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Abstract

STERNMULLEROVA, Katarina. Optimum design in nonlinear models. Comenius
University in Bratislava. Faculty of Mathematics, Physics and Informatics; Department
of Applied Mathematics and Statistics. Supervisor: prof. RNDr. Andrej Pazman,
DrSc. Bratislava 2018, 132 pages.

Keywords: optimality criteria, the cutting plane method, Conditional Value at Risk,

Kullback-Leibler I-divergence, exponential family of distributions.

Abstract:

The thesis deals with some new approaches of optimal experimental design in non-
linear models. Following the paper Pazman and Pronzato (2014) and the monograph
Pronzato and Pazman (2013), we construct new forms of optimality criteria, we inves-
tigate their mathematical properties, and we demonstrate the possibility of obtaining
optimal experimental designs using the methods of linear programming.

In the thesis we extend the criteria which are considered in Pazman and Pronzato
(2014) and are related to the stability of the least square estimate in a nonlinear
regression model. Namely, applying the I-divergence, we can at the design stage of the
experiment reach the improvement of the stability of the maximum likelihood estimate
in a generalized regression model based on the exponential family of distributions. In
addition, we formulate some other optimality criteria which follow similar purposes but
are closely related to different well-known optimality criteria not considered in Pazman
and Pronzato (2014).

Further, we elaborate the issues of the criterion based on the Conditional Value at
Risk, which was used in optimal experimental design by Valenzuela et al. (2015) for the
first time. We analyse this criterion from the point of view of the optimal experimental

design and we use linear programming to calculate optimal designs.

v
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Abstrakt

STERNMULLEROVA, Katarina. Optimalizicia experimentov v nelinedrnych mode-
loch. Univerzita Komenského v Bratislave. Fakulta matematiky, fyziky a informatiky:;
Katedra aplikovanej matematiky a statistiky. Vedtci prace: prof. RNDr. Andrej Paz-
man, DrSc. Bratislava 2018, 132 stran.

KlIicové slova: kritéria optimality, metoda cutting plane, podmienend hodnota v

riziku, Kullbackova-Leiblerova I-divergencia, exponencialna trieda rozdeleni.

Abstrakt:

Predkladana zaverecna praca sa venuje niektorym novym pristupom navrhovania
experimentov v nelinedrnych modeloch. Vychadzajic z ¢lanku Pazman a Pronzato
(2014) a z monografie Pronzato a Pdzman (2013) formulujeme nové tvary kritérii op-
timality, analyzujeme ich matematické vlastnosti a prezentujeme moznost ziskania op-
timalnych navrhov experimentov aplikovanim metod linearneho programovania.

V préci rozsirime kritéria optimality, ktoré boli uvazované v Pazman a Pronzato
(2014) a sivisia so stabilitou odhadu metédou najmensich Stvorcov v nelinedrnom
regresnom modeli. Konkrétne s vyuzitim I-divergencie vieme v stadiu navrhovania
experimentu dosiahnut zlepsenie stability odhadu metédou maximalnej vierohodnosti
v zovseobecnenom regresnom modeli zalozenom na exponencialnej triede rozdeleni.
Navyse, sformulujeme dalsie kritéria optimality, ktoré plnia podobny tucel, ale st tzko
spaté s inymi znamymi kritériami optimality neuvazovanymi v ¢lanku Pazman a Pron-
zato (2014).

Dalej rozpracujeme problematiku kritéria zaloZeného na podmienenej hodnote v
riziku, ktoré bolo po prvy raz aplikované v oblasti navrhovania experimentov v ¢lanku
Valenzuela et al. (2015). Analyzujeme toto kritérium z hladiska optimalneho navrho-
vania experimentov a opat pouzijeme linearne programovanie na vypocet optimalnych

névrhov.
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Preface

In the thesis we describe some possibilities of designing experiments in nonlinear mod-
els, where the information matrix and the criterion function depend on the unknown
parameter that is aimed to be estimated. From the statistical point of view, the exper-
iment is optimal if it brings most information on the unknown parameter, often under
some financial or material restrictions.

The monographs Pronzato and Pazman (2013) or Fedorov and Leonov (2014) are
devoted to optimal experimental design in nonlinear regression models and provide
a deep analysis of many design methods. In the thesis we try to extend some of
these known methods and we also pay attention on one approach, which has not been
sufficiently studied in the area of optimal experimental design. A common element
which is related to all the methods considered in the thesis is linear programming—
largely used here to obtain optimal designs (the cutting plane method, cf. Kelley,
1960).

Structure and aim of the thesis

Chapter 1 Preliminaries contains some basic and very general results from the ma-
trix theory, regression models, optimal experimental design and describes the

above-mentioned cutting plane method.

The remaining chapters can be considered separately. The aim of each chapter is
indicated at its beginning. Every chapter also contains some introductory notes (known

from the literature) and the conclusion, which summarizes the achieved results.

Chapter 2 Experimental design via linear programming presents the results of

Burclova and Pazman (2016a). The main goals:

e to reformulate the criteria of D-; A-; E-, and Fj-optimality into the form
which allows to use linear programming for optimal experimental design
(Theorems 2.1, 2.2, and 2.3),



e to demonstrate that the iterative LP method can be used to solve corre-

sponding design problems numerically (Sect. 2.3), and

e to use these reformulations in more complicated problems like the calcula-
tion of criterion robust design (Sect. 2.3.1) or optimal design under some

subsidiary linear constraints (Sect. 2.3.2).

Chapter 3 Experimental design based on some ideas from risk theory studies
the possibilities of applying results from the risk theory into the area of optimal
experimental design as suggested in the paper Valenzuela et al. (2015). The main

goals:

e to define the criterion based on Conditional Value at Risk (CVaR) as a
concave function of the design £ and consider also discrete prior distributions
(Sect. 3.2),

e to provide an analysis of the CVaR criterion based on the theory of risk in

order to obtain its meaningful interpretation (Sect. 3.3),

e to study its relation to AVE, maximin, local (Theorem 3.19) and quantile
criteria (Sect. 3.4.2), which is also done in the examples (mainly Exam-
ple 3.25),

e to derive the directional derivative (Lemma 3.20) and to prove the equiva-
lence theorem for the CVaR criterion (Theorem 3.21), and

e to demonstrate the possibility of obtaining CVaR-optimal designs via linear

programming (Sect. 3.5).

