlier preprint version [9],
the Box method for computation of bond and contingent claim prices was introduced.
It was compared with the Crank-Nicolson scheme in specific cases, where analytical
prices are available and the new scheme led to more accurate results. This method
was used to compute interest rates and derivatives prices in [34] (for Japan), [35]
(for UK and USA), [36] (for Canada, Hong Kong and USA). Recently, an analytical
approximation formula for bond prices was suggested by Choi and Wirjanto in [17]
and by Stehĺıková and Ševčovič in [47].

As we have already mentioned, in short rate models, for a given process driving
the short rate r and market price of risk λ, we obtain a term structure R(t, T, r).
Hence we might be interested in models, where the term structure generated in this
way, is an accurate approximation of the real one. This can be obtained, if functions
µ and σ in (3.1) depend on time t. It leads to a class of models which are referred to
as no-arbitrage models.

In Table 3.1 (time independent drift and volatility) and Table 3.2 (time dependent
drift and volatility) we present an overview of selected one-factor short rate models
and their characteristics.

Table 3.1: One-factor short rate models with time independent drift and volatility
(c.f. [12], Table 3.1).

Model SDE for short rate r Distribution of r Analytic formula for
bond price

Vasicek drt = k(θ − rt)dt+ σdwt normal yes
CIR drt = k(θ − rt)dt+ σ

√
rdwt noncentral χ2 yes

Dothan drt = artdt+ σrdwt lognormal yes
Exponential Vasicek drt = rt(η − a ln rt)dt+ σrtdw lognormal no
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Table 3.2: No arbitrage one-factor models short rate with time dependent drift and
volatility (c.f. [12], Table 3.1).

Model SDE for short rate r Distribution of r Analytic formula for
bond price

Hull-White drt = k(θt − rt)dt+ σdwt normal yes
Black-Karasinski drt = rt(ηt − a ln rt)dt+ σrtdwt lognormal no

Mercurio-Moraleda drt = rt
“
ηt −

“
λ− γ

1+γt

”
ln rt

”
dt+ σrtdwt lognormal no



Chapter 4

Approximate analytical solution
for a class of one-factor models

In this chapter we discuss the approximate analytical solution for bond prices de-
rived by Choi and Wirjanto in [17]. Authors considered a class of one-factor models
and proposed an approximate formula for prices of bonds. In this chapter we derive
an accuracy of their approximation and give a new approximation of a higher order
of accuracy. Results presented in forthcoming sections 3.1 - 3.4 are included in the
recent paper [47] by Stehĺıková and Ševčovič. This approximate analytical solution
will be used in calibration in section 5 of the thesis.

Models for short rate considered by Choi and Wirjanto in [17] have a form

dr = (α + βr)dt+ σrγdw (4.1)

under the risk-neutral measure. It corresponds to the real measure process:

dr = (α+ βr + λ(t, r)σrγ) dt+ σrγdw

where λ(t, r) is the so called market price of risk. Let us recall that for a general mar-
ket price of risk function λ(t, r), the price P of a zero-coupon bond can be obtained
from a solution to the following partial differential equation:

−∂P
∂τ

+
1

2
σ2r2γ ∂

2P

∂r2
+ (α+ βr)

∂P

∂r
− rP = 0, r > 0, τ ∈ (0, T ), (4.2)

satisfying the initial condition P (0, r) = 1 for all r > 0. In what follows, we use the
notation ∂τP for ∂P/∂τ , similarly ∂rP for ∂P/∂r and ∂2

rP for ∂2P/∂r2.

18
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The main result of the paper [17] is the following approximation P ap for the exact
solution P ex:

Theorem 1. [17, Theorem 2] The approximate analytical solution P ap is given by

lnP ap(τ, r) = −rB +
α

β
(τ −B) +

(
r2γ + qτ

) σ2

4β

[
B2 +

2

β
(τ −B)

]

−q σ
2

8β2

[
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ 2 − 6τ

β

]
(4.3)

where
q(r) = γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α + βr) (4.4)

and
B(τ) = (eβτ − 1)/β. (4.5)

Derivation of the formula (4.3) is based on calculating the price as an expected
value under a risk neutral measure. The tree property of conditional expectation
was used and the integral appearing in the exact price was approximated to obtain
a closed form approximation. The reader is referred to [17] for more details of
derivation of (4.3).

Authors furthermore showed that such an approximation coincides with the exact
solution in the case of the Vasicek model [51]. Moreover, they compared the above
approximation with the exact solution of the CIR model which is also known in a
closed form (c.f. [19]). Graphical and tabular descriptions of the relative error in the
bond prices have been also provided in [17].

Our goal is to derive the order of accuracy of the approximation formula (4.3)
by estimating the difference lnP ap− lnP ex of logarithms of approximative and exact
solutions of the bond valuation equation (4.2). Then, we give a new approximation
formula of the higher order and we analyze its order of convergence analytically and
numerically.

4.1 Uniqueness of solution to PDE for bond prices

It is worth to note that comparison of approximate and exact solutions is meaningful
only if the uniqueness of the exact solution can be guaranteed. The next theorem
gives us the uniqueness of a solution to (4.2) satisfying Definition 1 introduced in
[47].

Definition 1. [47, Definition 1] By a complete solution to (4.2) we mean a function P =
P (τ, r) having continuous partial derivatives ∂τP , ∂rP , ∂2

rP on QT = [0,∞) × (0, T ),
satisfying equation (4.2) on QT , the initial condition P (0, r) = 1 for r ∈ [0,∞) and
fulfilling the following growth conditions: |P (τ, r)| ≤ Me−mr

δ and |Pr(τ, r)| ≤ M for
any r > 0, t ∈ (0, T ), where M,m, δ > 0 are constants.
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Theorem 2. Assume 1
2
< γ < 3

2
or γ = 1

2
and 2α ≥ σ2. Then there exists a unique

complete solution to (4.2).

Proof: Our aim is to prove that the inequality

d

dτ

∫ ∞

0

rωP 2dr ≤ K

∫ ∞

0

rωP 2dr (4.6)

is satisfied by any solution of (4.2) with some constants K and ω ≥ 0. It implies the
uniqueness of a solution to the PDE (4.2). Indeed, if P1 and P2 are two complete
solutions of (4.2) with the same initial condition P (0, r) = 1, then P = P1−P2 is also
a solution to (4.2) with P (0, r) = 0. Let us define a function

y(τ) =

∫ ∞

0

rωP 2(τ, r)dr.

Then the inequality (4.6) means dy(τ)
dτ

≤ Ky(τ) for τ > 0. It implies:

d

dτ

(
e−Kτy(τ)

)
= −Ke−Kτy(τ) + e−Kτ

dy(τ)

dτ
≤ 0.

Since y(0) = 0 and y(τ) ≥ 0, it follows that y(τ) = 0 for all τ . Therefore P (τ, r) = 0
for all τ ≥ 0, r ≥ 0 and hence P1 ≡ P2, as claimed.

Now let us derive inequality (4.6). Multiplying the equation by rωP , where ω > 0
and 2γ+ω−1 > 0 using the identity 1

2
d
dτ

∫∞
0
rωP 2dr =

∫∞
0
rωP∂τPdr, and integrating

with respect to r from 0 to infinity we obtain1

1

2

d

dτ

∫ ∞

0

rωP 2 =
σ2

2

∫ ∞

0

r2γ+ω∂2
rPP +

∫ ∞

0

(α + βr)rω∂rPP −
∫ ∞

0

rω+1P 2. (4.7)

Firstly, we use integration by parts for the following integrals from the above
equation:

∫ ∞

0

r2γ+ω∂2
rPP = −(2γ + ω)

∫ ∞

0

r2γ+ω−1P∂rP −
∫ ∞

0

r2γ+ω(∂rP )2

=
1

2
(2γ + ω)(2γ + ω − 1)

∫ ∞

0

r2γ+ω−2P 2 −
∫ ∞

0

r2γ+ω(∂rP )2

where we have used the identity
∫∞
0
rω+ξ∂rPP = −ω+ξ

2

∫∞
0
rω+ξ−1P 2 valid for any

ω, ξ ≥ 0, ω+ξ > 0, and a function P satisfying the decay estimates from Definition 1.
Substituting this to (4.7), we end up with the identity

1

2

d

dτ

∫ ∞

0

rωP 2 =
σ2

4
(2γ + ω)(2γ + ω − 1)

∫ ∞

0

r2γ+ω−2P 2 − σ2

2

∫ ∞

0

r2γ+ω(∂rP )2

− αω

2

∫ ∞

0

rω−1P 2 − (ω + 1)β

2

∫ ∞

0

rωP 2 −
∫ ∞

0

rω+1P 2. (4.8)

1In the sequel, we shall omit the differential dr from the notation
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Case 1: γ = 1
2

and 2α ≥ σ2. In the case of CIR model (γ = 1
2
) we recall that the

condition 2α ≥ σ2 is very well understood as it almost surely guarantees the strict
positivity of the stochastic processes rt, t ≥ 0, satisfying the stochastic differential
equation: dr = (α+ βr) dt+ σ

√
rdw (see e.g. [29]).

Subcase 1a: 2α > σ2. We use the identity (4.8) with γ = 1/2 and ω = 2α
σ2 − 1 > 0

to obtain the desired inequality (4.6) with K = (ω + 1)β.

Subcase 1b: 2α = σ2. Using the identity (4.8) with ω = 0 (or simply by multiply-
ing the PDE with P and integrating over (0,∞)) we obtain the inequality (4.6) with
K = β.

Case 2: γ ∈ (
1
2
, 1

)
. We use equation (4.7) with ω = 2 and estimate the integral∫∞

0
r2γP 2 by using Hölder’s inequality:

∫ ∞

0

r2γP 2 =

∫ ∞

0

(
r4γ−2P 4γ−2

) (
r2−2γP 4−4γ

) ≤
(∫ ∞

0

r2P 2

)2γ−1 (∫ ∞

0

rP 2

)2−2γ

.

Now it follows from the Young’s inequality ab ≤ 1
pεpa

p + 1
q
εqbq valid for p, q ≥ 1,

1
p

+ 1
q

= 1, that for any ε > 0 we obtain

∫ ∞

0

r2γP 2 ≤ (2γ − 1)

(
1

ε

) 1
2γ−1

∫ ∞

0

r2P 2 + (2− 2γ)ε
1

2γ−2

∫ ∞

0

rP 2.

Again using (4.8) with ω = 2 and the above estimate we obtain

1

2

d

dτ

∫ ∞

0

r2P 2 ≤ σ2

2
(γ + 1)(2γ + 1)

∫ ∞

0

r2γP 2 − α

∫ ∞

0

rP 2 − 3β

2

∫ ∞

0

r2P 2

≤ K

∫ ∞

0

r2P 2 +
(
σ2(γ + 1)(2γ + 1)(1− γ)ε

1
2−2γ − α

) ∫ ∞

0

rP 2.

where K = σ2

2
(γ + 1)(2γ + 1)(2γ − 1)

(
1
ε

) 1
2γ−1 − 3β

2
. By choosing ε > 0 sufficiently

small such that σ2(γ + 1)(2γ + 1)(1 − γ)ε
1

2−2γ − α < 0, we finally obtain the desired
inequality 1

2
d
dτ

∫∞
0
r2P 2 ≤ K

∫∞
0
r2P 2.

Case 3: γ = 1. We again use equation (4.8) with ω = 2. We obtain (4.6) with
K = 3(2σ2 − β).

Case 4: γ ∈ (
1, 3

2

)
. Similarly as in the case 1

2
< γ < 1 we make use of the Hölder

inequality. We obtain:
∫ ∞

0

r2γP 2 =

∫ ∞

0

(
r6−4γP 6−4γ

) (
r6γ−6P 4γ−4

) ≤
(∫ ∞

0

r2P 2

)3−2γ (∫ ∞

0

r3P 2

)2γ−2

and, by Young’s inequality, we have, for any ε > 0,

∫ ∞

0

r2γP 2 ≤ (3− 2γ)

(
1

ε

) 1
3−2γ

∫ ∞

0

r2P 2 + (2γ − 2)ε
1

2γ−2

∫ ∞

0

r3P 2.
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By (4.8) with ω = 2 we have

1

2

d

dτ

∫ ∞

0

r2P 2 ≤ σ2

2
(γ + 1)(2γ + 1)

∫ ∞

0

r2γP 2 − 3β

2

∫ ∞

0

r2P 2 −
∫ ∞

0

r3P 2

≤ K

∫ ∞

0

r2P 2 +
(
σ2(γ + 1)(2γ + 1)(γ − 1)ε

1
2γ−2 − 1

) ∫ ∞

0

r3P 2.

where K = σ2

2
(γ+1)(2γ+1)(3−2γ)

(
1
ε

) 1
3−2γ − 3β

2
. By choosing ε > 0 sufficiently small

such that σ2(γ+ 1)(2γ+ 1)(γ− 1)ε
1

2γ−2 − 1 < 0 we end up with the desired inequality
1
2
d
dτ

∫∞
0
r2P 2 ≤ K

∫∞
0
r2P 2. ♦

4.2 Error estimates for the approximate analytical so-
lution

In this part we derive the order of accuracy for the approximation proposed by Choi
and Wirjanto in [17].

Theorem 3. [47, Theorem 3] Let P ap be the approximative solution given by (4.3) and
P ex be the exact bond price given as a unique complete solution to (4.2). Then

lnP ap(τ, r)− lnP ex(τ, r) = c5(r)τ
5 + o(τ 5)

as τ → 0+ where

c5(r) = − 1

120
γr2(γ−2)σ2

[
2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(2γ − 1)2(4γ − 3) (4.9)
+2αr

(
β(−1 + 4γ)r2 + (2γ − 1)(3γ − 2)r2γσ2

)]
.

Convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂ (0,∞).

Proof: Recall that the exact bond price P ex(τ, r) for the model (4.1) is given by a
solution of PDE (4.2). Let us define the following auxiliary function: f ex(τ, r) =
lnP ex(τ, r) . Clearly, ∂τP ex = P ex∂τf

ex, ∂rP
ex = P ex∂rf

ex and
∂2
rP

ex = P ex
[
(∂rf

ex)2 + ∂2
rf

ex
]
. Hence the PDE for the function f ex reads as follows:

−∂τf ex +
1

2
σ2r2γ

[
(∂rf

ex)2 + ∂2
rf

ex
]
+ (α + βr)∂rf

ex − r = 0. (4.10)

Substitution of fap = lnP ap into equation (4.10) yields a nontrivial right-hand side
h(τ, r) for the equation for the approximative solution fap:

−∂τfap +
1

2
σ2r2γ

[
(∂rf

ap)2 + ∂2
rf

ap
]
+ (α+ βr)∂rf

ap − r = h(τ, r). (4.11)
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If we insert the approximate solution into (4.2) then, after long but straightforward
calculations based on expansion of all terms into a Taylor series expansion in τ we
obtain:

h(τ, r) = k4(r)τ
4 + k5(r)τ

5 + o(τ 5) (4.12)

where the functions k4 and k5 are given by

k4(r) =
1

24
γr2(γ−2)σ2

[
2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(−3 + 16γ − 28γ2 + 16γ3)

+2αr
(
β(−1 + 4γ)r2 + (2− 7γ + 6γ2)r2γσ2

)]
, (4.13)

k5(r) =
γσ2

120
r2(−2+γ)

[
6α2β (−1 + 2γ) r2 + 12β3γr4 − 10(1− 2γ)2r1+4γσ4

+6β2σ2
(
1− 5γ + 6γ2

)
r2(1+γ)

+βr2γσ2
(−10 (5 + 2γ) r3 + 3(1− 2γ)2 (−3 + 4γ) r2γσ2

)

+2αr

(
3β2 (−1 + 4γ) r2 + 3β

(
2− 7γ + 6γ2

)
r2γσ2

− 5 (−1 + 2γ) r1+2γσ2

)]
. (4.14)

Let us consider a function g(τ, r) = fap − f ex. As (∂rg)
2 = (∂rf

ap)2 − (∂rf
ex)2 −

2∂rf
ex∂rg we have

−∂τg +
1

2
σ2r2γ

[
(∂rg)

2 +
(
∂2
rg

)]
+ (α + βr)∂rg

=

{
−∂τfap +

1

2
σ2r2γ

[
(∂rf

ap)2 + ∂2
rf

ap
]
+ (α + βr)∂rf

ap

}

−
{
−∂τf ex +

1

2
σ2r2γ

[
(∂rf

ex)2 +
(
∂2
rf

ex
)]

+ (α+ βr)∂rf
ex

}

−σ2r2γ∂rf
ex∂rg .

It follows from (4.10) and (4.11) that the function g satisfies the following PDE:

−∂τg +
1

2
σ2r2γ

[
(∂rg)

2 + ∂2
rg

]
+ (α+ βr)∂rg = h(τ, r)− σ2r2γ(∂rf

ex)(∂rg),

(4.15)

where h(τ, r) satisfies (4.12). Let us expand the solution of (4.15) into a Taylor series
with respect to τ with coefficients depending on r. We obtain g(τ, r) =

∑∞
i=0 ci(r)τ

i =∑∞
i=ω ci(r)τ

i, i.e. the first nonzero term in the expansion is cω(r)τω. Then ∂τg =
ωcω(r)τ

ω−1 + o(τω−1) and h(τ, r) = k4(r)τ
4 + o(τ 4) as τ → 0+. Here the term k4(r) is

given by (4.13). The remaining terms in (4.12) are of the order o(τω−1) as τ → 0+.
Hence −ωcω(τ) = k4(r)τ

4 from which we deduce ω = 5 and c5(r) = −1
5
k4(r). It

means that g(τ, r) = lnP ap(τ, r) − lnP ex(τ, r) = −1
5
k4(r)τ

5 + o(τ 5) which completes
the proof. ♦
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Remark 1. The function c5(r) remains bounded as r → 0+ for the case of the CIR model
in which γ = 1/2 or for the case when γ ≥ 1. More precisely, limr→0+ c5(r) = − σ2

120

for γ = 1/2. On the other hand, if 1/2 < γ < 1, then c5(r) becomes singular, c5(r) =
O(r2(γ−1)) as r → 0+.

Corollary 1. It follows from Theorem 3 that

1. the error in yield curves can be expressed as

Rap(τ, r)−Rex(τ, r) = −c5(r)τ 4 + o(τ 4) as τ → 0+;

2. the relative error2 of P is given by

P ap(τ, r)− P ex(τ, r)

P ex(τ, r)
= −c5(r)τ 5 + o(τ 5) as τ → 0+.

Convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂ (0,∞).

Proof: The first corollary follows from the formula R(τ, r) = − lnP (τ,r)
τ

for calculating
yield curves. To prove the second statement we note that Theorem 3 gives lnP ap −
lnP ex = c5(r)τ

5 + o(τ 5). Hence P ap/P ex = ec5(r)τ5+o(τ5) = 1 + c5(r)τ
5 + o(τ 5) and

therefore Pap−P ex

P ex = −c5(r)τ 5 + o(τ 5). ♦
Remark 2. For the CIR model with γ = 1/2 the term k4(r) defined in (4.13) can be
simplified to 1

24
σ2 [αβ + r(β2 − 4σ2)] and hence

lnP ap
CIR(τ, r)− lnP ex

CIR(τ, r) = − 1

120
σ2

[
αβ + r(β2 − 4σ2)

]
τ 5 + o(τ 5)

as τ → 0+. Now convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂
[0,∞).