Chapter 4 Extended optimality criteria for avoiding false estimates in gen-
eralized regression models extends the results of Pazman and Pronzato (2014)
to more general regression models defined by exponential families and partially is
based on Burclova and Pdzman (2016b). The main tool used here is an adequate
adaptation of the I-divergence. Appendix A involves one further theoretical
result used in this chapter and Appendix B presents some distributions from

the exponential family. The main goals of the chapter:

e to redefine the extended criteria of E-, c-, and G-optimality from Pazman
and Pronzato (2014) so that they are applicable in generalized regression
models based on the exponential family (Sect. 4.5 and Eq. (4.27)),

e to elaborate the necessary mathematical tools to obtain extended criteria
also for the M'V-, L-, and some L,-optimality criteria, not considered earlier
(Sects. 4.4.1-4.4.3),



e to prove that the considered criteria are really extensions of the classical
optimality criteria (Theorems 4.16, 4.17, and 4.18), and

e to apply the results of previous chapters to optimal experimental design in
generalized regression models based on the exponential family of distribu-
tions (Sect. 4.2.1).



Chapter 1

Preliminaries

1.1 The basic matrix algebra results

The eigenvalues A; (M) < Ao (M) <... < A\ (M) of any symmetric matrix M € R™*™
are real. Every symmetric matrix M can be written as M = QAQ ", where the matrix
A is diagonal with the eigenvalues A; (M),..., Ay, (M) on the main diagonal and @) is an
orthogonal matrix, the columns of which contain the orthonormally chosen eigenvectors
of M corresponding to A1 (M),..., A\p, (M) (see e.g. Harville, 2008, Sects. 21.4-21.5 or
Gentle, 2007, Chap. 3.8).

For any p one defines the p-th power of a symmetric positive semidefinite matrix
M as MP = QAPQ", since the eigenvalues on the diagonal of A are always nonnegative
(see e.g. Gentle, 2007, Chap. 3.8).

We formulate the Cauchy-Schwarz inequality for matrices.

Theorem 1.1. (Harville, 2008, Theorem 6.3.1) Let A and B be matrices in R™*F.
Then one has
tr? (ATB) <tr (ATA) tr (BTB> )

As a consequence of Theorem 1.1 one obtains for a symmetric positive definite
matrix M = M'Y/2M/2 ¢ R™*™ (after substitution A < MY2A, B <~ M~Y2?B) that
for any A#0, B

M <tr(BTM™'B) (1.1)
tr(ATMA)
with the equality sign for A= M~1B, hence
2( AT
max M =tr (BTM_lB). (1.2)
Aermkiaz0 tr (ATMA)



We mention one more important relation from the matrix theory (see e.g. Harville,
2008, Theorem 21.5.6)
min -~ u' Mu = Ay (M), (1.3)

u:{[ul|gp)=1
where Apin (M) denotes the minimal eigenvalue of a symmetric positive semidefinite

matrix M and ||'||e(2) is the Euclidean norm.

1.2 Linear and nonlinear regression models

Consider the linear regression model
y(x)=f"(x)0+e¢, (1.4)

where 6 = (91,...,6m)T € R™ is a vector of regression parameters, f(x) € R™ is a
known continuous vector function and the regressor x is from the design space X C R¥.
The design space X is throughout the thesis assumed to be compact unless otherwise
stated. The random errors € are supposed to have zero mean and, generally unknown,
constant variance o2.

Denote by X an exact experimental design consisting of N points form X, i.e.
X ={x1,...,xy}. If we perform independent measurements in points from X with
results y(x1),...,y(xn), then the covariance matrix of least squares estimate for 6
equals o2 My if the information matrix My = SNV, £ (x;) f T (x;) associated with the
exact design X is nonsingular.

When the expectation of y(x) is not linear in 8, then y(x) may satisfy a nonlinear

regression model of the form
y(x)=n(x,0)+e, (1.5)

where 7 is a known mapping 77: X x © — R continuous on O, a compact subset of R™.
If n(x,0) is moreover differentiable on int (©), we define for 8° € int () the elementary
information matrix as a function of x € X and 6°
on(x,0) on(x,0)

90 |p_go 007

Throughout the thesis we assume that any two observations y(x), ¥/(x) from (1.4)

M (x,0°) = (1.6)

0=6°

or (1.5) corresponding to different trials are independent.

More general regression models are considered in Chap. 4.

1.3 Experimental design in nonlinear models

The issues of optimal experimental design are in detail studied e.g. in Pronzato and

Péazman (2013) or Fedorov and Leonov (2014). The aim of this section is only to

5



explain the basic terms and notations.
The approximative experimental design (hereinafter referred to as ,design®) is any
probability measure £ defined on X, and the set of all such measures is denoted by =.

The information matrix associated with a discrete design £ is defined as

M(£0%) = > M(x,6%)¢x), (1.7)
x€X:£(x)>0
where M (x, 90) is the elementary information matrix defined in (1.6). For brevity, we

Xo ...

1
£(x1) €(x2)

Throughout this thesis, if no confusion occurs, we will use the same notation for

sometimes use the notation { } for a discrete design &.

the information matrix M (&, 0), as a function of a design £ € =, and for the elementary
information matrix M (x,8), as a function of a design point x € X', although the latter
one should be expressed as M (dx,8), where dx € Z is a Dirac measure concentrated at
X.

If ¢ € = is not a discrete measure, one may write in (1.7) an integral over X
instead of the sum to obtain M (f’ ,90>. However, as a consequence of Caratheodory’s
theorem, see e.g. Pronzato and Pdzman (2013), Sect. 5.2.3, M (5’700> =M (5,00) for
some discrete design &.

In Chap. 3 of Pronzato and Pazman (2013) is proved that when X = {x1,...,xx} is
a random sample from distribution given by &, then, under some assumptions including
a nonsingularity of M (ﬁ,é), the covariance matrix of the least square estimate of
0 based on independent measurements in x1,...,xy is asymptotically, for N — oo,
proportional to % [M (5 ,é)}_l, where 0 € int (0) is the true parameter value. One
sees that the asymptotic covariance matrix depends on the unknown true parameter
value . A more direct and simple proof is possible if X is a finite set. In that case it
is sufficient that the relative frequency of any point x within X is converging to £(x),
see e.g. Pazman and Lacko (2012), Sect. 3.7.

Usually, the main idea of statistical optimization of experiments lies in maximizing
(with respect to £) a chosen optimality criterion, which measures the largeness of the
information matrix associated with given design £ (and hence minimizes the covariance
of the least squares estimate). An optimality criterion in a nonlinear model is a real
function ¢ of the design & and of the parameter 6 given as ¢ (&,0) = ¢[M (£,0)] for
some function ¢ defined on the set of all information matrices. For purposes of optimal
experimental design we will assume that M (x,0) is continuous on X (this is always
true when X is finite) for given 6.

Below we define some optimality criteria which are for any 8 € ©



e concave, i.e. [N+ (1—X)E2,0] > AP (£1,0)+ (1 —X) @ (£2,0) for any &1,& € =
and for any A € (0,1), and

e positively homogeneous, i.e. ¢(a&,0)=a¢(,0) for any & € = and for any a > 0.
Definition 1.2. Let £ € =, 8 € ©. In a nonlinear regression model we define the

criterion of D-optimality:
1
¢p (€,0) = {det[M (¢,0)]} ™,

criterion of A-optimality:

1 _ _ .
oa(6.0) = {1/tr{[M (€,0)] } if M (&,0) is nonsingular,

0 otherwise,

criterion of Ej-optimality:

k

Op, (§,0) = 3 Ai[M(£,0)],

i=1
where A1 [M (£,0)] < X\ [M (£,0)] < ... <\ [M(&,0)] are the ordered eigenvalues
of matrix M (&,0) respecting their multiplicity,

criterion of F-optimality:
¢E (ga 0) - )‘1 [M (570)] = )‘min [M (f)e)] )
criterion of c-optimality:

%c if ce C[M (£,0)],

0 otherwise,

where [M (£,0)]  is an arbitrarily chosen g-inverse of matrix [M (£,0)],

criterion of G-optimality:

: . . ' |
Milyxe y =1 if M (&,0) is nonsingular,
¢c(§,0) = £T(x)[M(£.0) ' (x)

0 otherwise.

For the interpretation of criteria from Def. 1.2 in linear models see e.g. Pazman
(1986) or Pukelsheim (1993) and in nonlinear models see Chap. 5 of Pronzato and
Pédzman (2013). The criteria of Ej optimality were defined and applied in Harman
(2004).



Since at the design stage of the experiment the true parameter value 6 is unknown,
we are not able to maximize ¢ (5 ,é). Hence there is a need to avoid a dependence of
¢ (&,0) on the unknown parameter value € and the usual way is to consider one of the

below formulated criteria.

Definition 1.3. Suppose that ¢(&,0) is a real function defined on = x O, e.g. one of
the criteria introduced in Def. 1.2. Then we define the

local optimality criterion
Proc (§) = 6 (£,6°) (1.8)
where 6° is the nominal parameter value which is a priori assumed to be in the

neighbourhood of 6,
maximin optimality criterion

CI)min (5) :min¢<€70): (19)

0co

average (AVE) optimality criterion

Dave (&) = [ #(5.0)dr(9). (1.10)
where 7 (+) is some prior probability distribution on the parametric space ©.

The concavity and positive homogeneity of ¢ (£,0) in £ then imply the concavity
and positive homogeneity of the local, AVE and maximin criteria (see e.g. Pronzato
and Pazman, 2013, Sects. 8.1 and 8.2) and, typically, the optimal design for nonlinear

model maximizes one of them.

1.4 The cutting plane method

The method of cutting planes (Kelley, 1960) can be applied when optimizing a concave
criterion, see also Sect. 9.5 in Pronzato and Pazman (2013).
Let ¢ : z — (z) be a continuous concave function of a vector variable z defined on

a compact convex set. The optimization problem
z*:argmzaxgo(z) (1.11)

can be solved by the iterative cutting plane algorithm, which follows from the subgra-
dient inequality, see (1.13). Suppose that z0) is a starting point and PADN S IC)
are results of previous iterations. The solution of (i4 1)-st iteration is computed as

follows

6 —anggs i [o(a0) + 9T (29 (a=a0)], (112



where Vi (z(j)) is an arbitrary subgradient of ¢ () at z() (one may here also use
the term supergradient, since ¢ is concave function). The problem (1.12) is a linear
programming (LP) problem and the standard LP algorithms may be used. This is the
main idea of the cutting plane method presented in Sect. 9.5 of Pronzato and Pazman

(2013). Algorithm stops when for given € > 0 the inequality

jpin e (20)+ Ve (22) (2040 =20)] - _max o (20) <

is satisfied, and then argmaxze{z(o) L) Z(Hl)}go(z) is the computed solution of the
problem (1.11).

1.4.1 A subgradient of a concave function

Here we summarize some important properties of subgradients of a concave function
(see Pronzato and Pazman (2013) Sect. 9.5 and Appendix A), which will be useful in
the next parts of the thesis. For more detailed explanation we refer to Sects. 3.1.5-3.1.6
in Nesterov (2004) or Sect. 23 in Rockafellar (1970) (where subgradients of a convex
function are considered).