4.3 Improved higher order approximation formula

In this section we present the main result of the paper [47] by Stehĺıková and
Ševčovič. It follows from (3) that the term lnP ap(τ, r) − c5(r)τ

5 is the higher or-
der accurate approximation of lnP ex when compared to the original approximation
lnP ap(τ, r) from [17]. Furthemore, we show, that it is even possible to compute
O(τ 6) term and to obtain a new approximation lnP ap2(τ, r) such that the difference
lnP ap2(τ, r)− lnP ex(τ, r) is o(τ 6) for small values of τ > 0.

Let P ex be the exact bond price in the model (4.1). Let us define an improved
approximation P ap2 by the formula

lnP ap2(τ, r) = lnP ap(τ, r)− c5(r)τ
5 − c6(r)τ

6 (4.16)

2This is referred to as the relative mispricing in [17]
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where lnP ap is given by (4.3), c5(τ) is given by (4.9) in Theorem 1 and

c6(r) =
1

6

(
1

2
σ2r2γc′′5(r) + (α + βr)c′5(r)− k5(r)

)

where c′5 and c′′5 stand for the first and second derivative of c5(r) w. r. to r and k5 is
defined in (4.14).

Theorem 4. [47, Theorem 4] The difference between the higher order approximation
lnP ap2 given by (4.16) and the exact solution lnP ex satisfies lnP ap2(τ, r)−lnP ex(τ, r) =
o(τ 6) as τ → 0+. Convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂
(0,∞).

Proof: We have to prove that g(τ, r) = c5(r)τ
5 + c6(r)τ

6 + o(τ 6) where c5 and c6 are
given above. We already know the form of the coefficient c5 = c5(r). Consider the
following Taylor series expansions:

g(τ, r) =
∞∑
i=5

ci(r)τ
i, h(τ, r) =

∞∑
i=4

ki(r)τ
i, f(τ, r) =

∞∑
i=1

li(r)τ
i.

The absolute term l0 is zero because f ex(0, r) = lnP ex(0, r) = ln 1 = 0 for all r >
0. Substituting power series into equation (4.15) and comparing coefficients of the
order τ 5 enables us to derive the identity:

−6c6(r) +
1

2
σ2r2γc′′5(r) + (α+ βr)c′5(r)− k5(r) = 0

and hence

c6(r) =
1

6

(
1

2
σ2r2γc′′5(r) + (α + βr)c′5(r)− k5(r)

)
.

The term k5(r) given by (4.14) is obtained by computing the expansion of h. ♦
The order of relative error of bond prices and order of error of interest rates for

the new higher order approximation can be derived similarly as in Corollary 1.

Remark 3. It is not obvious how to obtain the next higher order terms of expansion
because the equations contain unknown coefficients li(r), i ≥ 1, of the logarithm of the
exact solution which is not known explicitly.

Remark 4. In the case of the CIR model we have

cCIR5 (r) = − σ2

120

(
αβ + r(β2 − 4σ2)

)
, kCIR5 (r) =

βσ2

40

(
αβ + (β2 − 10σ2)r

)

and so

cCIR6 (r) =
σ2

360

(−2αβ2 + 17βσ2r − 2β3r + 2ασ2
)
.
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Hence

lnP ap2
CIR = lnP ap

CIR +
σ2

120

(
αβ + r(β2 − 4σ2)

)
τ 5

− σ2

360

(−2αβ2 + 17βσ2r − 2β3r + 2ασ2
)
τ 6

The theorem yields lnP ap2
CIR(τ, r) − lnP ex

CIR(τ, r) = o(τ 6). By computing the expansions
of both exact and this approximative solutions we finally obtain

lnP ap2
CIR(τ, r) = lnP ex

CIR(τ, r)− σ2

5040

(
11αβ3 + 11β4r − 34αβσ2

−180β2rσ2 + 34rσ4

)
τ 7 + o(τ 7) as τ → 0+.

Convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂ [0,∞).

4.4 Comparison of approximations to the exact solu-
tion for the CIR model

In this section we present a comparison of the original and improved approximations
in the case of the CIR model where the exact solution is known. We use the parameter
values from [17] and [47], i.e. α = 0.00315, β = −0.0555 and σ = 0.0894.

In Table 4.1 we show L∞ and L2−norms3 with respect to r of the difference
lnP ap − lnP ex and lnP ap2 − lnP ex where we considered r ∈ [0, 0.15]. We also com-
pute the experimental order of convergence (EOC) in these norms. Recall that the
experimental order of convergence gives an approximation of the exponent α of ex-
pected power law estimate for the error ‖ lnP ap(τ, .)−lnP ex(τ, .)‖ = O(τα) as τ → 0+.
The EOCi is given by a ratio

EOCi =
ln(erri/erri+1)

ln(τi/τi+1)
where erri = ‖ lnP ap(τi, .)− lnP ex(τi, .)‖p .

In Table 4.2 and Figure 4.1 we show the L2− error of the difference between
the original and improved approximations for larger values of τ . It turned out that
the higher order approximation P ap2 gives about twice better approximation of bond
prices in the long time horizon up to 10 years.

4.5 Properties of the approximate term structures

We consider only the case γ > 0, since for γ = 0 (the Vasicek model) the interest rates
Rap coincide with the exact ones and their properties are well known. The following

3Lp and L∞ norms of a function f defined on a grid with step h are given by ‖f‖p =
(h

∑ |f(xi)|p)1/p and ‖f‖∞ = max |f(xi)|.
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Table 4.1: The L∞ and L2− errors for the original lnP ap
CIR and improved lnP ap2

CIR

approximations.

τ ‖ lnPap − lnP ex‖∞ EOC ‖ lnPap2 − lnP ex‖∞ EOC
1 2.774× 10−7 4.930 4.682× 10−10 7.039

0.75 6.717× 10−8 4.951 6.181× 10−11 7.029
0.5 9.023× 10−9 4.972 3.576× 10−12 7.004
0.25 2.876× 10−10 – 2.786× 10−14 –

τ ‖ lnPap − lnP ex‖2 EOC ‖ lnPap2 − lnP ex‖2 EOC
1 6.345× 10−8 4.933 9.828× 10−11 7.042

0.75 1.535 ×10−8 4.953 1.296× 10−11 7.031
0.5 2.061 ×10−9 4.973 7.492× 10−13 7.012

0.25 6.563 ×10−11 – 5.805× 10−15 –

Table 4.2: The L2− error with respect to r for large values of τ .

τ 1 2 3 4 5
‖ lnPap − lnP ex‖2 6.345× 10−8 1.877× 10−6 1.314× 10−5 5.093× 10−5 1.427× 10−4

‖ lnPap2 − lnP ex‖2 9.828× 10−11 1.314× 10−8 2.329× 10−7 1.799× 10−6 8.798× 10−6

τ 6 7 8 9 10
‖ lnPap − lnP ex‖2 3.255× 10−4 6.441× 10−4 1.148× 10−3 1.890× 10−3 2.921× 10−3

‖ lnPap2 − lnP ex‖2 3.217× 10−5 9.618× 10−5 2.479× 10−4 5.705× 10−4 1.200× 10−3
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Figure 4.1: The error ‖ lnP ap(τ, .) − lnP ex(τ, .)‖2 for the original approximation P ap

(dashed line) and the new approximation P ap2 (solid line). The horizontal axis is
time τ to maturity.
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theorem confirms a consistency of approximations. In particular, we are interested
in limits of term structures as τ approaches zero. It is natural to require that they
converge to the short rate r.

Theorem 5. The limit of the interest rate Rap(τ, r) and Rap2(τ, r) equals r as τ → 0+,
i.e. the term structures are continuous in τ = 0.

Proof:

1. We write the interest rate Rap in the following form:

Rap(τ, r) = −1

τ
lnP ap(τ, r) = r

B

τ
− α

β

τ −B

τ
− (r2γ + qτ)

σ2

4β

B2 + 2
β
(τ −B)

τ

+q
σ2

8β2

B2(2βτ − 1)− 2B
(
2τ − 3

β

)
+ 2τ 2 − 6τ

β

τ
. (4.17)

Since

lim
τ→0+

B(τ) = lim
τ→0+

eβτ − 1

β
= 0, lim

τ→0+

B(τ)

τ
= lim

τ→0+

eβτ − 1

βτ
= 1,

we obtain

lim
τ→0+

τ −B

τ
= 0,

lim
τ→0+

B2 + 2
β
(τ −B)

τ
= 0,

lim
τ→0+

B2(2βτ − 1)− 2B
(
2τ − 3

β

)
+ 2τ 2 − 6τ

β

τ
= 0,

from which the limit limτ→0+ Rap(τ, r) = r in the theorem follows.

2. Since lnP ap2 = lnP ap + o(τ 4), for interest rates we have

Rap2 = − lnP ap + o(τ 4)

τ
= Rap + o(τ 3).

As limτ→0+R
ap(τ, r) = r, we also have limτ→0+R

ap2(τ, r) = r for any r > 0.

♦
Infinite limits, derived in the next theorem, are one of the reasons, why the ap-

proximations, compared to exact CIR values, are not suitable for larger times to
maturity. The other reason is that the expansions are done for τ → 0+.
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Theorem 6.

1. The limit of interest rate Rap for τ → ∞ is equal to minus infinity if q < 0, plus
infinity if q > 0 and it has a finite limit −α

β
+ r2γ σ2

2β2 if q(r) = 0, where q(r) is
given by (4.4). A finite limit occurs for at most two positive values of r.

2. The condition q = 0 is necessary also for a finite limit of Rap2 as τ →∞ .

Proof: Firstly we note that B(τ)/τ → 0 as τ →∞.

1. We use the expression (4.17) for interest rates. Then, for τ → ∞, we have a
finite limit of the following part of the expression:

r
B

τ
− α

β

τ −B

τ
+ q(r)

σ2

8β2

B2(2βτ − 1)− 2B
(
2τ − 3

β
+ 2τ 2 − 6τ

β

)

τ
→ −α

β
.

The limit of the remaining part is

lim
τ→∞

−
(

(r2γ + q(r)τ)
σ2

4β

B2 + 2
β
(τ −B)

τ

)
= −r2γ σ

2

2β2
− q

3σ2

4β3
− σ2

2β2
lim
τ→∞

q(r)τ,

from which the first statement of the theorem follows. What remains to be
shown is that the equality q = 0 holds only at most for two positive value of r.

This condition can be written as γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α + βr) = 0 or,
equivalently,

(2γ − 1)σ2r2γ−1 + 2(α + βr) = 0, (4.18)

where we used the fact that γ is not zero and that r > 0. Denoting the left hand
side of (4.18) by f(r), we have f ′(r) = (2γ − 1)2σ2r2γ−2 + 2β. This derivative is
equal to zero only for one positive r if γ 6= 1/2 and f ′(r) = 2β if γ = 1/2. Then,
according to Rolle’s theorem, there are at most two points in which f(r) = 0.

2. It follows from the expression Rap2 = Rap + c5τ
5 + c6τ

6, since Rap is not equal
to any of the terms −c5τ 5, −c6τ 6, −c5τ 5− c6τ 6 and hence it does not identically
vanish.

♦



Chapter 5

Calibration of one-factor models

In this chapter we propose a method for calibrating one-factor models using ap-
proximate analytical solutions from the previous chapter. We are interested in esti-
mation of the parameter γ, i.e. the dependence of the volatility of the driving process
of the short rate level. We suppose that

• under the real measure the short rate process is given by

dr = (a+ br)dt+ σrγdw, (5.1)

• under the risk-neutral measure the short rate process is given by

dr = (α + βr)dt+ σrγdw, (5.2)

i.e. the process has a linear drift under both real as well as risk neutral measures.
Note that the volatilities are the same and the difference between drifts determines
the market price of risk λ(r) = (a−α)+(b−β)r

σrγ . Assumption (5.2) enables us to use
approximate analytical solutions for interest rates studied in previous chapter and
hence to consider deviations from interest rates on the real market. Assumption (5.1)
enables us to use the Gaussian estimation methodology due to Nowman [32] for
estimating parameters from time series of the short rate. The Gaussian methodology
is based on a suitable approximation the likelihood function for γ > 0.

30
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5.1 Nowman’s Gaussian estimates

5.1.1 Discrete approximation of the model

In this section we show how the discrete approximation of the model is derived. The
main idea is to approximate the volatility by a piecewise constant function, which
stays constant between two observations (see [32], [23]).

The equation for the short rate under the real probability measure

drs = (α + βrs)ds+ σrγsdws

is multiplied by e−βs, which yields

e−βsdrs − βe−βsrsds = αe−βsds+ σe−βsrγsdws

d

ds

(
eβsrs

)
= αe−βsds+ σe−βsrγsdws,

from which by integration over the time interval [t− 1, t] to time t we obtain

e−βtrt − e−β(t−1)rt−1 =
α

β

(
e−β(t−1) − e−βt

)
+

∫ t

t−1

σrγs e
−βsdws.

Using the approximation, according to which the volatility is constant on interval
[t− 1, t) and equals the values at the beginning of the interval, we get

∫ t

t−1

σrγs e
−βsdws = σrγt−1

∫ t

t−1

e−βsdws,

and hence

e−βtrt − e−β(t−1)rt−1 =
α

β

(
e−β(t−1) − e−βt

)
+ σrγt−1

∫ t

t−1

e−βsdws.

Multiplying this equation by the term eβt and denoting

εt = σrγt−1e
βt

∫ t

t−1

e−βsdws

we obtain a discrete short rate model

rt = eβrt−1 +
α

β

(
eβ − 1

)
+ εt for t = 2, . . . , N. (5.3)

The onditional distribution of εt for a given value of rt−1 follows from properties
of Itō’s integral (c.f. [37]): εt are normally distributed, uncorrelated for t = 1, 2, . . . ,
with a zero expected value and the variance ν2

t satisfying

ν2
t := V ar(εt) = σ2r2γ

t−1e
2βt V ar

(∫ t

t−1

e−βsdws

)

= σ2r2γ
t−1

∫ t

t−1

e−2βsds = σ2r2γ
t−1

e2β − 1

2β
,



32

where we used Itō’s isometry (Corollary 3.1.7, [37]).
The likelihood function L for this model is equal (up to an additive constant) to

(see [32], [23])

logL = −1

2

N∑
t=2

(
log ν2

t +
ε2
t

ν2
t

)
, (5.4)

where

ν2
t =

σ2

2β

(
eβ − 1

)
r2γ
t−1, εt = rt − α

β

(
eβ − 1

)− eβrt−1. (5.5)

Estimates of the parameters are arguments of the maximum of the function logL.
These results are obtained in the case when the interval [t − 1, t] between two

consecutive values of rt is taken as a unit of time. In a case of another time scale
when the length of the interval is ∆t, in the same way as before we derive the model

rk = eβ∆trk−1 +
α

β

(
eβ∆t − 1

)
+ εk (k = 2, . . . , N), (5.6)

where k is a number of observations (to simplify the notation, we index the observa-
tions by their number, instead of time), with εk normally distributed, uncorrelated,
with a zero expected value and the variance σ2r2γ

k−1
e2β∆t−1

2β
. This can be written as

rk = eβ̃rk−1 +
α̃

β̃

(
eβ̃ − 1

)
+ ε̃k (k = 2, . . . , N), (5.7)

where ε̃k are normally distributed, uncorrelated, with a zero expected value and the
variance σ̃2r2γ

k−1
e2β̃−1

2β̃
, where

α̃ = α∆t, β̃ = β∆t, σ̃2 = σ2∆t. (5.8)

When studying the existence of maximum of the likelihood function, we can study
model in the form (5.7), which is equivalent to (5.3), and when estimating the pa-
rameters α, β, σ2, we divide estimates of α̃, β̃ and σ̃2 by ∆t (resp., when estimating
σ, we divide σ̃2 by

√
∆t).

5.1.2 Examples of calibration

We present examples of calibration results using the Gaussian methodology. We use
Bribor overnight daily data from 2007. Their evolution over the year is shown in the
Figure 5.1 and their basic descriptive statistics are shown in the Figure 5.2.

Figures 5.3 and 5.4 show drift and volatility functions for several values of γ,
estimated from Bribor overnight interest rates in 2007. Table 5.1 presents numerical
values of the estimates.
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Figure 5.1: Bribor overnight (short rate) process, 2007.
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Series: BRIBOR07ON

Sample 1/01/2007 12/31/2007

Observations 250

Mean       0.036587

Median   0.036850

Maximum  0.061200

Minimum  0.022450

Std. Dev.   0.009606

Skewness   0.508940

Kurtosis   2.726052

Jarque-Bera  11.57425

Probability  0.003067

Figure 5.2: Descriptive statistics of Bribor overnight, 2007.

Table 5.1: Gaussian estimates for Bribor, 2007.

γ α β σ
0 1.5261 -41.9624 0.0888

0.5 1.6370 -44.9889 0.4917
1 1.7762 -49.0323 2.8446

1.5 1.9465 -54.2752 17.0548
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Figure 5.3: Estimated drift for several values of γ (Bribor, 2007).

Figure 5.4: Estimated volatility for several values of γ (Bribor, 2007).
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5.1.3 The condition for existence of the log-likelihood function
maximum

Using the following transformation:

a =
α

β
(eβ − 1), b = eβ, s2 = σ2 e

2β − 1

2β
(5.9)

model (5.3) can be transformed into the form rt = a+ brt−1 + εt, where εt are uncor-
related and conditional distribution of εt|rt−1 is N(0, s2r2γ

t−1). In general, the estimate
of b need not be positive. But if it is not positive, we cannot do inverse transforma-
tion and obtain original parameters. Now we investigate when the maximum of the
likelihood function does not exist.

We return to original parameters α, β, σ2 of the model. Recall that the likelihood
function L for this model is equal (up to an additive constant) to

logL = −1

2

N∑
t=2

(
log ν2

t +
ε2
t

ν2
t

)
, (5.10)

where

ν2
t =

σ2

2β

(
eβ − 1

)
r2γ
t−1, εt = rt − α

β

(
eβ − 1

)− eβrt−1. (5.11)

We fix γ and look for the maximum of logL with respect to parameters α, β and σ2.
Since

∂ logL

∂α
=

N∑
t=2

∂ logL

∂εt

∂εt
∂α

=
eβ − 1

β

N∑
t=2

εt
ν2
t

,

from necessary first order condition ∂ logL
∂α

∣∣
(α̂,β̂,σ̂2)

= 0 we obtain

N∑
t=2

ε̂t
ν̂2
t

= 0,

where ε̂t, ν̂2
t are values εt, ν2

t evaluated in the points
(
α̂, β̂, σ̂2

)
. After substituting ν̂2

t

we obtain the equality
N∑
t=2

ε̂tr
2γ
t−1 = 0.

inserting ε̂t into the above equality, we are able to obtain the estimate of the param-
eter α in the form:

α̂ =
β̂

eβ̂ − 1

∑N
t=2 rtr

−2γ
t−1 − eβ̂

∑N
t=2 r

1−2γ
t−1∑N

t=2 r
−2γ
t−1

. (5.12)
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Similarly, since

∂ logL

∂σ2
=

N∑
t=2

∂ logL

∂ν2
t

∂ν2
t

∂σ2
=

N∑
t=2

(
− 1

2ν2
y

+
ε2
t

2(ν2
t )

2

)
e2β − 1

2β
r2γ
t−1

and ∂ logL
∂σ2

∣∣
(α̂,β̂,σ̂2)

= 0, we get

N∑
t=2

(
1

ν̂2
t

− ε̂2
t

(ν̂2)2

)
r2γ
t−1 = 0.

From this, after substituting ε̂t and ν̂2
t , we have

σ̂2 e
2β̂ − 1

2β̂
(N − 1)−

N∑
t=2

ε̂2
t r

2γ
t−1 = 0.

Hence, we derived a formula for σ̂2:

σ̂2 =
1

N − 1

2β̂

e2β̂ − 1

N∑
t=2

ε̂2
t r

2γ
t−1. (5.13)

Let us define the following functions, based on formulae (5.12) and (5.13):

α(β) =
β

eβ − 1

∑N
t=2 rtr

−2γ
t−1 − eβ

∑N
t=2 r

1−2γ
t−1∑N

t=2 r
−2γ
t−1

, (5.14)

σ2(β) =
1

N − 1

2β

e2β − 1

N∑
t=2

ε2
t r

2γ
t−1 = 0, (5.15)

where εt = εt(β) = rt−eβrt−1−α(β) e
β−1
β

and insert them for α and σ2 in the definition
of logL. In this way, we obtain a function of one variable (since γ is given) log L̃(β).
Now, we find its maximum and investigate the condition for its existence.

Substituting (5.15) into ν2
t we have

ν2
t =

1

N − 1

(
N∑
s=2

ε2
sr

2γ
s−1

)
r2γ
t−1.

It follows that
N∑
t=2

log ν2
t = (N − 1) log

1

N − 1
+ (N − 1) log

N∑
t=2

ε2
t r

2γ
t−1 + 2γ

N∑
t=2

log rt−1

and
N∑
t=2

ε2
t

ν2
t

=
N∑
t=2

ε2
t

1
N−1

(∑N
s=2 ε

2
sr
−2γ
s−1

)
r2γ
t−1

= N − 1.
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It means that log L̃(β) can be written as

−1

2

(
(N − 1) log

1

N − 1
+ (N − 1) log

N∑
t=2

ε2
t r
−2γ
t−1 + 2γ

N∑
t=2

log rt−1 + (N − 1)

)
,

where the only term depending on β is −1
2
(N − 1) log

∑N
t=2 ε

2
t r
−2γ
t−1 . Hence it suffices

to minimize the sum
∑N

t=2 ε
2
t r
−2γ
t−1 .

Inserting (5.14) into εt, we have εt = At + eβBt, where

At = rt −
∑N

s=2 rsr
−2γ
s−1∑N

s=2 r
−2γ
s−1

, Bt =

∑N
s=2 r

1−2γ
s−1∑N

s=2 r
−2γ
s−1

− rt−1 (5.16)

are independent of β. Then

N∑
t=2

ε2
t r
−2γ
t−1 =

(
N∑
t=2

A2
t r
−2γ
t−1

)
+

(
N∑
t=2

2AtBtr
−2γ
t−1

)
eβ +

(
N∑
t=2

B2
t r
−2γ
t−1

)
e2β.

Minimization of logL is therefore equivalent to minimization of the function f(β) =
k1e

β + k2e
2β, where

k1 =
N∑
t=2

2AtBtr
−2γ
t−1 , k2 =

N∑
t=2

B2
t r
−2γ
t−1 . (5.17)

We have k2 ≥ 0 and if r1, . . . , rN−1 are not all identically equal, we have the strict
inequality1 k2 > 0. Further, we consider only this case. The function f(β) then
depends on the sign of k1:

• If k1 ≥ 0, then f(β) > 0 for all β and limβ→−∞ f(β) = 0. It means that the
function f(β) does not have a minimum. It converges to its infimum as β →
−∞.

• If k1 < 0, then f decreases for β < log
(
− k1

2k2

)
and increases for β > log

(
− k1

2k2

)
.

Thus, at the point β = log
(
− k1

2k2

)
the function f has its global minimum.

From (5.17) we get

k1 = 2

(∑N
t=2 rtr

−2γ
t−1

)(∑N
t=2 r

1−2γ
t−1

)
−

(∑N
t=2 rtr

1−2γ
t−1

)(∑N
t=2 r

−2γ
t−1

)
(∑N

t=2 r
−2γ
t−1

) ,

1k2 = 0 if and only if all Bt (t = 2, . . . , N) are zero, i.e.
∑N

s=2 r1−2γ
s−1∑N

s=2 r−2γ
s−1

= rt−1 for t = 2, . . . , N.

The term on the left hand side in constant with respect to t, and hence rt−1 for t = 2, . . . , N (i.e. rt

for t = 1, . . . N − 1) are identically equal.
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k2 =

(∑N
t=2 r

2−2γ
t−1

)(∑N
t=2 r

−2γ
t−1

)
−

(∑N
t=2 r

−2γ
t−1

)2

(∑N
t=2 r

−2γ
t−1

) .

Hence the condition k1 < 0 for existence of the minimum of f is equivalent to the
statement(

N∑
t=2

rtr
−2γ
t−1

)(
N∑
t=2

r1−2γ
t−1

)
−

(
N∑
t=2

rtr
1−2γ
t−1

) (
N∑
t=2

r−2γ
t−1

)
< 0. (5.18)

In summary, we have shown the following statements:

Theorem 7.

• If the inequality (5.18) holds, then the estimate of parameter β is

β̂ = log

(∑N
t=2 rtr

−2γ
t−1

) (∑N
t=2 r

1−2γ
t−1

)
−

(∑N
t=2 rtr

1−2γ
t−1

)(∑N
t=2 r

−2γ
t−1

)

(∑N
t=2 r

2−2γ
t−1

)(∑N
t=2 r

−2γ
t−1

)
−

(∑N
t=2 r

−2γ
t−1

)2 ,

and estimates of parameters α a σ2 are given by (5.14) and (5.15), evaluated for
β = β̂.

• If inequality (5.18) does not hold, then maximum of likelihood function does not
exist. The likelihood function is increasing on the curve parameterized by β for
β → −∞: (α, β, σ2) = (α(β), β, σ2(β)) where α(β) and σ2(β) are given by (5.14)
and (5.15).

5.1.4 A theoretical example of nonexistence of maximum of the
log-likelihood function

As we have shown in the previous section, it can happen that the likelihood function
L does not attain its maximum and it is increasing on a curve where β → −∞.
Writing the drift in the form κ(θ − r), it corresponds to the limit κ → ∞. Hence,
we could expect this to happen, when there is an evidence for a very strong mean
reversion. Using this idea, we construct an example, where maximum likelihood
estimates of the Vasicek model do not exist.

Let a, b be positive constants. Define

rt = a+ b
(−1)t

t
, t = 1, 2, . . . , N. (5.19)

An example of a sequence of rt, obtained in this way, is shown in Figure 5.5. We
show that, for any a and b, maximum likelihood estimate of the Vasicek model does
not exist, i.e. the condition (for γ = 0)

(
N∑
t=2

rt

)(
N∑
t=2

rt−1

)
− (N − 1)

(
N∑
t=2

rtrt−1

)
< 0.
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Figure 5.5: A sequence of rt obtained from (5.19).

Figure 5.6: Graphical hint for the proof of the inequality (5.20).

is not satisfied. Substituting (5.19) into the left hand side of this inequality, yields
(

N∑
t=2

a+ b
(−1)t

t

)(
N∑
t=2

a+ b
(−1)t−1

t− 1

)
−(N−1)

N∑
t=2

(
a+ b

(−1)t

t

)(
a+ b

(−1)t−1

t− 1

)
=

= b2

(
N∑
t=2

(−1)t

t

N∑
t=2

(−1)t−1

t− 1
+

N∑
t=2

1

t(t− 1)

)
.

Now, we show that

N∑
t=2

(−1)t

t

N∑
t=2

(−1)t−1

t− 1
+

N∑
t=2

1

t(t− 1)
> 0, (5.20)

from which our claim about nonexistence a of maximum of the likelihood function
follows.

The first term in the inequality (5.20), i.e.
∑N

t=2
(−1)t

t

∑N
t=2

(−1)t−1

t−1
, is a sum of

(−1)i

i
(−1)j

j
, where i = 2, 3, . . . , N a j = 1, 2, . . . , N − 1. Product 1

ij
hence is hence

included with positive sign if i+j is even and with negative sign if i+j is odd. Hence



40

the left hand side of 5.20 equals

N∑
t=2

(−1)t

t

N∑
t=2

(−1)t−1

t− 1
+

N∑
t=2

1

t(t− 1)

=
N∑
i=2

N−1∑
j=1

(−1)i+j

ij
+

N∑
t=2

1

t(t− 1)
=

N∑
i=2

N−1∑

j=1,j 6=i

(−1)i+j

ij
(5.21)

This summation procedure is illustrated in Figure 5.6. Diagonal elements are not
included, as the sum (5.21) runs for j 6= i. Signs in the cells are the signs, by which
the product 1/ij is included in 5.21.

Let us consider the following sums, each of which consists of the two terms (−1)i+j

ij

from the sum 5.21. We distinguish

• sums below the diagonal:

1

i(i− 2)
− 1

(i+ 1)(i− 2)
=

1

i(i+ 1)(i− 2)
> 0

(as i ≥ 3 in this case),

• sums above the diagonal:

1

i2
− 1

i(i+ 1)
=

1

i2(i+ 1)
> 0.

All the remaining terms are positive. Therefore the whole sum in (5.21) is positive.
Let us note that the inequality (5.20) for large N can be alternatively derived as

follows. Since ∞∑

k=1

(−1)k+1

k
= ln 2,

we can compute the limit of the left hand side of (5.20):

lim
N→∞

(
N∑
t=2

(−1)t

t

N∑
t=2

(−1)t−1

t− 1
+

N∑
t=2

1

t(t− 1)

)
=

lim
N→∞

([
1−

N−1∑
t=1

(−1)t+1

t

][
−

N−1∑
t=1

(−1)t+1

t

]
+

N∑
t=2

[
1

t− 1
− 1

t

])
=

lim
N→∞

([
1−

N−1∑
t=1

(−1)t+1

t

][
−

N−1∑
t=1

(−1)t+1

t

]
+ 1− 1

N

)
=

(1− ln 2)(− ln 2) + 1 ≈ 0.7873 > 0.

This can be considered as an alternative proof of inequality (5.20) for sufficiently
large N .
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Figure 5.7: Frequency of time intervals, in which Gaussian estimates of the Vasicek
model (γ = 0) exist (Bribor, 2007).

Table 5.2: Frequency of time intervals, in which Gaussian estimates exist (Bribor,
2007).

length of time interval γ = 0 γ = 0.5 γ = 1
5 0.7073 0.7033 0.7073
10 0.9585 0.9461 0.9419
15 0.9958 0.9915 0.9915
20 1.0000 1.0000 0.9957

5.1.5 Existence and nonexistence of the log-likelihood function
maximum for real market data

Now we consider real data and the question of existence of Gaussian estimates. We
take time intervals of different lengths. If the length is k days, we take data from
intervals [1, k], [2, k + 1], etc. and we compute a frequency of the instances when
Gaussian estimate exists. For the Vasicek model, the results are shown in Figure 5.7.
Similar results are obtained also for another values of γ. They are summarized in
Table 5.2.

It can be observed that the problem of nonexistence of the maximum arises es-
pecially for small number of observations. For example, in the Vasicek model, the
maximum exists only in 70.73 percent of the cases when we use 5 observations (i.e.
one week). When we use 10 observations, it is already 95.85 percent. For 20 obser-
vations (approximately one month), estimates exist in all the cases.

5.2 Comparison with whole term structures

Following the approach developed in [48] and [49], our aim is to minimize the
differences between real data and interest rates predicted by a model. The objective
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function is
F =

∑
i,j

wij(R(ri, τj)−Rij)
2,

where we index time by i and times to maturity of interest rates by j. R(τj, ri) is an
interest rate with maturity τj given by a model, when the short rate equals ri, Rij is
a real observed interest rate. This function is minimized with respect to parameters
of the model.

The weight functions wij provide the weight to the differences. We can prescribe
different weights for older data and more recent data (by making w dependent on i),
or for interest rates with different maturities (by making it dependent on j).

5.3 Proposed method of calibration and results

It is known that Gaussian estimates of parameters α and β are biased, while σ is
estimated more precisely, see for example simulation study [52]. Moreover, the drift
functions in real probability (which was used in Gaussian estimates) and in risk neu-
tral measure (which is needed to compute interest rates) are not identical. Since
the volatility does not change with this change of probability measure, one possible
way of calibration (suggested e.g. in [12] for the Vasicek model) is to estimate the
volatility by Gaussian methodology and then use the interest rates to estimate the
risk neutral drift.

Following [48], [49] we consider the objective function for comparison of theo-
retical and real interest rates

F (α, β) =
∑
i,j

wij(R(ri, τj)−Rij)
2

=
∑
i,j

wij

(
− lnP ap(ri, τj)

τj
−Rij

)2

=
∑
i,j

wij
τ 2
j

(−τjRij − lnP ap(ri, τj))
2

=
∑
i,j

wij
τ 2
j

(τjRij + lnP ap(ri, τj))
2 . (5.22)

Notice that the theoretical valuesR(ri, τj) are calculated using approximate analytical
solution P ap discussed in chapter 3. Compared to numerical computation of the
interest rates based on a solution to PDE (4.2), this approach has the advantage of
having high accuracy obtained with a faster computation of P ap in a closed form.
Recall that

lnP ap(τ, r) = −rB +
α

β
(τ −B) +

(
r2γ + qτ

) σ2

4β

[
B2 +

2

β
(τ −B)

]

−q σ
2

8β2

[
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ 2 − 6τ

β

]
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where
q(r) = γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α + βr)

and B(τ) = (eβτ − 1)/β, see (4.3) and (4.4). Note that q(r) and lnP ap(τ, r) are linear
functions of α. They can be written as

q(r) = q1(r),

lnP ap(r, τ) = c1 + αc2

where

c1 = c1(r, τ, β, σ, γ) = −rB +
σ2

4β

(
B2 +

2

β
(τ −B)

) (
r2γ + q2τ

)

−q2 σ
2

8β2

(
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ 2 − 6τ

β

)
,

c2 = c2(r, τ, β, σ, γ) =
τ −B

β
+ q1τ

σ2

4β

(
B2 +

2

β
(τ −B)

)

−q1 σ
2

8β2

(
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ 2 − 6τ

β

)

and

q1 = q1(r, γ) = 2γr2γ−1,

q2 = q2(r, γ, σ) = γ(2γ − 1)σ2r3(3γ−1) + 2γr2γ.

Substituting them into (5.22), we write the function F (α, β) as a quadratic function
of α:

F (α, β) =

[∑
i,j

wij
τ 2
j

c22

]
α2 +

[
2
∑
i,j

wij
τ 2
j

c2(τjRij + c1)

]
α+

[∑
i,j

wij
τ 2
j

(τjRij + c1)
2

]
.

(5.23)

Hence, when the parameter β is prescribed, the corresponding optimal value of α =
α(β) is given by

α(β) = −
∑

i,j
wij

τ2
j
c2(τjRij + c1)

∑
i,j

wij

τ2
j
c22

. (5.24)

Substituting (5.24) into (5.23) we can write F as a function of the one variable β,
i.e.

F (β) = −

[∑
i,j

wij

τ2
j
c2(τjRij + c1)

]2

∑
i,j

wij

τ2
j
c22

+
∑
i,j

wij
τ 2
j

(τjRij + c1)
2. (5.25)

To find the solution of our optimization problem, this function has to be minimized
with respect to β. The optimal value of α is then given by (5.24).
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Figure 5.8: Euribor data for selected maturities, 2007.

We show results of the calibration for Euribor interest rates. We use daily data
from the year 2007. As an approximation for the short rate we use 1 week interest
rate and we use 12 maturities for term structures, from 1 month up to 12 month
maturity. Plots of data for selected maturities are shows in Figure 5.8.

We consider two weight functions: wij = τ 2
j (i.e. we put higher weigh on longer

maturities) and wij = 1/τ 2
j (i.e. we put higher weight on shorter maturities). In

Figure 5.9, the function F (β) is shown for wij = τ 2
j and γ = 0. It has a similar shape

for other choices of wij and γ.
Tables 5.3 and 5.4 present the estimates of parameters for several values of γ.

Figure 5.13 shows the attained optimal values of objective function. The optimal γ
is significantly influenced by the choice of weights w. In case of wij = τ 2

j , the Vasicek
model is confirmed, the smallest value of the objective function is attained for γ = 0.
However, when using wij = 1/τ 2

j , the optimal value of γ is found to be close to 3.
Estimates of σ are obtained from the short rate by Gaussian metholodogy. Hence

they are independent of weights. They have similar behavior as for the Bribor short
rate - the estimated volatility functions intersect with each other for similar values of
short rate, see Figure 5.10. Drifts estimated by both weights are shown in the Figure
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Figure 5.9: The plot of the function F (β).

Table 5.3: Estimates for weights wij = τ 2
j .

γ α β σ
0 0.0162 -0.3781 0.0341

0.5 0.0164 -0.3959 0.1638
1 0.0182 -0.4552 0.7877

1.5 0.0231 -0.5918 3.7931
2 0.0326 -0.8455 18.2938

2.5 0.0493 -1.2789 88.3684
3 0.0771 -1.9888 427.526

3.5 0.1236 -3.1637 2071.53

Table 5.4: Estimates for weights wij = 1/τ 2
j .

γ α β σ
0 0.1608 -3.7277 0.0341

0.5 0.1605 -3.7306 0.1638
1 0.1613 -3.7600 0.7877

1.5 0.1634 -3.8194 3.7931
2 0.1671 -3.9180 18.2938

2.5 0.1732 -4.0759 88.3684
3 0.1833 -4.3316 427.526

3.5 0.2002 -4.7489 2071.53

Figure 5.10: Estimated volatility σrγ (Euribor, 2007).
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Figure 5.11: Estimated drifts α + βr (Euribor, 2007) for weights wij = τ 2
j (left) and

wij = 1/τ 2
j (right).

Figure 5.12: Estimated drifts α+βr(Euribor, 2007) for γ = 1 (left) and γ = 2 (right).

5.11. Figure 5.12 compares drifts obtained for the same γ using these two weight
functions. As it can be seen also from Table 5.3 and Table 5.4, weights w = 1/τ 2

suggest stronger mean reversion, while the limit short rate (under the risk neutral
measure) is similar in both cases.

Figure 5.13: The objective function F as a function of γ for weights wij = τ 2
j (left)

and wij = 1/τ 2
j (right).



Chapter 6

A survey of two-factor short rate
models

Let us recall that in one-factor interest rate models, the term structure is com-
pletely determined by its origin, i.e. the short rate r. To allow different term struc-
tures, starting from the same short rate, another factor has to be introduced. It leads
to a class of two-factor models. Interest rates are then functions not only of the
short rate but they are also depending on the second factor of the model. Moreover,
two-factor models allow for a larger variety shapes of term structures than one-factor
models do. They can also predict market options data better, an analysis of option
prices in one-factor and two-factor models was done in [13] and two-factor models
were found to be more suitable. and accurate compared to one-factor models.

In this chapter we firstly derive the partial differential equation for the bond prices
similarly as in the case of one-factor models. Then we describe several possible types
of two-factor models arising from different choice of the second factor.

We consider a general two-factor models with the factors x, y, given by

dx = µxdt+ σxdw1,

dy = µydt+ σydw2,

where correlation between dw1 and dw2 is a constant ρ, i.e. E(dw1dw2) = ρdt. The
short rate is a function of these two factors, i.e. r = r(x, y). Using the method in
[29], we derive a PDE for bond prices in this model.