The subgradient of a concave function ¢ at point z, the element of the domain of
p, is any vector V¢ (z) satisfying the following inequality for any z in the domain of
©:

p(2) <p(@)+V ¢(2)(2-7). (1.13)
The inequality (1.13) is known as subgradient inequality. When the function ¢ is
differentiable at z, then there is only one subgradient, which is, moreover, equal to the
gradient of ¢ at z, see Lemma 3.1.7 in Nesterov (2004).

According to Theorem 23.4 in Rockafellar (1970), the subgradient of ¢ does exist
at z if and only if z is an element of interior of the domain of . When applying the
cutting plane method in the optimal experimental design (supposing that X is finite),
there is a need to express a subgradient at some design 5 . Although we accept only
such experimental designs £ which are non-negative in each component and summing

R d(¥) with an empty interior), generally, the natural

to one (i.e. £ € Z, a subset of
domain of the criterion function w — ¢ (w,0) (the maximal set of vectors w for which
the function ¢ is defined) is much more larger and hence the necessary and sufficient
condition for existence of a subgradient is not very restrictive.

In the next lemma we summarize some well-known properties of subgradients. For

more general results see Sect. 3.1.6 in Nesterov (2004).

Lemma 1.4. Let ¢ (-),1(:) and p2(-) be concave functions of a vector variable z with
the same domain. Suppose that theirs subgradients at z do exist and are denoted by
Vo (z),V1(z),Va(z). Then



a) [aVp(z)] is a subgradient of the function [ap(z)] at z for any a >0,

b) [a1V1(z)+aaVa (Z)] is a subgradient of p (z) = a1¢1 (z) +azp2 (z) at z for any
ay,az 20,

c) define the set T(z)={i € {1,2},¢i(z) = min{p1 (z),p2(2)}}, then Vix (z) is a
subgradient of v (z) = min{p1(z),p2(2)} at z, where i* is any index from I (z),

d) let p:2x 0+ p(z,0) be concave function in z for any 6 € © (0 here represents
a random variable or a random wvector), then E[Vo(z,0)] is a subgradient of
¢ (z) = E[o(2,0)] at 2.

Proof.

a) Multiplying the inequality (1.13) by a one obtains the subgradient inequality for
lap (+)] at z.
b) Using the statement a) of this lemma and summing up the subgradient inequal-

ities for a1¢1 (+) and agps () one obtains the subgradient inequality for the sum

[a1p1 () +azp2 ().

c¢) The function ¢ (z) =min{y; (z), 2 (2z)} is concave in z and according to (1.13) for
z) = min{p1(2).¢2(2)} < ¢in(2) < @i (2) +
V' (2)(z—2) = ¢(2)+ V' i (2) (z—2).

any * € Z(z) one has ¢

d) In the proof we follow Vandenberghe (2016). According to (1.13) we have ¢(z,0) <
0(z,0)+V " 0(Z,0)(z—z) for any z,z,0, which implies the subgradient inequality

for ¢:
p(z) = Elo(2,0)]

IA

E|0(z,0)+V 0(z,0)(z—%)|
Elo(2,0)+E[V 0(2,6)|(z—2)
p(@)+E[V 0(2,0)|(z—72).
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Chapter 2

Experimental design via linear

programming

This chapter is based on the paper Burclova and Pdzman (2016a), where we elaborated
an idea of computing optimal experimental designs via linear programming (LP). In
the paper we mostly considered the classical linear regression model (1.4), but the
reformulation of results of the paper for locally optimal designs in the classical nonlin-
ear regression model (1.5) (or even in a generalized regression model, see Sect. 4.2.1)
is straightforward. Since the thesis is focused on nonlinear models, here we present
those results of Burclovd and Pazman (2016a) which are applicable to local (1.8) and
AVE (1.10) optimality criteria.

In Sect. 2.1 we mention the expressions presented in Sect. 9.5.3 of Pronzato and
Pazman (2013) for computation of E-, c-, and G-optimal designs. By the use of several
results of matrix algebra (c.f. e.g. Harville, 2008) we reformulate the criteria of D-,
A-, and Ej-optimality (see Def. 1.2) in Sect. 2.2 for computation of locally and in
Sect. 2.4 of AVE optimal designs in nonlinear models. In Sect. 2.3 we present the
algorithm based on the cutting plane method and we formulate two more complicated
experimental design problems which we could solve directly. Section 2.5 provides some
bibliographic remarks and Sect. 2.6 concludes.

Throughout this chapter we will always suppose that the design space X is finite and
hence the design € can be considered as a card (X)-dimensional vector with nonnegative
components summing to one. We will use the notation f (X,OO) = W‘e:eo’

n(x,0) is the regression function in the classical nonlinear regression model (1.5). It

where

follows that the elementary information matrix (1.6) can be expressed as M (x, 00) =
£ (x, 00) £7 (x, 90).
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2.1 Reformulation of criteria of F£-, c-, and G-optimality

In Sect. 9.5.3 of Pronzato and Pazman (2013) one can find that the local criteria of E-

and c-optimality can be rewritten into a form
00 i TM 00
6(¢,60°) glelgx;u (x,6°) ug (x),

where in the case of F-optimality U = {u eR™: ||u||z(2) = 1} and in the case of c-
optimality U = {u eR™:ulc= 1}. For the criterion of G-optimality one obtains
06 (£.6”) = minxe e min e o) 0 M (x,60°) ué (x).

This means that the problem of finding locally optimal design £* for these criteria

is an “infinite-dimensional” LP problem:

3
i (OT’ 1) (t)

A u' M (X,OO) ué(x) > tforanyuel,
xeX

£(x) > Oforanyxe X, and Y &(x)=1,

XeEX

where t is an auxiliary variable and £ = ({(x);x € X) is a card(&X')-dimensional vector.
The algorithm and the modification for G-optimality can be found in Sect. 9.5.3 of
Pronzato and Pazman (2013).

2.2 Reformulation of criteria of D-, A-, and FE;-
optimality

Let us denote by =% the set of such designs ¢ for which the information matrix M (C , 00)
is nonsingular, i.e. 21 = {C e=:M (C,BO) is nonsingular}. Evidently, D-, A-, and E-
locally optimal designs belong to =%, which is not necessarily true for Ej-optimality
when k£ > 2. As we already mentioned, the following sections are based on the publi-

cation Burclovd and Pdzman (2016a).