Denote by P (x, y, t, T ) the price of a zero coupon bond with maturity T , at the
time t when the values of the factors are x and y. Then, by a multidimensional Itō’s

47



48

lemma (see for example [37], [29]) we get the stochastic differential equation for P :

dP = µdt+ σ1dw1 + σ2dw2, (6.1)

where µ = µ(x, y, t, T ), σi = σi(x, y, t, T ) are given by

µ =
∂P

∂t
+ µx

∂P

∂x
+ µy

∂P

∂y
+
σ2
x

2

∂2P

∂x2
+
σ2
y

2

∂2P

∂y2
+ ρσxσy

∂2P

∂x∂y
,

σ1 = σx
∂P

∂x
,

σ2 = σy
∂P

∂y
.

We construct a portfolio of bonds with three maturities T1, T2, T3, consisting of
V1, V2, V3 units of the bonds. Change in its value π is then

dπ = V1dP (T1) + V2dP (T2) + V3dP (T3)

= (V1µ(T1) + V2µ(T2) + V3µ(T3)) dt

+ (V1σ1(T1) + V2σ1(T2) + σ1µ(T3)) dw1

+ (V1σ2(T1) + V2σ2(T2) + σ2µ(T3)) dw2. (6.2)

By choosing V1, V2, V3 so that

V1σ1(T1) + V2σ1(T2) + σ1µ(T3) = 0,

V1σ2(T1) + V2σ2(T2) + σ2µ(T3) = 0,

the portfolio becomes deterministic

dπ = V1dP (T1) + V2dP (T2) + V3dP (T3)

and hence its return has to be equal to the riskless rate r = r(x, y):

V1µ(T1) + V2µ(T2) + V3µ(T3) = πr,

which can be written as

V1(µ(T1)− r) + V2(µ(T2)− r) + V3(µ(T3)− r) = 0.

Hence we have a system of linear equations for the amounts V1, V2, V3 of bonds in
the portfolio:




σ1(T1) σ1(T2) σ1(T3)
σ2(T1) σ2(T2) σ2(T3)

µ(T1)− r µ(T2)− r µ(T3)− r







V1

V2

V3


 =




0
0
0


 .

This system has a nontrivial solution, if the row of the matrix are linearly dependent,
i.e. some of them can be written as a linear combination of the preceding ones. If
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the second row is a multiple of the first one, substituting into (6.2) we only see one
source of randomness and we essentially get a one-factor model. Hence the third
row must be a combination of the previous two, i.e.

µ(Ti)− r = λrσ1(Ti)σ1 + λ2σ2(Ti).

Since Ti were arbitrary, this has to hold for any Ti and hence λ1, λ2 (so called market
prices of risk of the factors) do not depend on the maturity of the bonds:

λ1 = λ1(x, y, t), λ2 = λ2(x, y, t).

Substituting values of µ, σ1 and σ2 we obtain the PDE satisfied by the bond price,
which reads as

∂P

∂t
+ (µx − λ1σx)

∂P

∂x
+ (µy − λ2σy)

∂P

∂y

+
σ2
x

2

∂2P

∂x2
+
σ2
y

2

∂2P

∂y2
+ ρσxσy

∂2P

∂x∂y
− r(x, y)P = 0. (6.3)

In the following sections we present and classify the two-factor models.

6.1 A stochastic parameter generalization of a one-
factor model

Several two-factor models are simply obtained as a generalization of one-factor mod-
els, in which some parameter is now assumed to have a stochastic behavior. These
models include:

• A stochastic limit of the short rate. A model with a stochastic short rate limit
θ has been introduced in [8]. It is given by the following system of stochastic
differential equations:

dr = κ(θ − r)dt+
√
σ0 + σ1rdw1

dθ = µ(θ)dt+ s(θ)dw2,

where the correlation E(dw1dw2) between the increments of the stochastic pro-
cesses w1 and w2 is equal to ρdt. If we assume the market price of risk of
the short rate to have a form λ1 + λ2r for some constants λ1, λ2, and the
market price of risk being dependent only on θ, then the bond price has the
form P (τ, r, θ) = exp(−A(τ, θ) − B(τ)r). The function B(τ) can be found
in the closed form. Moreover, if functions µ(θ), s(θ), l(θ) are affine, then
A(τ, θ) = C(τ) + θD(τ) for some functions C, D. Hence interest rates are
affine functions of r and θ (c.f. [8]).
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• A stochastic volatility. In models with stochastic volatility, the second factor
of the model is related to the volatility of the short rate. There are several
possibilities for the choice of this factor. In the Fong-Vasicek model [24], it is
given by

dr = κ1(θ1 − r)dt+
√
ydw1,

dy = κ2(θ2 − y)dt+ v
√
ydw2,

the short rate volatility is the square root of the second factor y. As before,
increments of the processes can be correlated, their correlation is a constant
ρ. If the market prices of risk are λ1

√
y, resp. λ2

√
y, then the bond price has

the form P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y (see [24]). It is possible to derive the
closed form expressions for the function A, B and C, in terms of confluent
hypergeometric functions with complex arguments (c.f. [39]).

Anderson and Lund proposed several two-factor models in [4]. One of them is
a model with a stochastic volatility given by

dr = κ1(θ1 − r)dt+ σrγdw1,

d log σ2 = κ2(θ2 − log σ2)dt+ ξdw2,

where dw1 and dw2 are increments of independent Wiener processes.

Let us note that there are also three factor models, in which both these parameters
are stochastic. The reader is referred to [16] for details.

6.2 A stochastic variable related to the short rate

Another popular class of models can be characterized by choosing the second factor
to be a quantity observable on the market, which is assumed to be related to the
short rate.

• Consol rate. In [11], the second factor is a yield ` of the consol bond. It is
a bond with an infinite maturity paying a coupon. This bond is traded on the
market, which allow to eliminate its market price of risk from the PDE for bond
prices. Moreover, this equation does not contain the drift of the process for `1 A
general form of this model is considered, for calibration purposes, the processes
were specified as

dr = (a1 + b1(`− r))dt+ rσ1dw1,

d` = `(a2 + b2r + c2`)dt+ `σ2dw2

1Let us note that this is similar situation to Black-Scholes model for derivatives. The underlying
asset is tradable, and in the PDE for derivatives prices there is neither drift of underlying, nor a market
price of risk.
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with dw1 and dw2 being independent increments of Wiener processes.

The model due to Schaefer and Schwarz [40] is a modification of the previous
one. It models variables ` and s = r − ` (i.e. the difference between short rate
and consol rate). Motivations for this transformation were empirical studies
[5] and [6] confirming the independence of ` and s (opposed to r and `). For
the resulting PDE for bond prices, authors compute an approximate solution in
the form P (τ, s, `) = X(τ, s)Y (τ, `) and compare it with the numerical solution.

Another approach how to model variables s and ` is given in [20], where
GARCH models for these variables are used. They are based on the continu-
ous model

d` = (α`0 + α`1`)dt+ σ` `
γ`dw1, (6.4)

ds = (αs0 + αs1s)dt+ σs `
γsdw2, (6.5)

where increments dw1 and dw2 can be correlated, with a correlation coefficient
ρdt. In contrary to results in [5] and [6], in all specifications of GARCH models,
the correlation ρ is found to be statistically significantly different from zero.
Parameter γs turns out to be zero, which means that volatility of s does not
depend on its value. Parameter γ` is positive and in several models considered,
it is close to 1/2. From the deterministic parts of processes (6.4) and (6.5)
follows mean reversion if α`1 < 0 and αs1 < 0, which was confirmed, although
the speed of mean reversion is small.

• European and domestic interest rates. In [21] the interest rate in Spain (do-
mestic rate rd) before European monetary union was modelled. A process for
the ECU interest rate (European rate re) is modelled by the one-factor Vasicek
model:

dre = c(d− re)dt+ σedwe.

A process for Spanish interest rate is modelled by

drd = (a+ b(re − rd))dt+ σ2dwd,

which can be written as

drd = b
(a
b

+ re − rd

)
dt+ σ2dw2. (6.6)

It can be seen from (6.6) that the domestic rate rd is pushed to the value a
b

+
re. Wiener processes w1, w2 are assumed to be correlated, having a constant
correlation ρdt of their increments dw1, dw2. Under the assumption of constant
market prices of risks, European bond prices are given by a solution of the
Vasicek model and domestic bond prices have the form

Pd(τ, rd, re) = A(τ)e−rdB(τ)−reC(τ),
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with closed form expressions for A, B, C. Parameters of the model were esti-
mated from short rate processes and market prices of risk from term structures.
this model gives better performance when compared to a single factor Vasicek
model.

A more general model of this kind can be found in [38]:

dre = µe(re)dt+ σe(re)dw1,

drd = µd(re − rd)dt+ σd(rd)dw2,

where µe, σe, µd, σd are general function. In [38] the authors estimated this
model for Spanish and Italian data using nonparametric estimation methods.

6.3 Construction of the short rate from several pro-
cesses.

In a generalized Cox-Ingersoll-Ross model [19], the short rate is assumed to be a sum
of two independent Bessel square root processes, i.e.

r = r1 + r2,

dr1 = κ1(θ1 − r1)dt+ σ1

√
r1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2

√
r2dw2, (6.7)

where increments dw1 and dw2 are independent.
The economic theory, that was used in order to motivate this model, considers

a model of economy with a single product. There are two derivations of the model
presented in [19]. In the first one, the expected value and variance of the returns
is characterized by two state variables. For a logarithmic utility function it can be
derived that the real interest rate is a linear combination of state variables. After
neglecting inflation and scaling the state variables, a model (6.7) is obtained. In the
second derivation, the expected value and inflation is given just by one state variable.
It determines the real interest rate. The second factor represents inflation. For a
logarithmic utility function, the interest rate is again derived as a linear combination
of the state variables. After their scaling, the model (6.7) is obtained. Details can be
found in [19].

We made an assumption that market prices of risk of factors r1 and r2 are pro-
portional to their square roots, i.e. λi

√
ri, i = 1, 2, where λ1, λ2 are constants. In

[19], this choice was also motivated by the economic theory. In this case, the bond
price can be written as P (τ, r1, r2) = P1(τ, r1)P2(τ, r2), where PDEs for P1 and P2

are the equations arising from the one-factor CIR model. Hence they can be solved
analytically.

In [31], the above model is formulated as a model with a stochastic volatility.
The first factor is the short rate r, second factor V is its volatility. However, it is
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another kind of the stochastic model compared to those we considered in the previous
sections. In this model, each of stochastic differential equations for r and V contains
both Wiener processes. To formulate the model, we need to introduce the driving
processes. Returns from the production are modelled by the stochastic differential
equation

dQ

Q
= (µX + θY )dt+ σ

√
Y dw1,

where X, Y are mean reverting processes satisfying

dX = κ1(θ1 −X)dt+ σ1

√
Xdw2,

dY = κ2(θ2 − Y )dt+ σ2

√
Y dw3.

In [31] it was derived that the interest rate r is a linear combination of processes X
and Y , i.e.

r = αX + βY,

where
α = µσ2

1, β = (θ − σ2)σ2
2.

Then, the authors introduced constants γ, δ, η and ξ as follows:

γ =
κ1θ1

σ2
1

, δ = κ1, η =
κ2θ2

σ2
2

, ξ = κ2.

They furthemore show that the processes for r and V can be written as

dr =

(
αγ + βη − βδ − αξ

β − α
r − ξ − δ

β − α
V

)
dt

+α

√
βr − V

α(β − α)
dw2 + β

√
V − αr

β(β − α)
dw3,

dV =

(
α2γ + β2η − αβ(δ − ξ)

β − α
r − βξ − αδ

β − α
V

)
dt

+α2

√
βr − V

α(β − α)
dw2 + β2

√
V − αr

β(β − α)
dw3.

This model was estimated by a discrete GARCH model, approximating the original
continuous model. In their subsequent paper [30], authors used the GARCH method
to estimate only a part of parameters and estimated the rest of them from the asymp-
totic distribution of r and V . In [28], a method of moments has been applied. In [10]
the authors propose an iterative algorithm for estimation. A part of the parameters is
estimated from the short rate data, the others are estimated from term structures. Re-
sults from one of these procedures is then used in the second one, which is repeated
until the accuracy goal is achieved.
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In a similar way, we also obtain a two-factor version of the Vasicek process where
the short rate is a sum of two independent Ornstein-Uhlenbeck processes. There are
also models having a deterministic function of time as one of the factors. For example
the so called CIR++ model or Gaussian G++ model. Description of these models
and their applications can be found, for example, in [12].



Chapter 7

The two-factor Vasicek Model

We remind ourselves that in the two-factor Vasicek model, the short rate is a sum
of two independent Ornstein-Uhlenbeck processes r1 and r2:

dr1 = κ1(θ1 − r1)dt+ σ1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2dw2.

According to the general model (6.3), the bond price P (τ, r1, r2) is then a solution to
the following partial differential equation of parabolic type

−∂P
∂τ

+
(
κ1(θ1 − r1)− λ̃1σ1

) ∂P

∂r1
+

(
κ2(θ2 − r2)− λ̃2σ2

) ∂P

∂r2
(7.1)

+
σ2

1

2

∂2P

∂r2
1

+
σ2

2

2

∂2P

∂r2
2

− (r1 + r2)P = 0,

which holds for any r1, r2 ∈ (−∞,∞) and τ ∈ (0,∞). A solution P satisfies the initial
condition P (0, r1, r2) = 1 for each r1, r2 ∈ (−∞,∞). Here, λ̃1 and λ̃2 are market
prices of risk, corresponding to the factors r1 and r2. If these functions are chosen to
be constant, λ1 and λ2 resp., the solution of the resulting PDE has the form

P (τ, r1, r2) = P1(τ, r1)P2(τ, r2), (7.2)

where Pi(τ) = Ai(τ)e
−Bi(τ)r, i = 1, 2, are bond prices in the Vasicek model with

respective parameters given by (3.8) and (3.9). This property is derived directly by
inserting (7.2) into (7.2).
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Figure 7.1: The short rate process r generated by the two-factor Vasicek model (left)
and its components r1 and r2 (right).

Figure 7.2: Term structures in the two-factor Vasicek model.

It follows from the form of a solution for bond prices (7.2) and the form of the
bond price in the one-factor Vasicek model that the term structure in the two-factor
Vasicek model is given by

R(τ, r1, r2) = −
(

lnA1

τ
+

lnA2

τ

)
+
B1

τ
r1 +

B2

τ
r2. (7.3)

Figures 7.1 and 7.2 show an example of a short rate process generated by the
two-factor Vasicek model and term structures in this model.

7.1 Statistical properties of bond prices and interest
rates

In practice, the components r1 and r2 of the short rate are not observable. An observ-
able quantity is the short rate, i.e. their sum r = r1 + r2. Hence, we are interested
in the conditional distribution of P (τ, r1, r2) and R(τ, r1, r2) under the constraint
r1 + r2 = r, where the distributions of r1 and r2 are assumed to be their limiting
distributions.

The limiting distributions of both Ornstein-Uhlenbeck processes forming the two-
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factor Vasicek model, are known to be normal distributions with density

fi(x) =
1√
2πσ̃2

i

e
− (x−θi)

2

2σ̃2
i , i = 1, 2, (7.4)

with σ̃2
i =

σ2
i

2κi
(c.f. [29]). Before deriving distributions of bond prices and interest

rates, we formulate a theorem about conditional distribution of normal distributions.
The proof can be found for example in [2].

Theorem 8. [2, Theorem 4.12] Let X and Y be random variables with normal dis-
tributions N(µx, σ

2
x) and N(µy, σ

2
y) and let ρ be a correlation of X and Y . Then the

conditional distribution of Y subject to X = x is N
(
µy + ρσy

σx
(x− µx), σ

2
y(1− ρ2)

)
.

Theorem 9. Consider the two-factor Vasicek model and the limiting distribution of the
factors r1 and r2. Then:

1. The conditional density of the interest rate R(τ, r1, r2), subject to r1 + r2 = r, is
given by

fR(x; τ, r) =
1√

2πσ2
R

e
− (x−µR)2

2σ2
R ,

where

µR = −
(

lnA1

τ
+

lnA2

τ

)
+

1

τ

[
B1θ1 +B2θ2 +

B1σ̃
2
1 +B2σ̃

2
2

σ̃2
1 + σ̃2

2

(r − (θ1 + θ2))

]
,

σ2
R =

1

τ 2

(
B2

1 σ̃
2
1 +B2

2 σ̃
2
2

)(
1− (B1σ̃

2
1 +B2σ̃

2
2)

2

(σ̃2
1 + σ̃2

2)(B
2
1 σ̃

2
1 +B2

2 σ̃
2
2)

)
.

2. The conditional density of the bond price P (τ, r1, r2), subject to the condition r1 +
r2 = r, is given by

fP (x) =
1

x

1√
2πσ2

P

e
− (ln x−µP )2

2σ2
P

for x > 0 and fP (x; τ, r) = 0 otherwise, where

µP = lnA1 + lnA2 −
(

(B1θ1 +B2θ2) +
B1σ̃

2
1 +B2σ̃

2
2

σ̃2
1 + σ̃2

(r − (θ1 + θ2))

)
,

σ2
P = (B2

1 σ̃
2
1 +B2

2 σ̃
2
2)

(
1− (B1σ̃

2
1 +B2σ̃

2
2)

2

(σ̃2
1 + σ̃2

2)(B
2
1 σ̃

2
1 +B2

2 σ̃
2
2)

)
.

It means that the distribution of interest rates is a normal distribution N(µR, σ
2
R) and

the distribution of bond prices is lognormal with the logarithm of a bond price having a
normal distribution N(µP , σ

2
P ).
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Proof:

1. Since the term − (
lnA1

τ
+ lnA2

τ

)
in (7.3) is constant with respect to r1, r2, we will

consider distribution of B1

τ
r1 + B2

τ
r2, subject to the condition r1 + r2 = r. Define

X = r1 + r2, Y =
B1

τ
r1 +

B2

τ
r2,

then

X ∼ N
(
θ1 + θ2, σ̃

2
1 + σ̃2

2

)
, Y ∼ N

(
B1

τ
θ1 +

B2

τ
θ2,

(
B1

τ

)2

σ̃2
1 +

(
B2

τ

)2

σ̃2
2

)
,

Corr(X, Y ) =
B1

τ
σ̃2

1 + B2

τ
σ̃2

2√
σ̃2

1 + σ̃2
2

√(
B1

τ

)2
σ̃2

1 +
(
B2

τ

)2
σ̃2

2

.

and the claim follows from the previous txheorem 8.

2. We have shown that R ∼ N(µr, σ
2
R). Hence −Rτ ∼ N(−µRτ, σ2

Rτ
2) and P =

e−Rτ has a lognormal distribution with parameters given as in the theorem. For
a density of a lognormal variable we refer to [2].

♦
Figure 7.3 shows examples of the distributions. According to graphs shown in

Figure 7.3, we expect that the variance of interest rates decreases for large maturities.
We prove this property in the following theorem and give a condition guaranteering
a similar property also for the variance of bond prices.

Theorem 10. Consider the limiting distribution of factors r1 and r2 given by (7.4).
Then:

1. The conditional variance V ar(R(τ, r1, r2|r1 + r2 = r) of interest rates (for a fixed
r) converges to zero as time to maturity converges to infinity.

2. If (
θ1 − σ1λ1

κ1

− σ2
1

2κ2
1

)
+

(
θ2 − σ2λ2

κ2

− σ2
2

2κ2
2

)
> 0 (7.5)

then the conditional variance V ar(P (τ, r1, r2|r1 + r2 = r) of bond prices (for a
fixed r) converges to zero as time to maturity converges to infinity.

Remark 5. Recall that in the one-factor Vasicek model, in which R(τ, r) = − lnA(τ)
τ

+
B(τ)
τ
r, we have

lim
τ→∞

R(τ, r) = lim
τ→∞

− lnA(τ)

τ
+
B(τ)

τ
r = θ − σλ

κ
− σ2

2κ2
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Figure 7.3: Distribution of interest rates in the two-factor Vasicek model.
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(see (3.10)). In the two-factor Vasicek model the limit of term structures is

lim
τ→∞

R(τ, r1, r2) = lim
τ→∞

− lnA1(τ)

τ
− lnA2(τ)

τ
+
B1(τ)

τ
r1 +

B2(τ)

τ
r2 =

=

(
θ1 − σ1λ1

κ1

− σ2
1

2κ2
1

)
+

(
θ2 − σ2λ2

κ2

− σ2
2

2κ2
2

)
.

Hence the condition (7.5) (which we will needed in the proof of Theorem 10) means
that the limit of the term structures is positive.

Proof: We have already computed the variances, next we compute their limits.

1. In the previous section we derived variance of the interest rate R. Functions B1

and B2 have positive limits 1/κ1 and 1/κ2, hence we have

V ar(R(τ, r1, r2)|r1+r2 = r) =
1

τ 2

(
B2

1 σ̃
2
1 +B2

2 σ̃
2
2

) (
1− (B1σ̃

2
1 +B2σ̃

2
2)

2

(σ̃2
1 + σ̃2

2)(B
2
1 σ̃

2
1 +B2

2 σ̃
2
2)

)
,

which converges to zero as τ →∞.

2. Since the bond price has a lognormal distribution with lnP ∼ N(µP , σ
2
P ), its

conditional variance is (see [2])

V ar(P (τ, r1, r2)|r1 + r2 = r) = e2µP +σ2
P

(
eσ

2
P − 1

)
.

Since A1, A2 converge to zero if (7.5) is satisfied and B1, B2 have finite limits
as τ → ∞, we obtain that µP → −∞ and σ2

P has a finite limit as τ → ∞. It
follows that the variance of P converges to zero.

♦

7.2 Averaged values and confidence intervals

In this section we give averaged values of bond prices and interest rates for given
short rate r, with respect to the conditional distribution of factor components r1, r2
of the short rate. Moreover we will analyze their confidence intervals.

In what follows, we will use the following notation for averaged bond prices and
interest rates:

P̃ (τ, r) = 〈P (τ, r1, r2)|r1 + r2 = r〉,
R̃(τ, r) = 〈R(τ, r1, r2)|r1 + r2 = r〉.

Theorem 11. [46] Averaged values of bond prices and interest rates, with respect to
limit distributions of r1, r2, given that r1 + r2 = r, are
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1. R̃(τ, r) = − (
lnA1

τ
+ lnA2

τ

)
+ 1

τ

[
B1θ1 +B2θ2 +

B1σ̃2
1+B2σ̃2

2

σ̃2
1+σ̃2

2
(r − (θ1 + θ2))

]
,

2. P̃ (τ, r) = Ã(τ)e−B̃(τ)r, where

Ã(τ) = A1A2 exp

(
−(B1 −B2)

(
θ1 − (θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

)
+

1

2

σ̃2
1σ̃

2
2

σ̃2
1 + σ̃2

2

(B1 −B2)
2

)
,

B̃(τ) =
σ̃2

1

σ̃2
1 + σ̃2

2

B1 +
σ̃2

2

σ̃2
1 + σ̃2

2

B2. (7.6)

and Ai = Ai(τ), Bi = Bi(τ) are given by (3.8) and (3.9)

Proof: We have already computed the averaged interest rate as an expected value of
interest rate distribution. The formula for the averaged bond price follows from log-
normal distribution for bond prices. For the expected value of a lognormal variable
we again refer the reader to [2]. ♦

It follows from Theorem 8 that the conditional distribution of r1, subject to r1 +
r2 = r, is normal N(µc, σ

2
c ) with parameters

µc = θ1 +
σ̃2

1

σ̃2
1 + σ̃2

2

(r − (θ1 + θ2)), σ
2
c =

σ̃2
1σ̃

2
2

σ̃2
1 + σ̃2

2

.

Then 100p% confidence interval (rl1, r
u
1 ) for r1 can be constructed. We conclude that

P (τ, r1, r − r1) = A1A2e
−B2r−(B1−B2)r1 ,

R(τ, r1, r − r1) = −
(

lnA1

τ
+

lnA2

τ

)
+

(
B1

τ
− B2

τ

)
r1 +

B2

τ
r,

are monotone functions of r1 for fixed τ and r. Hence P (τ, rl1, r− rl1) and P (τ, ru1 , r−
ru1 ) are boundaries of the region, where the real bond price curve belongs to with a
probability p. Similarly, R(τ, rl1, r−rl1) and R(τ, ru1 , r−ru1 ) are boundaries of the confi-
dence interval for term structures. Figure 7.4 shows averaged values and confidence
intervals constructed in this way.

7.3 Relation of averaged values to one-factor models

Averaged values, computed in the previous section, are functions of time to maturity
τ and the short rate r. It is a similar dependence as that of one-factor models. There-
fore it is natural to study a question, whether there exists a one-factor interest rate
model such that the averaged value P̃ (τ, r) satisfies the corresponding PDE for bond
prices. We restrict ourselves to interest rate models having the short rate r driven by
the SDE:

dr = µ(r)dt+ σ(r)dw, (7.7)

such that the drift µ, volatility σ and market price of risk λ are time independent.
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Figure 7.4: Averaged values (blue) and confidence intervals (red) for bond prices
and interest rates in the two-factor Vasicek model.

Theorem 12. [46, Theorem 3.1] Consider a class of one-factor models (7.7) where
functions µ, σ, λ depend only on r and not on time t. Then there is no such a one-factor
interest rate model, for which the averaged bond prices from the two-factor Vasicek
model P̃ (τ, r) satisfy the PDE

−∂P
∂τ

+ (µ(r)− λ(r)σ(r)
∂P

∂r
+

1

2
σ(r)2∂

2P

∂r2
− rP = 0 (7.8)

for bond prices.

Proof: Suppose that the averaged bond priceP̃ (τ, r) is a solution of a one-factor
model bond valuation PDE (7.8). Substituting it to this PDE yields

−Ã
′(τ)

Ã(τ)
+ B̃′(τ)r − (µ(r)− λ(r)σ(r))B̃(τ) +

1

2
σ2(r)B̃2(τ)− r = 0. (7.9)

It follows that (µ(r) − λ(r)σ(r))B̃(τ) − 1
2
σ2(r)B̃(τ)2 is a linear function of r of the

form
(µ− λσ)(r)B̃(τ)− 1

2
σ2(r)B̃(τ)2 = k1(τ) + k2(τ)r. (7.10)

Moreover, we show that the following stronger condition has to be satisfied:

σ2(r) = l1 + l2r, where l2 6= 0, (7.11)
µ(r)− λ(r)σ(r) = l3 + l4r, where l4 6= 0. (7.12)

It means that the terms µ(r)−λ(r)σ(r) and σ2(r) do not contain nonlinear terms that
could eventually vanish in (µ(r)− λ(r)σ(r))B̃(τ)− 1

2
σ2(r)B̃(τ)2. Then we obtain the

equation
(
−Ã

′(τ)

Ã(τ)
− l3B̃(τ) +

1

2
l1B̃

2(τ)

)
+ r

(
B̃′(τ)− l4B̃(τ) +

1

2
l2B̃(τ)− 1

)
= 0.
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Thus, the equation for B̃ reads as follows:

B̃′(τ) = 1−
(

1

2
l2 − l4

)
B̃(τ),

B̃(0) = 0.

with l2, l4 6= 0. This is an equation of the same form as the one appearing in the
Cox-Ingersoll-Ross model and its solution is known in a closed form and it is given in
the third chapter . However, the function

B̃(τ) =
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ) = c0 + c1e
−κ1τ + c2e

−κ2τ

for some constants c0, c1 and c2, is not a function of this type.
To finish the proof, we prove (7.11) and (7.12). Firstly, we write the PDE in terms

of B1(τ) and B2(τ) only, i.e.

−B1(τ)

(
λ1σ1 − κ1(θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

)
−B1(τ)

2

(
1

2
σ2

1 − κ1σ
2
c

)

−B2(τ)

(
λ2σ2 − κ2θ2 − κ2

(
θ1 − (θ1 + θ2)

σ2
1

σ̃2
1 + σ̃2

2

))
−B2

2(τ)

(
1

2
σ2

2 − κ2σ
2
c

)

− (
σ2
c (κ1 + κ2)B1(τ)B2(τ)

)
+

(
−κ1

σ̃2
1

σ̃2
1 + σ̃2

2

B1(τ)− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)

)
r

+
1

2
σ2(r)

(
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)

)2

−(µ− λσ)(r)

(
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)

)
= 0.

The equality holds for all r and τ > 0. Hence also the derivative of the left hand side
with respect to τ is identically zero and its limit as τ → 0+ is zero, too. This yields

−
[(
λ1σ1 − κ1(θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

)
+

(
λ2σ2 − κ2θ2 − κ2

(
θ1 − (θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

))]

+

[
−κ1

σ̃2
1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

]
r − (µ(r)− λ(r)σ(r)) = 0.

The proposition (7.11) follows, with

l4 = −κ1
σ̃2

1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

. (7.13)

Hence σ2(r) is also a linear function of the form l1 + l2r, as claimed in (7.12).
What remains to show is that l2 6= 0. From (7.9) we see that the linear coefficient
k2(τ) of (µ(r)− λ(r)σ(r))B̃(τ)− 1

2
σ2(r)B̃(τ)2 in (7.10) is given by

k2(τ) = B̃′(τ)− 1 = −κ1
σ̃2

1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

. (7.14)
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From (7.13) we obtain that the linear coefficient in (µ(r)− λ(r)σ(r))B̃(τ) is equal to
(
−κ1

σ̃2
1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

)(
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)

)
.

But has a different form compared to (7.14). Hence, the linear coefficient in σ2(r) is
not zero, which finishes the proof. ♦



Chapter 8

The two-factor Cox Ingersoll
Ross model

In the two-factor CIR model, the short rate is assumed to be a sum of two inde-
pendent Bessel square root processes r1 and r2:

dr1 = κ1(θ1 − r1)dt+ σ1

√
r1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2

√
r2dw2.

Hence, according to the general case (6.3), the bond price P (τ, r1, r2) is a solution to
the following partial differential equation

−∂P
∂τ

+
(
κ1(θ1 − r1)− λ̃1σ1

√
r1

) ∂P

∂r1
+

(
κ2(θ2 − r2)− λ̃2σ2

√
r2

) ∂P

∂r2

+
σ2

2
r1
∂2P

∂r2
1

+
σ2

2

2
r2
∂2P

∂r2
2

− (r1 + r2)P = 0, (8.1)

which holds for r1, r2 ∈ (0,∞) and τ ∈ (0,∞), satisfying initial condition P (0, r1, r2) =
1 for all r1, r2 > 0. Here, λ̃1 and λ̃2 are market prices of risk, corresponding to each
of the factors r1 and r2. If these functions are chosen to be proportional to

√
r1 and√

r2, i.e. λ̃1 = λ1
√
r1 and λ̃2 = λ2

√
r2 for some constants λ1 and λ2, the solution of

the resulting PDE has the form

P (τ, r1, r2) = P1(τ, r1)P2(τ, r2), (8.2)

where Pi(τ, ri) = Ai(τ)e
−Bi(τ)ri, i = 1, 2, are bond prices in the CIR model with

corresponding parameters (indexed by 1 and 2) given by (3.11). This can be shown
by inserting (8.2) into (8.1).
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To simplify the notation we define A = A1A2. Then the bond price is given by

P (τ, r1, r2) = A(τ)e−B1(τ)r1−B2(τ)r2 (8.3)

and interest rate by

R(τ, r1, r2) = − lnA(τ)

τ
+
B1(τ)

τ
r1 +

B2(τ)

τ
r2. (8.4)

Typical decomposition of the short rate is similar as for the two-factor Vasicek
model discussed in the previous chapter. Let us note that a simulation of trajectories
can be performed using exact transition density which is a multiple of the noncentral
χ2 distribution. An algorithm for generating random numbers from this distribution
can be found for example in [26].

8.1 Distribution of bond prices and interest rates

As in the case of a two-factor Vasicek model, we consider the limit distribution of
r1 and r2. Distributions of the variables will then be considered with respect to
these limit distributions and the condition on the observed short rate. The limiting
distribution for CIR processes

dri = κi(θi − ri)dt+ σi
√
ridwi, i = 1, 2,

is known to be (see e.g. [29]) the gamma distribution Γ(ai, bi) with parameters

ai =
2κi
σi
, bi =

2κi
σi
θi

and the correspondning densities

fi(x) =
abii

Γ(bi)
e−aixxbi−1 for x > 0 (8.5)

and fi(x) = 0 otherwise.

Theorem 13. Let us consider the limiting gamma distribution of the two factors r1 and
r2 given as in (8.5). Then:

1. The density function of the interest rate with maturity τ subject to the given level
of short rate r = r1 + r2 is

fR(x) =
g1(r̃)g2(r − r̃)∫ r

0
g1(r1)g2(r − r1)dr1

1

|B2(τ)−B1(τ)| , (8.6)

with
r̃ =

τx− (− lnA(τ) +B2(τ)r)

B1(τ)−B2(τ)

for x between values − 1
τ

lnA(τ)+ 1
τ
B1(τ)r and − 1

τ
lnA(τ)+ 1

τ
B2(τ)r and fR(x) =

0 otherwise.
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2. The density function of the bond price with a maturity τ subject to the given level
of short rate r = r1 + r2 is

fP (x) =
1

τx
fR

(
−1

τ
ln x

)
, (8.7)

where fR is the density of interest rate given by (8.6).

Proof: The conditional density of r1, subject to r1 + r2 = r, is

f(r1, r) =
f1(r1)f2(r − r1)∫ r

0
f1(s)f2(r − s)ds

. (8.8)

Now, we recall that the if r1 + r2 = r, the interest rate R(τ, r1, r2) can be written as
− 1
τ

lnA(τ) + 1
τ
B2(τ)r + 1

τ
(B1(τ) − B2(τ))r1. Furthemore, we know that r1 is from

the interval (0, r1). Now, we consider two cases, depending on the sign of the term
B1(τ)−B2(τ).

Case 1: B1(τ)−B2(τ) > 0.
In this case, the minimal possible value of R is − 1

τ
lnA(τ) + 1

τ
B2(τ)r and the max-

imal possible value is − 1
τ

lnA(τ) + 1
τ
B1(τ)r. For x from the interval (− 1

τ
lnA(τ) +

1
τ
B2(τ)r,− 1

τ
lnA(τ) + 1

τ
B1(τ)r), the distribution function of R, denoting the proba-

bility that R < x, is

FR(x) = Prob(R < x) =

∫
r1∈(0,r)

R(τ,r1,r−r1)<x

g1(r1)g2(r − r1)dr1
∫
r1∈(0,r)

g1(r1)g2(r − r1)dr1
.

The condition R(τ, r1, r − r1) < x can be rewritten in the form r1 < r̃, where

r̃ =
τx− (− lnA(τ) +B2(τ)r)

B1(τ)−B2(τ)
. (8.9)

Because x ∈ (− 1
τ

lnA(τ) + 1
τ
B2(τ)r, − 1

τ
lnA(τ) + 1

τ
B1(τ)r), this quantity r̃ belongs to

the interval (0, r). Hence the distribution function F can be written as

FR(x) =

∫ r̃

0
g1(r1)g2(r − r1)dr1∫ r

0
g1(r1)g2(r − r1)dr1

and we obtain the density by taking the derivative

fR(x) = F ′R(x) =
g1(r̃)g2(r − r̃)∫ r

0
g1(r1)g2(r − r1)dr1

dr̃

dx

=
g1(r̃)g2(r − r̃)∫ r

0
g1(r1)g2(r − r1)dr1

τ

B1(τ)−B2(τ)
.



68

Case 2: B1(τ)−B2(τ) < 0.
In this case, the minimal possible value of R is equal to − 1

τ
lnA(τ) + 1

τ
B1(τ)r and

the maximal possible value is equal to − 1
τ

lnA(τ) + 1
τ
B2(τ)r. For x from the interval

(− 1
τ

lnA(τ)+ 1
τ
B1(τ)r,− 1

τ
lnA(τ)+ 1

τ
B2(τ)r) we compute the distribution function F

in the same way as before:

FR(x) =

∫ r̃

0
g1(r1)g2(r − r1)dr1∫ r

0
g1(r1)g2(r − r1)dr1

=

∫ r

r̃
g1(r1)g2(r − r1)dr1∫ r

0
g1(r1)g2(r − r1)dr1

,

where

r̃ =
xτ − (− lnA(τ) +B2(τ)r)

B1(τ)−B2(τ)
(8.10)

belongs to the interval (0, r). Taking the derivative with respect to x we obtain the
density function:

fR(x) = F ′R(x) = − g1(r̃)g2(r − r̃)∫ r

0
g1(r1)g2(r − r1)dr1

dr̃

dx

=
g1(r̃)g2(r − r̃)∫ r

0
g1(r1)g2(r − r1)dr1

τ

B2(τ)−B1(τ)
.

(8.11)

Comparing (8.9) and (8.10) we see that, in the both cases, the quantity r̃ entering
the formula for the density function is the same. ♦

Similarly as in the case of the two-factor Vasicek model, we are able to prove a
theorem on the limit of variance for τ approaching infinity holds.

Theorem 14. The conditional variance of both interest rates R(τ, r1, r2|r1 +r2 = r) and
bond prices P (τ, r1, r2|r1 + r2 = r) converge to zero for a fixed r as τ →∞.

Proof: The proof is based on the intervals of possible values of interest rates and
bond prices for different maturities. We use the following lemma.

Lemma 1. Consider a family of the random variables Xτ , τ > 0, with densities fτ ,
means µτ and variances σ2

τ . Suppose that Xτ takes values from the interval (aτ , bτ ),
where (bτ − aτ ) → 0 as τ →∞. Then σ2

τ → 0 as τ →∞.

Proof of the lemma: Since Xτ takes values only in the interval (aτ , bτ ), so does the
mean value µτ ∈ (aτ , bτ ). The variance is given by

σ2
τ = E

(
(Xτ − µτ )

2
)

=

∫ bτ

aτ

(x− µτ )
2fτ (x)dx.

By the mean value theorem for integrals, we have

σ2
τ = (ξτ − µτ )

2

∫ bτ

aτ

fτ (x)dx = (ξτ − µτ )
2



69

for some ξτ ∈ (aτ , bτ ). Since both ξτ and µτ belong to (aτ , bτ ), we have

σ2
τ = (ξτ − µτ )

2 < (bτ − aτ )
2.

If bτ − aτ converges to zero as τ →∞, then the variance σ2
τ also converges to zero as

τ →∞. ♦
Proof of the theorem (continued): According to the previous lemma, it suffices to
show that the lengths in the intervals of interest rate and bonds values converge to
zero. Let us denote the interval of interest rates by (aτ , bτ ). Then the interval of bond
values is (e−bτ τ , e−aτ τ ). We show that aτ and bτ have the same positive limit, from
what it follows that both bτ − aτ and e−bτ τ − eaτ τ converge to zero.