Theorem 2.1. We can write ¢p (5,00) = mingeg+ Y oxex Hp (C,X,OO)S(X) for any

£ € =T, where

a1 (c.07)

m

Hp (c,x,ao) - £r (X,OO) M1 (c,ao) £ (X,OO) . (2.1)

Proof. Take any nonsingular square matrix S € R”™*™ and denote by f1,..., 5, the

cigenvalues of ST M (5 , 00) S. Since the geometric mean of positive numbers S1,..., Bm
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is always less than or equal to the arithmetic mean of f51,..., 3, (cf. e.g. Steele, 2004,

Chap. 2), we obtain

fafsTar o))"= (1) < 250 LlsTar )]

So

o0 (€,6%) = {det [11 (¢,6°)] 1" < ST (x,6%) 557F (x,67) € (x).

xekX

and we have only to put S = M ~1/2 (C , 00) to obtain on the right hand side the expres-
sion in (2.1). If S = M~1/2 (5,0()), then $; = ... = f,, =1, and the geometric mean is
equal to the arithmetic mean, hence we have the equality for ( = ¢ which proves the

theorem. O

Theorem 2.2. We can write ¢4 <£,00) = mingez+ Y oxex Ha ((,X,Bo)f(x) for any

£ € =T, where ,
H.y (C,X,@O) _ HMil (C’H()) f (X’e()) HE(Q
{ir[(co)])

) (2.2)

and H'Hé(Q) denotes the Euclidean norm.

Proof. For any nonsingular matrix S € R™*™ and for any £ € = we obtain from the
Cauchy-Schwarz inequality (see Eq. (1.1) after substitution A < ST, B <« I, M <«
M (5,00)) that

[tr () < tr[ M (€,6%)] tr [SM (£,6°) ST].

So

ou(6.67) = fir it (680} < (s (£.6%)57] . |5t (X’GO)HZQ)g(X)
, 7 - [tr (S))? wex () 7

and we have only to put S =M1 (C , 90) to obtain on the right-hand side the expression
in (2.2). When S =M~} (5 ,00), we obtain equality in the Cauchy-Schwarz inequality

and the theorem is proved. O

Theorem 2.3. Denote by u; [M (5,00)} ..... U, [M (5,00)} the orthonormal eigen-
vectors of M (5,90) corresponding to A\ {M (5,00)} ..... Am {M (5,90)}. We can write
PR, (5,00) =mingez Y xex HE, (C,X,O()){(x) for any £ € =, where

Hg, (¢.x,6°) = |[P® (,6°) £ (X,OO)Hj@). (2.3)
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Here P (( 90) is the k-dimensional orthogonal projector

96) = S () o 1 )]

and [|-|| o) denotes the Euclidean norm. When the eigenvalue Ay, [M (C,HO)} has mul-
tiplicity p > 1, the choice of the order of the p orthonormal eigenvectors corresponding
to A\ [M (C,BO)} is arbitrary.

Proof. For a fixed ¢ denote P = P (¢,6°). By the definition of P*) (¢,6°) we have
that P is idempotent symmetric matrix. Moreover, for given ¢ define the orthogonal
matrix U = ( [ (5 00)} ..... U, [M (5 ,OO)D and the diagonal matrix of eigenvalues
A = diag {\ [M (£,6°)] ..., Am [M (£,6")]}. Hence one has M (£,6°) = UAUT. Tt
follows that

S|Pt (x.0°) o §X) = tr[PM (6,6°) P = t[PUAUTP] =t [A(PU)T (PU)]
xeX

= Y n[M (%) {Pv)" (PU)}

2

where we denoted w; = {(PU) (PU) } = HPuZ{ (C’OOHHE(Q)' Since U is orthogonal
matrix, i.e. UUT =U U =1, we have

k=tr(P)=tr(PTP)=tr(PTPUUT) = i {(P)" (PU)} = iwi.
=1

=1

Further, w; € [0,1] since 0 < HPui [M (C,@OH HZ(Q) < lu; [M (C,OO)} Hj@) = 1. So, using

the inequalities \q [M (C ,(90)} <...<\nm [M (C ,00”, we can see that the expression

SN {M (C,O())] w; is minimized exactly when w; =...=wy =1 and w1 =... =

Wy, = 0, hence

k
3 [P 0) [ €001 = 300 [ 00) 2 3o [ (c.6°)] = o (5.6°).
xeX 1=1 1=1 (2.4)
where on the left-hand side is the expression from (2.3). In the particular case when

p=pk (g 00) Sk [M(g,eo)}u}[M(g,eo)},wehave

ui[M(g,eo)H]ZQ) ifi<k, |1 i<k,
o ik

i = 6° u; 700 ) -
wi=|[P© (&.0%) w21 (6.6") [, 0 if i >k,
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2
and hence Txe [P (6,0°)F (x.0°) [, €(x) = Thoy X [M(€.6°)] = o, (¢.6°).
which together with (2.4) yields the statement of the theorem. From the presented
proof it is evident that the choice of the order of eigenvectors corresponding to an
eigenvalue with multiplicity greater than 1 is irrelevant, as long as these eigenvectors

are orthonormal. O

From the reformulated criteria functions in Theorems 2.1-2.3 it is easy to see that
the criteria of D-, A-, and Ej optimality from Def. 1.2 are concave functions of the
design ¢ and that they are positively homogeneous.

Let us use the common notation H(C,X,OO) for Hp (C,X,OO), Hy (C,X,H()), or
Hg, (C,X,BO) from Eqgs. (2.1)—(2.3). The reformulations in Theorems 2.1-2.3 allow us
to find a locally optimal experimental design {* = argmaxeez ¢ (5 , 00) via an “infinite-

dimensional” LP problem:

i (07.1) (f)

> H (C,X,00>£(X) >t for any ¢ € 2, (2.5)

xeX
£(x) >0 for any x € X, and »_ &£(x) =

xXeX
where t is an auxiliary variable and £ = ({(x);x € X) is a card(&X')-dimensional vector.