Firstly, we note the that for functions Acir(τ) and Bcir(τ) from 1-factor CIR model
we have:

lim
τ→∞

Bcir(τ) = lim
τ→∞

2(eγτ − 1)

2γ + (κ+ λ+ γ(eγτ − 1)
=

2

κ+ λ+ γ
,

because κ+ λ+ γ = (κ+ λ) +
√

(κ+ λ)2 + 2σ2 6= 0 for σ 6= 0. Using l’Hospital’s rule
we compute

lim
τ→∞

1

τ
logAcir(τ) = lim

τ→∞
2κθ

σ2

1

τ
log

(
2γe

1
2
(κ+λ+γ)τ

2γ + (κ+ λ+ γ)(eγθ − 1)

)
=
κθ

σ2
(κ+ λ− γ).

Now, it follows that for 2-factor CIR model we have

lim
τ→∞

−1

τ
lnA(τ) = lim

τ→∞
−1

τ
lnA1(τ)− 1

τ
lnA2(τ)

= −κ1θ1

σ2
1

(κ1 + λ1 − γ1)− κ2θ2

σ2
2

(κ2 + λ2 − γ2) > 0

and
lim
τ→∞

1

τ
Bi(τ) = 0, for i = 1, 2.

Hence both − 1
τ

lnA(τ) + 1
τ
B1(τ) and − 1

τ
lnA(τ) + 1

τ
B2(τ) converge to same positive

limit. Since aτ and bτ take values of − 1
τ

lnA(τ) + 1
τ
B1(τ)r and − 1

τ
lnA(τ) + 1

τ
B2(τ)r,

our claim is proved. ♦

8.2 Averaged values and confidence intervals

In the following lemma we recall some of the properties of the Kummer confluent
hypergeometric functions 1F1. They will be used in the subsequent proof of Theorem
16.
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Lemma 2.

1. [1, formula (13.2.1)] The following equality holds:
∫ r

0

e−axxb−1(r − x)cdx = rb+c
Γ(b)Γ(1 + c)

Γ(1 + b+ c)
1F1(b, 1 + b+ c,−ar)

2. [1, formula (13.1.2)] The first terms in power series expansion of 1F1(a, b, z) are
given by:

1F1(a, b, z) = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)
z2 +

a(a+ 1)(a+ 2))

b(b+ 1)(b+ 2)
z3 + . . . .

As in the case of the two-factor Vasicek model, we introduce the notation for the
averaged bond price and interest rate:

P̃ (τ, r) = 〈P (τ, r1, r2)|r1 + r2 = r〉,
R̃(τ, r) = 〈R(τ, r1, r2)|r1 + r2 = r〉.

In the next theorem we explicitly compute these averaged value.

Theorem 15. [45]

1. The averaged bond price with respect to limiting distributions of the processes r1,
r2 given by (8.5) subject to r1 + r2 = r is given by

P̃ (τ, r) = Ae−Br 1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−(a1 − a2)r)
, (8.12)

where A = A1(τ)A2(τ), Bi = Bi(τ), i = 1, 2, are given by (3.11).

2. The averaged interest rate with respect to limiting distributions of the processes r1,
r2 given by (8.5) subject to r1 + r2 = r is given by

R̃(τ, r) = − lnA

τ
+
B2

τ
r +

(
B1

τ
− B2

τ

)
r

b1
b1 + b2

1F1(b1, b1 + b2 + 1,−(a1 + a2)r)

1F1(b1, b1 + b2,−(a1 + a2)r)
,

where A = A1(τ)A2(τ), Bi = Bi(τ), i = 1, 2, are given by (3.11).

Proof: Firstly, we write the denominator appearing in the expression (8.8) for the
density function f(r1, r) and the density itself in a form which will be useful later.

M(r) :=

∫ r

0

f1(r1)f2(r − r1)dr1 =
ab11 a

b2
2

Γ(b1 + b2)
e−a2rrb1+b2−1

1F1(b1, b1 + b2,−(a1 − a2)r).

Substituting it into the density yields

f(r1, r) =
1

M(r)
f1(r1)f2(r − r1)

=
1

1F1(b1, b1 + b2,−(a1 − a2)r)

Γ(b1 + b2)

Γ(b1)Γ(b2)

e−(a1−a2)r1rb1−1
1 (r − r1)

b2−1

rb1+b2−1
.

(8.13)

Now, we can compute the expected values of bond prices and interest rates:
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1. Substituting (8.13) into the expression for the averaged bond price gives

P̃ (τ, r) =

∫ r

0

P (τ, r1, r − r1)f(r1, r)dr1

= Ae−Br 1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−(a1 − a2)r)
. (8.14)

2. Since

R(τ, r1, r2|r1 + r2 = r) = − lnA

τ
+
B2

τ
r +

(
B1

τ
− B2

τ

)
r1,

we need to compute the expected value of r1. Substituting the density f(r1, r)
yields

〈r1〉 =

∫ r

0

r1
f1(r1)f2(r − r1)∫ r

0
f1(s)f2(r − s)ds

dr1

= r
b1

b1 + b2

1F1(b1, b1 + b2 + 1,−(a1 + a2)r)

1F1(b1, b1 + b2,−(a1 + a2)r)
.

♦
Since for given r, the bond prices and interest rates are monotone functions of r1,

we can construct confidence intervals with the same methodology as in the case of
the two-factor Vasicek model.

8.3 Relation of averaged values to one-factor models

Before stating the main theorem, concerned with averaged bond prices from the two-
factor CIR model and one-factor models, we prove usefull properties of the averaging,
that will be needed later.

Theorem 16. [45, Theorem 3.1] Consider the averaged bond prices P̃ (τ, r) from the
previous section. They have the following properties:

1. P̃ (τ, r) → A(τ) as r → 0,

2. ∂P̃
∂τ

(τ, r) → A′(τ) as r → 0,

3. ∂P̃
∂r

(τ, r) → −A(τ)
(

b1
b1+b2

B1(τ) + b2
b1+b2

B2(τ)
)

as r → 0,

4. ∂2P̃
∂r2

(τ, r) is bounded on the neighborhood of r = 0.

Proof:
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1. Since both denominator and numerator of the fraction in (8.14) converge to
unity as r → 0, we have

lim
r→0

P̃ (τ, r) = A(τ).

2. We compute the derivative of P̃ with respect to τ :

∂P̃

∂τ
=

∫ r

0

∂P

∂τ
(τ, r1, r − r1)f(r1, r)dr1 =

=

[(
A′

A
−B′

2r

)
− (B′

1 −B′
2)

∫ r

0
r1P (τ, r1, r − r1)f(r1, r)dr1∫ r

0
P (τ, r1, r − r1)f(r1, r)dr1

]
P̃ .

(8.15)

The numerator of the last fraction in (8.15) is positive for all r > 0 and can
be bounded from above by r

∫ r

0
P (τ, r1, r − r1)f(r1, r)dr1. Hence the fraction is

positive and bounded from above by r, which implies that it converges to zero
as r → 0. Since we already know that P̃ (τ, r) → A(τ) for r → 0, we obtain
from (8.15) that

lim
r→0

∂P̃

∂τ
(τ, r) = A′(τ).

3. By computing the derivative ∂P̃
∂r

we obtain

∂P̃

∂r
=

∫ r

0

∂P

∂r
(τ, r1, r − r1)f(r1, r) + P (τ, r1, r − r1)

∂f

∂r
(r1, r)dr1. (8.16)

There are two derivatives that have to be computed: ∂P
∂r

and ∂f
∂r

. Now, we
evaluate these expressions. Firstly,

∂P

∂r
(τ, r1, r − r1) = −B2(τ)P (τ, r1, r − r1). (8.17)

Secondly,

∂f

∂r
(r1, r) =

f1(r1)f
′
2(r − r1)

M(r)
− f1(r1)f2(r − r1)

M2(r)
M ′(r)

= f(r1, r)

[
f ′2(r − r1)

f2(r − r1)
−

∫ r

0
f1(s)f

′
2(r − s)ds∫ r

0
f1(s)f2(r − s)ds

]
(8.18)

Noting that
f ′2(x)
f2(x)

= −a2 + (b2 − 1)
1

x

and using it in (8.18) enables us to conclude

∂f

∂r
(r1, r) = f(r1, r)(b2 − 1)

[
1

r − r1
−

∫ r

0
1
r−sf1(s)f2(r − s)ds∫ r

0
f1(s)f2(r − s)ds

]
. (8.19)
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Substituting (8.17) and (8.19) into (8.16) yields after the rearrangement

∂P̃

∂r
=

[
−B2 + (b2 − 1)

(∫ r

0
1

r−r1π(τ, r1, r − r1)f(r1, r)dr1∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

−
∫ r

0
1

r−r1f1(r1)f2(r − r1)dr1∫ r

0
f1(r1)f2(r − r1)dr1

)]
P̃ . (8.20)

Let us denote

X1 =

∫ r

0
1

r−r1π(τ, r1, r − r1)f(r1, r)dr1∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

, X2 =

∫ r

0
1

r−r1f1(r1)f2(r − r1)dr1∫ r

0
f1(r1)f2(r − r1)dr1

.

In this notation,
∂P̃

∂r
= [−B2 + (b2 − 1) (X1 −X2)] P̃ . (8.21)

We write each of the expressions X1 and X2 in terms of the hypergeometric
functions 1F1:

X1 =
1

r

b1 + b2 − 1

b2 − 1
1F1(b1, b1 + b2 − 1,−((B1 −B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2)r))
(8.22)

and in a similar way

X2 =
1

r

b1 + b2 − 1

b2 − 1
1F1(b1, b1 + b2 − 1,−(a1 − a2)r)

1F1(b1, b1 + b2,−(a1 − a2)r)
. (8.23)

Hence

X1 −X2 =
1

r

b1 + b2 − 1

b2 − 1

[
G1

G2

− G3

G4

]
,

where we have denoted

G1 = 1F1(b1, b1 + b2 − 1,−((B1 −B2) + (a1 − a2))r),

G2 = 1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2))r),

G3 = 1F1(b1, b1 + b2 − 1,−(a1 − a2)r),

G4 = 1F1(b1, b1 + b2,−(a1 − a2)r). (8.24)

Because G2G4 → 1 as r → 0, we need to compute G1G4 − G2G3 in order to be
able to compute the limit of (8.20). Since

G1 = 1− b1
b1 + b2 − 1

((B1 −B2) + (a1 − a2))r + o(r),

G2 = 1− b1
b1 + b2

((B1 −B2) + (a1 − a2))r + o(r),

G3 = 1− b1
b1 + b2 − 1

(a1 − a2)r + o(r),

G4 = 1− b1
b1 + b2

(a1 − a2)r + o(r), (8.25)
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as r → 0, we have

G1G4 −G2G3 = r

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)
+ o(r) (8.26)

as r → 0. Hence

X1 −X2 =
b1 + b2 − 1

b2 − 1

1

G2G4

[
(B1 −B2)

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)
+
o(r)

r

]

and

lim
r→0

X1 −X2 =
b1 + b2 − 1

b2 − 1
(B1 −B2)

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)
.

Finally, we can compute the limit of (8.20)

lim
r→0

∂P̃

∂r
(τ, r) = lim

r→0
[−B2 + (b2 − 1) (X1 −X2)] P̃

= A

[
−B2 + (b1 + b2 − 1)(B1 −B2)

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)]

= −A
[

b1
b1 + b2

B1 +
b2

b1 + b2
B2

]
.

4. We show that there is a finite limit of ∂2P̃
∂r2

(τ, r) as r → 0, from which the bound-
edness of ∂2P̃

∂r2
follows.

According to (8.20) we have

∂2P̃

∂r2
=
∂P̃

∂r
[−B2 + (b2 − 1) (X1 −X2)] + P̃

∂ [−B2 + (b2 − 1) (X1 −X2)]

∂r
.

From the definition of X1 and X2 and already computed limits it follows that it
suffices to show the existence of the finite limit of ∂

∂r

(
1
r
F (r)

)
for r → 0+, where

F (r) =
G1(r)

G2(r)
− G3(r)

G4(r)
. (8.27)

Assuming F (r) has the power series expansion F (r) =
∑∞

k=0 akr
k, the condition

a0 = 0 is sufficient for boundedness of the term ∂
∂r

(
1
r
F (r)

)
in the neighborhood

of r = 0, which holds for (8.27). ♦

Now we state the main result on the nonexistence of a one-factor model describ-
ing the averaged bond price P̃ . It has been shown by the author in [45].
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Theorem 17. [45, Theorem 3.3] Consider averaged bond prices P̃ (τ, r) obtained from
the two-factor CIR model and a class of one-factor short rate models

dr = µ(t, r)dt+ σ(t, r)dw,

satisfying

1. functions µ, σ from the short rate process and market price of risk λ depend only
on r and not on t,

2. functions µ, σ, λ are continuous at r = 0, σ(0) = 0.

3. volatility parameters of the factors from the two-factor CIR model are mutually
different, i.e. σ1 6= σ2.

Then, there is no such a one-factor interest rate model, for which the averaged bond
price P̃ (τ, r) satisfies the PDE for bond prices

−∂P
∂τ

+ (µ(r)− λ(r)σ(r))
∂P

∂r
+

1

2
σ(r)2∂

2P

∂r2
− rP = 0 (8.28)

for all r ≥ 0, τ > 0.

Proof: By taking the limit r → 0 in the PDE (8.28), using the results from the
previous theorem, we obtain for all τ > 0:

−A′(τ) + µ(0+)(−A(τ))

(
b1

b1 + b2
B1(τ) +

b2
b1 + b2

B2(τ)

)
= 0.

From this we calculate the value of the function µ for r = 0:

µ(0+) = −A
′(τ)
A(τ)

1
b1B1(τ)
b1+b2

+ b2B2(τ)
b1+b2

= −A
′(τ)
A(τ)

b1 + b2
b1B1(τ) + b2B2(τ)

.

It follows that

−A
′(τ)
A(τ)

b1 + b2
b1B1(τ) + b2B2(τ)

= K1, (8.29)

for all τ > 0 where K1 is a constant independent of τ .
Now we recall that the function A(τ) from the two-factor CIR model can be writ-

ten as A(τ) = A1(τ)A2(τ), where A1(τ) and A2(τ) are functions appearing in the orig-
inal CIR model, corresponding to each of the equations for P1 and P2, resp. Hence
they satisfy

A′i(τ) = −κiθiAi(τ)Bi(τ) i = 1, 2.

Therefore

A′(τ)
A(τ)

=
A′1(τ)A2(τ) + A1(τ)A

′
2(τ)

A1(τ)A2(τ)
=
A′1(τ)
A1(τ)

+
A′2(τ)
A2(τ)

= −κ1θ1B1(τ)− κ2θ2B2(τ).
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Thus the equality (8.29) can be rewritten as

K1 = −A
′(τ)
A(τ)

b1 + b2
b1B1(τ) + b2B2(τ)

= (κ1θ1B1(τ) + κ2θ2B2(τ))
b1 + b2

b1B1(τ) + b2B2(τ)
.

Since b1 + b2 is constant, the only important part is the following fraction:

κ1θ1B1(τ) + κ2θ2B2(τ)

b1B1(τ) + b2B2(τ)
= K,

which has to be equal to some constant K. It implies that

κ1θ1B1(τ) + κ2θ2B2(τ) = K(b1B1(τ) + b2B2(τ))

and so
(κ1θ1 −Kb1)B1(τ) = (Kb2 − κ2θ2)B2(τ)

for each τ > 0. It is possible in two ways:

1. κ1θ1 −Kb1 = 0, Kb2 − κ2θ2 = 0,

2. B1(τ) = cB2(τ), where c is a constant.

Now we look at each of these possibilities:

1. The same constant K appears in both equalities. From the first one (i.e. κ1θ1 −
Kb1 = 0), we get K = κ1θ1

b1
and by substituting the value of b1 = 2κ1θ1

σ2
1

, we obtain

K =
σ2
1

2
. In the same way, from the second equality (i.e. Kb2 − κ2θ2 = 0), we

obtain K =
σ2
2

2
. But by the hypothesis, σ2

1 6= σ2
2, which is a contradiction.

2. We recall the equation for B1 from the CIR model:

−B′
1(τ) = (κ1 + λ1σ1)B1(τ) +

1

2
σ2

1B1(τ)
2 − 1. (8.30)

An analogous equation for B2(τ) yields

−B′
2(τ) = (κ2 + λ2σ2)B2(τ) +

1

2
σ2

2B2(τ)
2 − 1. (8.31)

Since B1(τ) = cB2(τ), we obtain another expression for B1:

−B′
1(τ) = c

[
(κ2 + λ2σ2)B2(τ) +

1

2
σ2B2(τ)

2 − 1

]
. (8.32)

The right-hand sides of (8.30) and (8.32) must equal to:

c

[
(κ2 + λ2σ2)B2(τ) +

1

2
σ2B2(τ)

2 − 1

]
= (κ1 + λ1σ1)B1(τ) +

1

2
σ2

1B1(τ)
2 − 1
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for all τ > 0. By continuity, the equality holds also in the limit τ = 0+. From
this, we get c = 1 and hence the functions B1(τ) and B2(τ) coincide. We denote
this function by B(τ). By subtracting equations (8.30) and (8.31) we obtain:

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)]B(τ) +

[
−1

2
σ2

1 +
1

2
σ2

2

]
B2(τ) = 0

and, dividing by a nonzero term B(τ) we obtain

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)]− 1

2

[
σ2

2 − σ2
1

]
B(τ) = 0.

Since σ1 6= σ2, it implies that B(τ) is a constant function, which is an obvious
contradiction.

Since both possibilities lead to a contradiction, the theorem is proved. ♦



Chapter 9

The Fong-Vasicek model with
stochastic volatility

In the Fong-Vasicek model the stochastic process driving the short rate is given by
the following system of stochastic differential equations:

dr = κ1(θ1 − r)dt+
√
ydw1,

dy = κ2(θ2 − y)dt+ v
√
ydw2, (9.1)

where the correlation E(dw1dw2) of differentials dw1 and dw2 of Wiener processes is
ρdt. If the market prices of risk are λ1

√
y, resp. λ2

√
y, then the PDE for the bond

prices 6.3 reads as follows:

−∂P
∂τ

+ (κ1(θ1 − r)− λ1y)
∂P

∂r
+ (κ2(θ2 − y)− λ2vy)

∂P

∂y

+
y

2

∂2P

∂r2
+
v2y

2

∂2P

∂y2
+ ρvy

∂2P

∂r∂y
− rP = 0. (9.2)

It is known that a solution to (9.2) has the form P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y (see
[24]). As noted in Chapter 6, there are several possibilities to characterize the func-
tions A, B, C. We will use a system of ordinary differential equations for these
functions because it will be helpful in deriving the properties of the Fong-Vasicek
model.

78
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9.1 Qualitative properties of bond prices and term struc-
tures

In the following theorem we give the characterization of the bond price by a system
of ordinary differential equations. This form will be used later when proving the
properties of the model.