Here Z* denotes either = or 2, depending on the criterion considered.

Remark 2.4. It follows directly from the proofs of Theorems 2.1-2.3 that one can
write for a fixed £ € =T

0\ 12

HBf (X’a )Hz(z)

04 (6,6°) = IR R Al

where B is any set of nonsingular matrices in R™*™ containing M ! (f , 60>. To ensure
the validity of the statement for any £ € =7, the set B = {M‘l ((,BO> (€ E+}, used
also in Theorem 2.2, is the smallest of such sets. In the same way one obtains for
D-optimality, see Theorem 2.1:

o0 (6:6°) = i 3 {ﬂgwm%@mua@’

BeB* | det'/™ (B)

where Bt is any set of positive definite symmetric matrices in R™*™ including
M1 <§ 00> Similarly, in Theorem 2.3 we could minimize over any set P of k-

dimensional orthogonal projectors containing P* (5 00)
. 2
PE (600} = %2%){2 HPf (X’oo)Hz(z)f(X)'
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This follows from the proof of Theorem 2.3, where we can substitute any k-dimensional
orthogonal projector P for pk) (C,OO).

2.3 Algorithm and example

In this section we use the reformulated optimality criteria from Theorems 2.1-2.3 to
compute locally optimal designs. For the maximization of gb(-,@o), i.e. for solving
the LP problem (2.5), we apply a modification of the relaxation method (Shimizu
and Aiyoshi, 1980) as presented in Sect. 9.5.3 of Pronzato and Pazman (2013) and in
Pazman and Pronzato (2014), where its relation to the cutting plane method (Kelley,
1960) is also shown. The presented algorithm is iterative and we use an LP solver at

each iteration.
Algorithm 2.5.
0. i Take the starting design £(0) € R () gt s~ €0 (x)=1and €O (x) >
0 Vxedk.
ii Choose the accuracy € > 0.
iii Set =) =g,
iv Set ¢ =¢O).
v Set 1 =1.
1. Let £ =500y {gt-n},

2. LP problem: find (f (i),t(i)) which maximizes t® under the constraints

t0 >0, D (x)>0 Vxex,
> ¢ x) =1,

xeX

> H(¢,x,0%) 60 (x) >0 veesl,

xeX
3. i Set ¢ = ATgMAX e fer (i)} ) (5,00).
i If () — ¢ (5’,90) <€, return £ = ¢’ as an e-optimal design and stop.
iii Else set i <-4+ 1 and continue from Step 1.

A simple geometric interpretation of the algorithm follows from the fact that
mingeE@) Soxex H ((, X, 90) ¢ (x) is an upper piecewise linear approximation of ¢ («S, 00).

Increasing i, the set 2@ C = becomes larger, and the approximation improves.
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On the other hand, when the number of iteration ¢ is small, the information matrix
M (5 (i),00> associated with the solution of the LP problem in the i-th iteration can be
ill-conditioned or even singular. In such case, there could be difficulties with inverse
matrices when evaluating the function Hp (C,X,OO) or Hy (C,X,BO) in the (i+1)-st
iteration for ¢ = f(i). However, as justified in Remark 2.4, it is possible to use any
symmetric positive definite matrix as a substitute for M (C ,00). Therefore, if the
matrix M (C , 00) is ill-conditioned or singular, we replace it by the matrix M (C , 00) +
B1, where 3 is a small positive number. Note that it is also possible to take =) as a
nonempty set containing s > 1 initial designs. If s or 7 is large, then the solution £ of
the LP problem in the i-th iteration will be more probably associated with a nonsingular
and well-conditioned information matrix, because we expect a better approximation of
the criterion ¢ (-,90) in Step 2 of the algorithm. Note that the problem of a singular
information matrix does not appear in the case of Ej-optimality.

The stopping rule used in the above algorithm follows from the upper and lower
bounds for max¢ez ¢ (5 , 00):

0 (¢6°) < maxo (&,0") <. (2.6)

The first inequality is obvious. Notice that the solution of the LP problem in the i-
th iteration is () = maXeez Ml c=() xex 1 (C,x, 00> ¢ (x), while maxee= ¢ (5, 00) —
maxeez Mingesz Y xex H (C , X, 90) £(x),and =2 =) This yields the second inequality.

More standard stopping rules are based on the equivalence theorem (Kiefer and
Wolfowitz, 1959; Kiefer, 1974). Let esop be a small nonnegative number. An iterative

algorithm will stop if d(§’) < €stop, Where we have

()=

for D-optimality and

i(e)-

for A-optimality, see e.g. Kiefer (1974, 1975). According to Harman (2004), a similar

maxt " (x,0%) 1 (¢',6°) £ (x.60°) - m’

xeX

maxf" (x,0°) M2 (¢,6°) £ (x,0%) —tr [ (¢,6°)] ’ :

stopping rule for Fi-optimality is

i(6)-

which can be used only if g (') < Apr1(€). When g (£') has multiplicity greater than

one, the equivalence theorem could be still based on the directional derivative of ¢, ,

k

{17 (5.0 [V (€.0)])" o (€.0)

xeX i1

Y

which exists due to the concavity of ¢p, (-, 00) but is difficult to compute.
As mentioned in Sect. 9.5.3 in Pronzato and Pazman (2013), the cutting plane

method can lead to instabilities when the number of elements in the design space X is
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large (see Nesterov, 2004; Bonnans et al., 2006). Then the level method (see Nesterov,
2004, Chap. 3.3.2 or Pronzato and Pazman, 2013, Sect. 9.5.3), which employs both
linear and quadratic programming, can be used.

For the time being we are not able to prove the convergence of the presented algo-
rithm, so we have to consider our method as a search method with a reliable stopping
rule (2.6). But it is useful to present the heuristic which is behind this search.

The algorithm solves the maximin problem &* = argmax¢cz mingez @ (¢,€), where
Q((,&) =>xex H (C,X,OO)E(X) is a known “pay-off” function of the vector variables
¢ and £&. We remind here that X' is a finite set, so ¢ and £ are card (X')-dimensional
vectors. Shimizu and Aiyoshi (1980) studied a similar maximin problem, but with
a pay-off function satisfying specific properties. They proved the convergence of a
relaxation procedure to their maximin problem, which leads to Algorithm 2.5 presented
above. Namely, their approach in terms of our problem involves in the i-th iteration
the computation of the “relaxed problem”

max t@  under the inequalities @ ((,ﬁ(i)) > ¢(®) S =0,
t@eR+, () ex

For our “pay-off” function this is an LP problem (see Step 2 of Algorithm 2.5). Shimizu
and Aiyoshi (1980) constructed their set =(i+1) by adding the “worst” ( in each step,
i.e. they chose

Guorst € arg min Q (€,61). (2.7)

We do in fact the same, since, as follows from the proofs of Theorems 2.1-2.3, in our
case Cworst = €. So we do not need to solve the possibly complicated minimization
problem (2.7) and we simply add £@ to 20 to obtain =+,

Unfortunately, some of the assumptions for the convergence of the procedure for-
mulated in Shimizu and Aiyoshi (1980) are not satisfied here. Although the set = is
compact, which is required by Shimizu and Aiyoshi (1980), once the computed ¢@)
belongs to the set =— =T, the expression H (S (@) x, 00) is not defined in the case of D-
or A-optimality, and we have to use a regularization in accordance with Remark 2.4,
see the discussion after Algorithm 2.5. This violates the assumptions of Shimizu and
Aiyoshi (1980). In the case of Ej, optimality, the function Hg, (C ,X, 90) is not continu-
ous in the variable (, which is required for their proof of convergence. This discontinuity
appears when the rank of M (C ,00> changes with a slight modification of (.

In the example below we apply the algorithm to the model which was already
studied in Atkinson et al. (1993), so we were able to check the accordance of our results
with known optimal designs. The computations were performed in Matlab computing

environment and we used the simplex method to solve the LP problems.
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Example 2.6. Consider the nonlinear regression model of Atkinson et al. (1993):
n(x,0) = 01 [exp (—027) —exp (—037)], € R, 0 = (61,05,05) .

We use Algorithm 2.5 to compute locally D- and Ej-optimal designs for the nominal
parameter value 8° = (21.8,0.05884,4.298) " (used in Atkinson et al., 1993). We take
the finite design space X ={0.001,0.002,...,23.999,24.000} consisting of 24,000 points
and € = 1077, The starting design £(©) allocates the mass 1/3 to points = € {0.2,1,23}
and zero mass to x ¢ {0.2,1,23} (see Pazman and Pronzato, 2014, Example 3). The
computed e-optimal designs are given in Table 2.1 and performances of these designs
correspond to Atkinson et al. (1993) (D-optimality) and Pazman and Pronzato (2014)
(E1-optimality). A

) & gb( 2,90) iter. | time d (&)
0.229 1.389 18.417

11.7388 | 46 | 66.52s | 7.42-107°
0.3333 0.3333 0.3333

{0.169 1.394 23.402}

Ey 0.3163 26 | 30.21s | 2.63-107°

0.1993 0.6623 0.1384

Table 2.1: Numerical results in Example 2.6: locally e-optimal designs for D- and Fi-
optimality (column 2) and corresponding criterion values (column 3) rounded to four decimal
digits; number of iterations (column 4) and computational time (column 5) required until
the algorithm stopped; the value of the stopping rule d (£}) based on the equivalence theorem

(column 6).

The long computing times, which depend mainly on the dimension of the design
space X, is a potential weakness of the presented LP method. On the other hand,
one may also use the algorithm several times, starting the computation with a sparse
initial design space X'. After the algorithm has evaluated support points of the optimal
design, one may add some design points adjacent to these support points and repeat the
computation on a modified design space (see Pdzman and Pronzato, 2014, Example 3).
Nevertheless, the LP approach may not be the method of choice for a “simple” problem
such as that in Example 2.6, but it can be useful when requiring optimal designs for

complicated scenarios such as those indicated in the remainder of this section.

2.3.1 Computation of criterion robust design

The criteria of Ej optimality of Harman (2004) play a special role in the experimental

design. They appear in the definition of Schur ordering of designs: we say that the
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design £ is locally not worse than the design ¢ with respect to the Schur ordering of
designs if ¢, (5790) > ¢R, (C, 00) forall k=1,...,m, see e.g. Harman (2008) for some
results on Schur optimal designs.

Another application of the class of Ej, optimality criteria is related to the compu-
tation of “criterion robust” design within the class of orthogonally invariant criteria O
(see Filova and Harman, 2013 for the term criterion robust design). The class O in-
volves such criteria functions ¢ (5 , 00) which are concave and positively homogeneous in
& and, moreover, are orthogonally invariant in the sense that ¢ (5 , 90) =¢ [M (5 , 00)} =
QE[QTM (f ,00) Q] for any orthogonal matrix ). We are interested in computation of

criterion robust design & which is maximin efficient with respect to the class O, i.e.