Theorem 18. [42] A solution of the PDE for bond prices (9.2) has the form

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y, (9.3)

for r > 0, y > 0 and τ > 0, where functions A = A(τ), B = B(τ), C = C(τ) satisfy the
following system of ordinary differential equations:

A′ = −A (κ1θ1B + κ2θ2C) ,

B′ = −κ1B + 1,

C ′ = −λ1B − κ2C − λ2vC − B2

2
− v2C2

2
− vρBC, (9.4)

with initial conditions A(0) = 1, B(0) = 0, C(0) = 0. This can be represented in the
following form:

B =
1

κ1

(
1− e−κ1τ

)
, (9.5)

C ′ = −λ1B − B2

2
− (κ2 + λ2v + vρB)C − v2

2
C2, C(0) = 0, (9.6)

A = exp

(
−θ1τ + θ1B − κ2θ2

∫ τ

0

C(s)ds

)
. (9.7)

Proof: The assertions of the theorem follow after inserting the form of the solution
(9.3) into the PDE (9.2). An equation for B(τ) can be solved analytically. The result
is then substituted into the equation for C(τ), which we can solve numerically by the
Runge-Kutta method. Finally, we integrate the equation for A(τ) and use the results
for functions B and C. ♦
Corollary 2. Interest rates are linear in both short rate r and volatility y and they are
given by

R(τ, r, y) = − lnA(τ)

τ
+
B(τ)

τ
r +

C(τ)

τ
y.

In what follows, we will assume that the structural condition

λ1 ≤ − 1

2κ1

(9.8)

is satisfied. We will need this assumption in order to prove qualitative properties of
the solution P given by (9.3).

In the next theorem we prove some of the properties of the functions A, B, C
appearing in the definition of the function P .
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Theorem 19. [42] Under the assumption (9.8), the following conditions hold:

1. C ′(0) = 0, C ′′(0) = −λ1,

2. For every τ > 0: 0 < A(τ) < 1. B(τ) > 0, C(τ) > 0,

3. A(τ) → 0 for τ →∞,

4. C(τ) is bounded on [0,∞).

Proof:

1. It follows from the differentiating the ODE for C(τ) and using the continuity of
C and its derivatives at τ = 0.

2. From the previous statement and the assumption λ1 ≤ −1/2κ1 < 0 it follows
that C(τ) > 0 on some neighborhood of τ = 0. Hence it suffices to show that
C ′(τ) > 0 whenever C(τ) = 0. To prove the above claim, we write C ′(τ) in the
following form:

C ′(τ) = −λ1B(τ)− B2(τ)

2
= −1− e−κ1τ

2κ2
1

(
2λ1κ1 + 1− e−κ1τ

)
> 0,

provided C(τ) = 0 and λ1 ≤ −1/2κ1.

Positiveness of B(τ) follows directly from the expression of this function (notice
that B(τ) < τ .

The function A(τ) is positive. Its upper bound follows from the following esti-
mate:

A(τ) = exp

(
−θ1(τ −B(τ))− κ2θ2

∫ τ

0

C(s)ds

)

< exp (−θ1(τ −B(τ))) < 1.

The first inequality follows from the positiveness of C and the second one from
the positiveness of the difference τ −B(τ).

3. We have already shown that

0 < A(τ) < exp (−θ(τ −B(τ))) .

Since τ − B(τ) converges to infinity as τ → ∞, we obtain that A(τ) → 0 as
τ →∞.

4. It suffices to show that there exists a constant K > 0 such that C ′(τ) < 0
whenever C(τ) = K. Notice that B(τ) < 1/κ1. Since −vρB < 0 for ρ < 0 and
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−vρB < ρv
κ1

for ρ > 0, we have −vρB < min
(
0,− ρv

κ1

)
. Using this inequality and

the assumption (9.8), from (9.6) we obtain the estimate

C ′(τ) < −λ1

κ1

+

(
−κ2 − λ2v + min

(
0,−ρv

κ1

))
K − v2

2
K2,

which is satisfied for any τ such that C(τ) = K. Taking K sufficiently large, the
proof of the statement 4 follows.

♦
Remark 6. Note that if λ1 > 0, then C ′′(0) = −λ1 < 0. Since C(0) = 0 and C ′(0) = 0,
we thus have that C(τ) < 0 for small τ > 0. Hence, for small times to maturity τ ,
the interest rates R(τ, r, y) becomes negative for large volatility y. This is avoided by
assuming (9.8). It is a stronger condition, but we needed it in this form to prove the
assertions of the theorem.

9.2 Distribution of stochastic bond prices and interest
rates

Let us recall that P (τ, r, y) is the price of a bond maturing at time τ for a given values
of the short rate r and volatility y. Unlike the short rate r, the volatility y is not an
observable variable in the real market. It suggests investigation of P (τ, r, y) for the
given τ and r as a function of the random variable y.

In what follows, we will assume that the value of the short rate r at time to
maturity τ is known from the market data. The hidden parameter in the model is
the volatility y which is supposed to be driven by a Bessel square root process. We
already know from the chapter 8 on two-factor CIR model, that its limiting density
fy is a density of the gamma distribution Γ(β, α) with shape parameters β = 2κ2

v2
,

α = 2κ2

v2
θ2, i.e.

fy(x) =
βα

Γ(α)
e−βxxα−1 (9.9)

for x > 0 and fy(x) = 0 otherwise. It enables us to compute the distribution of
P (τ, r, y) and R(τ, r, y) now.

Theorem 20. Under the assumption (9.8) the density functions of the bond prices
P (τ, r, y) and interest rates R(τ, r, y) with respect to the limiting distribution (9.9) of
the process y are given by

fP (x) = fy

(
−B(τ)

C(τ)
r − 1

C(τ)
ln

x

A(τ)

)
1

C(τ)x
(9.10)

and

fR(x) = fy

(
1

C(τ)
(τx+ lnA(τ)−B(τ))

)
τ

C(τ)
, (9.11)
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where fy is density of the limiting gamma distribution.

Proof: First, we compute distribution functions and then by differentiating them we
obtain densities.

Since P (τ, r, y) is a decreasing function of y, the range of its possible values is the
interval

(
0, A(τ)e−B(τ)r

]
. Hence outside of this interval, the density is vanishing. For

x ∈ (
0, A(τ)e−B(τ)r

]
we have the following expression for the cumulative distribution

function FP (x):

FP (x) = Prob
[
A(τ)e−B(τ)r−C(τ)y < x

]
= Prob

[
y > −B(τ)

C(τ)
r − 1

C(τ)
ln

x

A(τ)

]

= 1− Fy

(
−B(τ)

C(τ)
r − 1

C(τ)
ln

x

A(τ)

)
,

where we have used the positiveness of C(τ), and so

fP (x) = F ′P (x) = fy

(
−B(τ)

C(τ)
r − 1

C(τ)
ln

x

A(τ)

)
1

C(τ)x
.

Similarly, because of increasing dependence of R(τ, r, y) on y, the range of possi-
ble values for R is the interval

[
− lnA(τ)

τ
+ B(τ)

τ
r,∞

)
. Hence its density is zero outside

this interval. For x ∈
[
− lnA(τ)

τ
+ B(τ)

τ
r,∞

)
we have

FR(x) = Prob
[
− lnA(τ)

τ
+
B(τ)

τ
r +

C(τ)

τ
y < x

]

= Prob
[
y <

τx+ lnA(τ)−B(τ)

C(τ)

]
= Fy

(
τx+ lnA(τ)−B(τ)

C(τ)

)

where we have used the positiveness of C(τ) again. Hence

fR(x) = F ′R(x) = fy

(
1

C(τ)
(τx+ lnA(τ)−B(τ))

)
τ

C(τ)
,

♦
Similarly as in the case of previously discussed two-factor models, also in the

Fong-Vasicek model, the variances of bond prices and interest rates tend to zero as
τ → ∞. However, in this case, we will need averaged values to prove it. For this
reason, we postpone it to the next section.

9.3 Averaged bond prices and term structures. Confi-
dence intervals.

Let us define the averaged bond prices and interest rates as

P̃ (τ, r) = 〈P (τ, r, y)〉y,
R̃(τ, r) = 〈R(τ, r, y)〉y,
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where the expectations are taken with respect to the limiting distribution (9.9) of the
process y.

Theorem 21. [42] Averaged bond prices and interest rates, with respect to the limiting
distribution of the random variable y are given by:

1. P̃ (τ, r) = A(τ)e−B(τ)r
(
1 + C(τ)

β

)−α
,

2. R̃(τ, r) = − 1
τ

lnA(τ) + B(τ)
τ
r + C(τ)

τ
θ2.

Proof:

1. We compute the averaged bond price:

P̃ (τ, r) =

∫ ∞

0

P (τ, r, y)g(y)dy

= A(τ)e−B(τ)r βα

Γ(α)

∫ ∞

0

e−(C(τ)+β)yyα−1dy

= A(τ)e−B(τ)r βα

(C(τ) + β)α

= A(τ)e−B(τ)r

(
1 +

C(τ)

β

)−α
.

2. The formula for the averaged interest rate follows from linearity of interest
rate in the y variable and taking into account the expected value of the limiting
gamma distribution Γ(β, α) = Γ

(
2κ2

v2
, 2κ2

v2
θ2

)
which is equal to θ2.

♦
Remark 7. The function y → P (τ, r, y) is strictly convex because its second derivative
∂2
y is equal to C2(τ)P (τ, r, y) > 0. Hence, by Jensen’s inequality, we have

P̃ (τ, r) =

∫ ∞

0

P (τ, r, y)g(y)dy > P

(
τ, r,

∫ ∞

0

yg(y)dy

)
= P (τ, r, θ2),

since
∫∞

0
yg(y)dy = θ2 i.e. the averaged bond price P̃ (τ, r) = 〈P (τ, r, y)〉y is always

greater than the bond price corresponding to the limiting mean value 〈y〉y = θ2 of the
stochastic volatility y.

Now, we are able to prove the assertion on limiting behavior of variances.

Theorem 22. [42] For fixed values of τ and r we have

lim
τ→∞

V aryP (τ, r, y) = 0, lim
τ→∞

V aryR(τ, r, y) = 0,

where variances are computed with respect to the limiting distribution of y.
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Proof: We have already computed 〈P (τ, r, y)〉y. In the same way we compute the
expected value of P 2:

〈P 2(τ, r, y)〉y =

∫ ∞

0

(
A(τ)e−B(τ)r−C(τ)y

)2
g(y)dy

= A(τ)2e−2B(τ)r

∫ ∞

0

e−(2C(τ)+β)yα−1dy

= A(τ)2e−2B(τ)r

(
1 +

2C(τ)

β

)−α
.

Hence

V ary(P (τ, r, y)) = 〈P 2(τ, r, y)〉y − 〈P (τ, r, y)〉2y

= A(τ)2e−2B(τ)r

[(
1 +

2C(τ)

β

)−α
−

(
1 +

C(τ)

β

)−2α
]

= A(τ)2e−2B(τ)r

[(
1 +

2C(τ)

β

)−α
−

(
1 +

2C(τ)

β
+
C(τ)2

β2

)−α]
.

By the mean value theorem

(
1 +

2C(τ)

β

)−α
−

(
1 +

2C(τ)

β
+
C(τ)2

β2

)−α
=

(−αξ−α−1
) (
−C(τ 2)

β2

)

for some ξ from the interval
(
1 + 2C(τ)

β
, 1 + 2C(τ)

β
+ C(τ)2

β2

)
. Hence ξ > 1 and therefore

V ary(P (τ, r, y)) = A(τ)2e−2B(τ)rαξ−α−1C(τ 2)

β2

< A(τ)2e−2B(τ)r α

β2
C(τ 2).

Since C(τ) and B(τ) are bounded on [0,∞) and A(τ) → 0 as τ → ∞, we conclude
that

V ary(P (τ, r, y)) → 0 as τ →∞.

Since R is linear in the y variable and the variance of y is V ar(y) = α
λ2 , we obtain

V ary(R(τ, r, y)) =

(
C(τ)

τ

)2

V ar(y) =
v2θ2

2κ2

C2(τ)

τ 2
.

Because C(τ) is bounded and 1
τ2 → 0 for τ →∞ we obtain

V ary(R(τ, r, y)) → 0 for τ →∞,
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as claimed in the theorem. ♦
As we know, P (τ, r, y) and R((τ, r, y) are monotone functions of y. Hence the area

containing a given percentile of bond prices and term structures can be bounded
by P (τ, r, y1) and P (τ, r, y2), respectively R(τ, r, y1) and R(τ, r, y2), where

∫ y2
y1
g(y)dy

equals the given percentile.
In Figure 9.1 we see examples of bond prices and term structures (corresponding

to the same short rate but different volatilities) together with their averaged values
and 95% confidence intervals.

Figure 9.1: Bond prices (left) and term structures (right) in the Fong-Vasicek model
(grey), their averaged values (blue) and confidence intervals (red).

9.4 Relation of averaged bond prices and one-factor
models

We study a problem whether there are functions µ = µ(r) and σ = σ(r) such that
the bond prices in the short rate model dr = µdt+ σdw are the same as the averaged
prices from the Fong-Vasicek model. We restrict ourselves to certain processes. Drift
and volatility of the process, as well as the market price of risk λ are assumed to
be time-independent. For zero level of the short rate, we require the volatility to be
zero. This condition is needed for the nonnegativity of short rate.

Theorem 23. [46, Theorem 1] Consider the averaged bond prices P̃ (τ, r) in Fong-
Vasicek model and the following conditions on the one-factor model:

1. functions µ, σ, λ depend only on the short rate r and not on time t,

2. functions µ, σ, λ are continuous in r = 0, σ(0) = 0.

Then there is no such one-factor interest rate model, for which the averaged bond prices
satisfy the bond pricing PDE

−∂P
∂τ

+ (µ(r)− λ(r)σ(r)
∂P

∂r
+

1

2
σ(r)2∂

2P

∂r2
− rP = 0 (9.12)



86

for r ≥ 0 and τ > 0.

Proof: Suppose that such a one-factor model exists. To be able to insert the averaged
price P̃ (τ, r) into the PDE (9.12) for bond prices, It follows from Theorem 21 that we
start with computing the necessary partial derivatives of P̃ :

∂P̃

∂τ
=

(
A′

A
−B′r − αC ′

β + C

)
P̃ ,

∂P̃

∂r
= −BP̃ ,

∂2P̃

∂r2
= B2P̃ .

We use a similar idea as in Theorem 17 for the case of two-factor CIR model. We
suppose that the averaged bond price P̃ (τ, r) satisfies the one-factor PDE for bond
prices. Then, when taking a limit r → 0+, the terms involving volatility vanish, since
σ(0) = 0. Terms involving drift converge to µ(0), which has to be constant with
respect to τ . In the case of the Fong-Vasicek model we obtain

µ(0) =
∂τ P̃

∂rP̃

∣∣∣∣∣
r=0

=

A′
A
−B′r − α

β+C
C ′

−B

∣∣∣∣∣
r=0

=

A′
A
− α

β+C
C ′

−B .

Hence the necessary condition for P̃ to be a bond price in a one-factor model is that:

−κ1θ1B − κ2θ2C − C ′ α
β+C

−B = k

for all τ > 0 and some constant 0 < k <∞. Then

−κ1θ1B − κ2θ2C − α
C ′

β + C
+ kB = 0 (9.13)

for all τ > 0. Hence also the derivative with respect to τ of the left hand side is
identically zero, so

−κ1θ1B
′ − κ2θ2C

′ − α
(β + C)C ′′ − (C ′)2

(β + C)2
+ kB′ = 0.

Since this equality holds for all τ > 0, also the limit of its left hand side for τ → 0+
equals zero. Using the initial condition for C and the values of its derivatives for
τ = 0 (see Theorem 19), it yields

κ1θ1 − λ1θ2 = k.

Substituting this expression for k into (9.13) gives

−κ2θ2C − α

β + C
C ′ − λ2θ2B = 0,
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from which we express αC ′ as

αC ′ = (β + C)(κ2θ2C − λ1θ2B). (9.14)

On the other hand, from (9.6) we know that

αC ′ = α

(
−λ1B − B2

2
− (κ2 + λ2v + vρB)C − v2

2
C2

)
. (9.15)

Hence the right hand sides of (9.14) and (9.15) have to be equal. From this equality,
using the relation between parameters α and β, we are able to express the function
C explicitly as

C(τ) =
α

(
λ2 − λ1 − β

2

)

vαρ− λ2θ2 + λ2v
1

B(τ)

,

where B(τ) is given by (9.5). The derivative C ′(τ) can be computed to be

C ′(τ) = − 2eκ1τκ2
1κ2λ2θ2(κ2 + (λ1 − λ2)v

2)

v (2(eκ1τ − 1)κ2ρθ2 + λ2v(θ2 − eκ1τθ2 + eκ1τκ1v)
2 .

and hence

C ′(0) =
2κ2θ2(κ2 + (λ1 − λ2)v

2)

λ2v5
.

We already know that C ′(0) = 0. Since κ2 and θ2 are positive parameters, it implies
that κ2 + (λ1 − λ2)v

2 = 0. But then C ′(τ) would be identically zero and hence C(τ)
would be constant with respect to τ , which is a contradiction. ♦

9.5 Fast mean reverting volatility

It was observed on the several financial markets (interest rates, stocks, stock indices)
that the stochastic volatility evolves in a different time scale, which is faster than the
scale of the underlying security. For a concise reference of the asymptotic we refer
the reader to the book [25]. In this section we are interested in fast time scale of
volatility in the Fong-Vasicek model.

If the volatility evolves in a time scale with the unit ε > 0, then the stochastic
differential equations (9.1) for r and y in become

dr = κ1(θ1 − r)dt+
√
ydw1,

dy =
κ̃2

ε
(θ2 − y)dt+

ṽ√
ε

√
ydw2.

Scaling of the volatility ṽ by the factor
√
ε is because the order or the stochastic

term: we have dw = Φ
√
dt, where Φ ∼ N(0, 1). The fast mean reverting volatility



88

corresponds to small values of ε and the limit ε → 0. If we define κ2 = κ̃2/ε, v =
ṽ/
√
ε, we obtain the stochastic differential equation

dy = κ2(θ2 − y)dt+ v
√
ydw2,

where the ratio κ2/v
2 is constant with respect to ε. Hence we can fix the ratio

κ̃2/ṽ
2 = κ2/v

2 = k (9.16)

and consider the fast mean reversion as a limit v →∞.
First, we present a numerical example. In Figure 9.2, there are terms structures

for the same values of parameters κ1, θ1, θ2 and k, the same values of short rate
and volatility, but the increasing speed of volatility evolution. We notice that the
differences between the interest rates decrease with increasing speed of volatility. In
the rest of this section, we prove this observation analytically.

Figure 9.2: Term structures for the same values of y and increasing speed of volatility.
Term structures in each graph correspond to the same volatility levels y. However,
the graphs have different time scales, the speed increases from left to right.

Recall that the price P of a bond can be written in a form

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y,
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where A,B,C are functions of τ and satisfying (9.4). Since we work with different
values of v now, functions A,C will be functions of τ , as well as of the parameter v:
A = A(τ, v), C = C(τ, v). Function B = B(τ) does not depend on value of v.

Let us define a function
D(τ, v) =

∂C

∂v
(τ, v). (9.17)

Substituting (9.16) into the equation (9.6) for C we obtain
{

∂C
∂τ

+ λ1B + 1
2
B2 + (kv2C + λ2v + vρB)C + v2C(τ)2

2
= 0,

C(0, v) = 0,

from which by taking derivative with respect to v we obtain equation for D(τ, v):
{

∂D
∂τ

+ (2kv + λ2 + ρB)C + (kv2C + λ2v + vρB)D + vC2 + v2CD = 0,
D(0, v) = 0.

Using this equation, which is satisfied by D, we prove the following result.

Theorem 24. [44] There exists v0 > 0 such that D(τ, v) < 0 for all v > v0 and τ > 0.

Proof: First we prove a usedull property of the function D: If D(τ, v) = 0, then
∂d
∂τ
D(τ, v) < 0. Indeed, if D(τ, v) = 0 for some v and τ > 0, then

∂D

∂τ
= − [

(2kv + λ2 + ρB)C + vC2
]
.

Since the function B is bounded with a bound independent on v, we can find v0 > 0
such that for all v > v0 we have

2kv + λ2 + ρB(τ) > 0

for any τ ≥ 0. Hence, if D(τ, v) = 0 for some v > v0 then

∂D

∂τ
(τ, v) < 0.

Let us fix v > v0 and consider D as a function of the variable τ . Taking into
account the above property of D, to prove the claim of the theorem, it suffices to
show that D(τ, v) < 0 for τ on some neighborhood of τ = 0. From the previous parts
we know that C(0) = 0, C ′(0) = 0, C ′′(0) = −λ1 > 0. The function D(τ, v) satisfies
D(0, v) = 0. Taking the time derivatives from the equation for D gives

D′(0, v) = 0, D′′(0, v) = 0, D′′′(0, v) = −(2kv + λ2 + ρ)C ′′(0) < 0.

Hence we have

D(0, v) = 0, D′(0, v) = 0, D′′(0, v) = 0, D′′′(0, v) < 0,

which implies that D(τ, v) < 0 on a neighborhood of τ = 0. ♦
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Lemma 3. [44] Let τ > 0. Then:

1. There exists v0 > 0 such that for v > v0, the function C(τ, v) is decreasing in
variable v.

2. There exists a finite limit L(τ) = limv→∞C(τ, v). Then L(τ) ≥ 0 for all τ > 0.

Proof:

1. Follows from Theorem 24, as ∂C
∂v

= D < 0

2. For v > v0 the function C(τ, v) is decreasing and it is bounded by zero from
below. Hence the limit limv→∞C(τ, v) exists and it is nonnegative.

♦
In what follows, we will show that if L(τ̃) > 0 for some τ̃ > 0, then it would lead

to an unrealistic behavior of interest rates. Firstly we show that in this case L(τ) > 0
on some interval (τ̃ − h, τ̃). We have

∂C

∂τ
(τ̃ , v) = −

[
(λ1B +

1

2
B2) + v(λ2 + ρB)C + v2(k +

1

2
C)C

]
→ −∞

for v →∞, which implies that
∂C

∂τ
(τ̃ , v) < 0,

for v > v0, where v0 is sufficiently large and hence

C(τ, v) > C(τ̃ , v) for τ ∈ (τ̃ − h, τ̃),

where h > 0 is sufficiently small. Taking the limit v →∞ we obtain

L(τ) ≥ L(τ̃),

and for τ ∈ (τ̃ − h, τ̃) we have L(τ) > 0 as well.
Now consider τ such that (0, τ) contains the interval (τ̃ − h, τ̃). For interest rates

with this maturity we then have:

R(τ, r, y, v) =
logA(τ)

τ
+
B(τ)

τ
r +

C(τ, v)

τ
y

= θ1 − θ1
B(τ)

τ
+

1

τ
θ2kv

2

∫ τ

0

C(s, v)ds+
B(τ)

τ
r +

C(τ, v)

τ
y.

The following equality holds:

lim
v→∞

∫ τ

0

C(s, v)ds =

∫ τ

0

lim
v→∞

C(s, v) =

∫ τ

0

L(s)ds > 0,
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since changing order of limit and integration is justified by monotony of the function
C(τ, v) in the variable v for v > v0. It means that

R(τ, r, y, v) →∞ for v →∞.

However, although the fast mean reversion for market data is empirically confirmed
(c.f. [25]), the limit above is not an observed property.

We now analyze the second case left when L(τ) = 0 for all τ > 0. Let us consider
two values of the volatility y, without loss of generality we can assume that y1 < y2.
Then R(τ, r, y1, v) < R(τ, r, y2, v) and the difference between the two interest rates is

R(τ, r, y2, v)−R(τ, r, y1, v) = C(τ, v)
y2 − y1

τ
.

As a function of the variable v, the term (y2− y1)/τ is a positive constant, and C(τ, v)
is a decreasing function for large values of v. Hence also the difference between the
interest rates decreases with increasing value of the parameter v. Recalling that the
limit for v → ∞ is L(τ) = 0, we conclude that the differences between the interest
rates converge to zero and this convergence is monotone for large values of v.

9.6 Volatility clustering

As we have already seen, in the Fong-Vasicek model the volatility has a limit distri-
bution with a density having one maximum. It was a consequence of properties of
mean-reversion process for its evolution. Now, we are looking for a model in which
the limiting density has two local maxima. This corresponds to the so called volatility
clustering, when the volatility can be in its high level (taking values around one of the
local maxima of the limiting distribution) and its low level (taking values around the
other local maximum). The desired behavior of the process and its limiting density
are show in the Figure 9.3.

A natural candidate for such a volatility process y is

dy = a(y)dt+ σ(y)dw,

which has a drift a(y) such that the differential equation dy = a(y)dt has two sta-
ble stationary solutions. With added stochastic part of the process, these stationary
solutions become values, around which the volatility concentrates.

We propose a model with this property, for which the limiting density is a combi-
nation of two gamma densities. Consider the following two stochastic processes:

dy1 = a1(y1)dt+ σ
√
y1dw1,

dy2 = a2(y2)dt+ σ
√
y2dw2,

where
a1(y) = κ(θ1 − y), a2(y) = κ(θ2 − y),
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Figure 9.3: Simulation of a process in the left and its asymptotic distribution in the
right.

such that θ1 < θ2, 2κθ1 ≤ σ2, 2κθ2 ≤ σ2. Their limit distributions are gamma distribu-
tions Γ(α, αθ1), resp. Γ(α, αθ2), where α = 2κ/σ2. Denote their densities by g1 andg2.
Choose k ∈ (0, 1); our aim is to construct a process with asymptotic density

g(y) = kg1(y) + (1− k)g2(y), (9.18)

corresponding to a mixture of densities g1 and g2.
In the following theorem we show that for the same volatility function (i.e. σ

√
y)

it is possible to achieve this goal. Drift of the process can be written as a weighted
sum of a1 a a2, with the weights dependent on y. We find the behavior of this function
for y → 0 and y →∞.

Theorem 25. [43]

1. A process dy = a(y)dt+ σ
√
ydw has a limit distribution (9.18) for

a(y) = w(y)a1(y) + (1− w(y))a2(y),

where
w(y) =

kg1(y)

kg1(y) + (1− k)g2(y)
.

2. The function a satisfies:

lim
y→0

a1(y)

a(y)
= 1, lim

y→∞
a2(y)

a(y)
= 1.

Proof:

1. We recall (c.f. for example [27]) that if the process y(t) satisfies a stochastic
differential equation

dy(t) = a(t, y(t))dt+ b(t, y(t))dw, (9.19)
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then the conditional density f(t, y|y(0) = y0) of the random variable y(t) sat-
isfying an initial condition y(0) = y0 is a solution to the Fokker-Planck partial
differential equation

−∂f
∂t

+
∂(af)

∂y
+

∂2

∂y2

(
b2f

2

)
= 0 (9.20)

for t > 0 with the initial condition f(0, y) = δ0(y − y0) where δ0 is the Dirac
function. The limiting distribution g(y) = limt→∞ f(t, y) can be computed by
solving the stationary Fokker-Planck equation.

− d

dy
(ag) +

d2

dy2

(
b2f

2

)
= 0 (9.21)

with the normalization condition
∫ ∞

−∞
g(y)dy = 1.

Now, consider the positive process with the volatility b(y) = v
√
y, such that

limy→0+ g(y) = 0 and g′(y) is bounded on some neighborhood of the origin.
Then its asymptotic distribution g(y) is a solution of

−a(y)g(y) +
d

dy

(
v2yg(y)

2

)
= 0.

From this, we compute the drift a(y):

a(y) =
1

g(y)

(
v2yg(y)

2

)
=

1

g(y)

d

dy

(
v2yg(y)

2
(kg1(y) + (1− k)g2(y))

)

=
1

g1(y)

(
k
d

dy

(
v2yg(y)

2

)
+ (1− k)

d

dy

(
v2yg2(y)

2

))
.

Since
d

dy

(
v2yg1(y)

2

)
= a1(y)g1(y),

d

dy

(
v2yg2(y)

2

)
= a2(y)g2(y),

a(y) can be written as

a(y) = w(y)a1(y) + (1− w(y))a2(y), (9.22)

where

w(y) =
kg1(y)

kg1(y) + (1− k)g2(y)
. (9.23)
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Figure 9.4: The resulting drift function a(y).

2. Substituting g1 a g2 into (9.23) we obtain the weight w(y):

w(y) =
1

1 + 1−k
k

g2(y)
g1(y)

=
1

1 + 1−k
k

ααθ2
Γ(αθ2)

yαθ2−1e−αy

ααθ1
Γ(αθ1)

yαθ1−1e−αy

=
1

1 + cyq
, (9.24)

where

c =
1− k

k

Γ(αθ1)

Γ(αθ2)
αα(θ2−θ1) > 0, q = α(θ2 − θ1) > 0. (9.25)

It follows that w(y) → 1 for y → 0 and w(y) → 0 for y → ∞. Therefore
limy→0

a1(y)
a(y)

= 1 and similarly limy→0
a2(y)
a(y)

= 1, as claimed. ♦
In Figure 9.4 we can see an example of a drift function a(y) obtained by Theorem

25.

As we have already mentioned at the beginning of the section, the expected be-
havior of function a(y) is such, that it generates two stable fixed points of the ODE
dy = a(y)dt. Function depicted in Figure 9.4 has this property. There are three points
y for which a(y) = 0. Two of them with negative slope of a(y) correspond to desired
stable fixed points and there is one unstable among them. In Figure 9.5 we see that
this is not a property, which necessarily holds for a general case of the function a(y).
However, we show that for large values of parameter α (i.e. sufficiently strong mean
reversion of the processes which we construct the process from), the function a(y)
has the expected behavior.

Theorem 26. [43] There exists α0 such that for α > α0 the equality a(y) = 0 for exactly
three values of y.

Proof: According to Theorem 25 function a(y) can be written as

a(y) =
κ

1 + cyq
[(θ1 − y) + cyq(θ2)− y)] . (9.26)

We see that a(y) > 0 for y ∈ [0, θ1] and a(y) < 0 for y ∈ [θ2,∞). It follows that all the
points for which the function a is zero, are from the interval (θ1, θ2).
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Figure 9.5: Example of a function a(y), which does not have three zero points and,
consequently, the ODE dy = a(y)dt does not have the expected equilibria.

Firstly, we show that there are at most three such points. From (9.26) we see that
a(y) = 0 if and only if the function

f(y) = (θ1 − y) + cyq(θ2 − y). (9.27)

equals zero. Suppose that f(y) = 0 in k points. Using Rolle’s theorem we obtain that
there are at least k − 2 points in interval (θ1, θ2), for which f ′′(y) = 0. But

f ′′(y) = cq(q − 1)θ2y
q−2 − c(q + 1)qyq−1,

and therefore there exists at most one such point y = θ2(q− 1)/(q+1) or none, if this
value is less than θ1. Hence k ≤ 3.

Now, we rewrite the equality f(y) = 0 as

cyq =
y − θ1

θ2 − y
. (9.28)

By defining the functions

f1(y) = cyq, f2(y) =
y − θ1

θ2 − y
, y ∈ (θ1, θ2)

it suffices to find y1 < y2 such that

f1(y1) < f2(y1), f1(y2) > f2(y2). (9.29)

Then (9.28) holds for exactly three points y.
We find the limit of the function f1 for fixed y as α → ∞. For x > 1 we have the

Stirling’s formula (c.f. [1, formula (6.1.38)])

Γ(x) =
√

2π(x− 1)x−1/2e−(x−1)+ 1
12(x−1)

ξ
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for some ξ ∈ (0, 1). Since we are interested in limit for α → ∞, we can assume that
αθ1 > 1, αθ2 > 1. Then

f1(y) = cyq =
1− k

k

Γ(αθ1)

Γ(αθ2)
(αy)α(θ2−θ1) =

=
1− k

k

√
2π(αθ1 − 1)αθ1−1/2e

−(αθ1−1)+ 1
12(αθ1−1)

ξ1(α)

√
2π(αθ2 − 1)αθ2−1/2e

−(αθ2−1)+ 1
12(αθ2+1)

ξ2(α)

(αy)αθ2

(αy)αθ1
,

where ξ1, ξ2 (dependent on α), are in the interval (0, 1). This can be written as

f1(y) =


1− k

k

(
αθ1 − 1

αθ2 − 1

)− 1
2

(
1− a

αθ1

)αθ1
(
1− a

αθ2

)αθ2
e

ξ1(α)
12(αθ1−1)

e
ξ2(α)

12(αθ2−1)




(
θ1

y

)αθ1 (
y

θ2

)αθ2

eα(θ2−θ1).

Since

lim
α→∞


1− k

k

(
αθ1 − 1

αθ2 − 1

)− 1
2

(
1− a

αθ1

)αθ1
(
1− a

αθ2

)αθ2
e

ξ1(α)
12(αθ1−1)

e
ξ2(α)

12(αθ2−1)


 =

1− k

k

(
θ1

θ2

)−1/2

> 0,

we need to compute the limit

lim
α→∞

(
θ1

y

)αθ1 (
y

θ2

)αθ2

eα(θ2−θ1) = lim
α→∞

(
e
θ1(log

θ1
y )+θ2

“
log y

θ2

”
+θ2−θ1

)α

.

Denote

h(y) = θ1

(
log

θ1

y

)
+ θ2

(
log

y

θ2

)
+ θ2 − θ1.

For x > −1, x 6= 0 we have log(1 + x) < x. Hence, from the continuity of h it follows
that there exist θ̃1, θ̃2, such that θ̃1 < θ̃2 and h(y) < 0 for y ∈ (θ1, θ̃1), h(y) > 0 for
y ∈ (θ̃2, θ2). Then:

h(θ1) = θ2

(
1− θ1

θ2

+ log
θ1

θ2

)
< 0,

h(θ2) = −θ1

(
1− θ2

θ1

+ log
θ2

θ1

)
> 0.

From this we obtain:

• For y ∈ (θ1, θ̃1):

lim
α→∞

(
e
θ1(log

θ1
y )+θ2

“
log y

θ2

”
+θ2−θ1

)α

= lim
α→∞

(
eh(y)

)α
= 0,

and hence for f1 = f1(y, α)

lim
α→∞

f1(y, α) = 0.
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• For y ∈ (θ̃2, θ2):

lim
α→∞

(
e
θ1(log

θ1
y )+θ2

“
log y

θ2

”
+θ2−θ1

)α

= lim
α→∞

(
eh(y)

)α
= ∞,

and hence
lim
α→∞

f1(y, α) = ∞.

Choose y1 ∈ (θ1, θ̃1) and y2 ∈ (θ̃2, θ2). Since the function f2 does not depend on α,
from the limits that we have computed it follows that there are α1, α2 such that

f1(y1) < f2(y1) for α > α1,

f1(y2) > f2(y2) for α > α2.

Hence for α > max{α1, α2} the inequalities (9.29) are satisfied, from which the
theorem follows. ♦

To provide an empirical evidence for such a volatility process, we computed max-
imum likelihood estimates of the volatility σ for the Vasicek model for each month
from the period 2000-2007 using Bribor overnight data. Figure 9.6 shows the esti-
mated as a function of time. The higher and lower volatility periods can be distin-
guished. They can be seen also on the histogram and kernel density estimates of the
values in Figure 9.7.

Figure 9.6: Monthly estimates of Vasicek model’s σ (Bribor, 2000-2007).
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Figure 9.7: The histogram and kernel density of estimates of the volatility σ.



Chapter 10

Conclusion

We studied several questions and problems that are related to short rate term
structure models. The main results of this thesis can be summarized as follows:

First we considered an approximate analytical solution for bond prices in one-
factor models, suggested by Choi and Wirjanto in [17]. The presented approximation
results are based on the recent paper [47]. We derived order of its accuracy and pro-
posed an approximation of higher order. The approximation was used in calibration
of the models and finding an optimal dependence of the volatility on the short rate.

Next we studied two-factor models. Namely, two-factor Vasicek, two-factor Cox-
Ingersoll-Ross and Fong-Vasicek models in particular. We considered the limit distri-
bution of the unobservable variables of the model. With respect to this distribution
we studied the bond prices and interest rates. Most of the results are contained
in the author’s papers [42], [45] and [46]. They include deriving distribution of
bond prices and interest rates, dependence of their variance on maturity, computing
their averaged values and confidence intervals. We also studied the question of the
nonexistence of one-factor models, yielding the same bond prices as are the averaged
values from these models.

In the case of Vasicek model we furthemore studied the fast mean reverting
volatility, based on author’s paper [44]. We analyzed a condition enabling us to
eliminate a possibility of infinite limit of interest rates for fast time scale of volatility.
In this case, we have shown the monotone decreasing dependence of the difference
between the interest rates, as the speed of volatility increases.

In the last section we presented the results of the author’s paper [43]. We derived
a process modeling volatility clustering. Its limit distribution is a mixture of two
gamma densities. It generalizes gamma distribution from the Fong-Vasicek model.
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Chapter 11

List of symbols

a, b - parameters of a drift function (chapter 4)
a, b - parameters of gamma distribution (chapter 8)
a, a1, a2 - drift functions (chapter 9)
A, B, A1, A2, B1, B2, C - shape functions of the interest rates
Corr(., .) - correlation of random variables
E(.) - expected value of a random variable
EOC - experimental order of convergence
f(.), g(.) - density functions
F , F (α), F (α, β) - objective function in the calibration (chapter 5)
F (.) - cumulative distribution function
N(., .) - normal distribution with specified parameters
P , P (t, T, r), P (τ, r), P (τ, r1, r2), P (τ, r, y) - price of bond
P ap, P ap2 - approximations of bond prices
Prob(.) - probability of an event
P̃ , P̃ (τ, r) - averaged bond price
r - short rate
r1, r2 - factors of the short rate
R, R(t, T, r), R(τ, r), R(τ, r1, r2), R(τ, r, y) - interest rate
Rap, Rap2 - approximations of interest rates
R̃, R̃(τ, r) - averaged interest rate
T - maturity of a bond
V ar(.) - variance of a random variable
V ar(.|.) - conditional variance of a random variable
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w, w(t), wt - Wiener process
wij - weights in the calibration (chapter 5)
w(.) - weight function for drifts in volatility clustering model (chapter 9)
α, β - parameters of a drift function (chapter 4)
α, β - parameters of gamma distribution (chapter 9)
γ > 0 - parameter describing the dependence of volatility on the short rate
Γ(.) - gamma function
Γ(., .) - gamma distribution with specified parameters
θ > 0 - long time limit of a mean reversion a process
κ > 0 - mean reversion parameter of a process
λ, λ(t, r) λ(r), λ̃ - market price of risk
µ, µ(t, r), µ(r) - drift function of a process
µ, σ2 - parameters of normal distribution (chapter 7)
σ, σ(t, r), σ(r) - volatility function of a process
σ > 0, v > 0 - volatility parameter of a process
τ - time to maturity
1F1(., ., .) - Kummer confluent hypergeometric function
〈.〉 - expected value of a random variable
〈.|.〉 - conditional expected value of a random variable
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[48] Ševčovič, D., Urbánová Csajková, A.: Calibration of one factor interest rate
models, Journal of Electrical Engineering 55 (12/s), 2004, 46-50.
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