¢(¢.60%) ]
, 2.8
max,c= ¢ (V, 00) 28)

* .
— argmaximain
et B UE0 [

$(¢,6")
— )
Harman (2004) proved an important simplification in the computation of criterion

where the ratio &) denotes the ¢-efficiency of the design £ at 0.

robust design (2.8), in particular

* .
= argmax min
et & £€Z 1<k<m

[ 6, (£.6°) ]
max,cz Qf, (V, 00) 7

i.e. it is sufficient to consider designs that are maximin efficient in the (finite) class of
all Ep-optimality criteria. But even this problem is computationally difficult, mainly
because the Fi-optimality criteria are not generally differentiable. We showed in Bur-
clova and Pazman (2016a) that we can solve this problem by the LP technique. First,
using Theorem 2.3, we compute Ej (opt,@o) =max,cz ¢F, (V, 90) for all £ (see Algo-

rithm 2.5), and then we can formulate another “infinite-dimensional” LP problem:

(7))
Hp, (¢,x,0°)

5 B (o 6)

¢(x) > tforany ¢ €Z and for every k € {1,...,m},

£(x) > OforanyxeX, and ) &(x)=1.

xekX
In order to compute the criterion robust design, Algorithm 2.5 needs to be modified

in Step 2. Actually, the constraints in the LP problem will be:
tD >0 ¢Dx)>0 VxeaX,
> x)=1,

xeX

Hp, (C’X’H(]) ()

(x)>t% veez®and Vk=1,... m.
xex Ek (01715,90)
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In the paper Burclovd and Pazman (2016a) we illustrated the algorithm on the
quadratic regression model on one-, two-, three- and four-dimensional cube. The Ej-
optimal and criterion robust designs on these models were studied in Harman (2004);
Filova and Harman (2013) analytically or using methods of semidefinite programming
in Filova et al. (2012).

2.3.2 Computation of D-optimal design conditioned by a pre-
scribed level of A-optimality

It is not difficult to see that in the considered LP problems solved in Step 2 of Al-
gorithm 2.5 we can simply include some additional constraints linear in &, say, a cost
constraint Y ycy C(x)&(x) = C, where C'(x) is the cost of an observation at x, and
C' is proportional to the total cost allowed for the whole experiment. What is less
evident is that we can combine optimality criteria. For instance, when we want to
obtain a design which maximizes the D-optimality criterion and retains the value of
A-optimality criterion greater than or equal to some prescribed level a, we have to

solve the “infinite-dimensional” LP problem:

s.t. ZHD((,X,GO)f(X) > tforany (€ =T,
xeX

> Hy (C,x,@o)f(x) > qforany (€ =T,

XEX

£(x) > Oforanyx€ X, and Y &(x)=1.
xeX

This problem can be solved by Algorithm 2.5 with a modification in the constraints of
the LP problem and in the stopping rule. The modified algorithm and an illustrative

example for linear model is presented in Burclovd and Pazman (2016a).

2.4 Reformulation of AVE criteria

The reformulation of expressions in Theorems 2.1-2.3 in terms of AVE optimality

criteria (1.10) was also presented in Burclovd and Pdzman (2016a).

Theorem 2.7. Denote Zg = {£: M (£,0) is nonsingular Y0 € ©}. We can write

[ ¢(6.0)dr (6) = min 3~ Have (. x)§ (%),
Ce= xeX
for any £ € ZF, where Hayg ((,x) = J[g H ((,x,0)dn (0) and =* = Z¢g for D- and A-

optimality, and =* = = for the criteria of Ey-optimality.
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Proof. The design space X is assumed to be finite, hence the summation and the

integration are interchangeable. From Theorems 2.1-2.3 we have for any ¢ € =* and
for any 0 € © that
¢(6.0)< Y H((.x,0)¢(x). (2.9)
xeX
We can write
Loco)an©) < X | [ H(Cx.0)dr(®)]¢(x). (210
xekX

Since the inequality (2.10) holds for every ¢ € Z*, evidently:
/ng 0)dr(6) < min Z [/ H(Cx, O)dﬁ(O)]f(x). (2.11)

The proofs of theorems 2.1-2.3 imply that for any 8 € O the equality in (2.9) is attained
at ¢ =¢, and so we obtain the equality in (2.10). This together with (2.11) proves the

theorem. O

2.5 Bibliographic remarks on LP methods in ex-

perimental design

Since the cutting plane method based on LP is widely used in this thesis to obtain
optimal designs, here we mention some other authors, who used LP for purposes of
experimental design.

Gribik and Kortanek (1977) formulated an alternative to the Kiefer’s equivalence
theorem, so that they obtained conditions of the optimality of a design formulated as
linear functions of this design, and hence they were able to apply LP methods. The
difficulty with designs €@ associated with singular information matrix (mentioned by
Gribik and Kortanek, 1977, p. 245), which we overcome by the use of Remark 2.4, is
solved in their paper differently requiring a solution of a nonlinear convex programming
problem at each iteration. Moreover, their method requires the existence of a gradient
of the considered criterion, so the Ej-criterion can not be handled. However, the
advantage of the method of Gribik and Kortanek (1977) is the existence of a proof of
convergence, obtained under some assumptions.

A possibility of an alternative approach to the results of Theorems 2.1-2.3 is in-
dicated in Sect. 9.5.3 of Pronzato and Pazman (2013). The authors evaluated the
subgradient of the considered criterion and then they applied the method of cutting
planes of Kelley (1960) (see Sect. 1.4), which can be used for any concave criterion.
Especially for the non-differentiable Ej. criteria with k& > 2, the approach presented
in Theorem 2.3 seems to be more attractive than expressing the corresponding sub-

gradients. As already mentioned in Sect. 2.1, the authors also used an alternative
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formulation of the criteria of E-, c-, and G-optimality, which allowed them to obtain
optimal designs via LP.

Harman and Jurik (2008) consider only c-optimal designs and they show that the
famous Elfving’s theorem can be interpreted as a formulation of an LP problem. This

approach is quite different from ours.

2.6 Conclusions to this chapter

In Theorems 2.1-2.3 we demonstrate on the D-, A-, and Ej-optimality criteria that, by
matrix manipulations, we can obtain in a straightforward way expressions which allow
us to formulate the optimal design problem as an “infinite-dimensional” LP problem.
The concavity and the positive homogeneity of these criteria are then evident. For a
finite design space, the application of the relaxation method then leads not only to
a simple algorithm for optimum design, but also to stopping rules different from the
standard Kiefer’s equivalence theorem. Remark 2.4 is also important as it justifies
regularization steps in the algorithm.

Although the literature devoted to the optimal experimental design offers a lot of
methods and algorithms to obtain optimal designs which maximize standard criteria
like D- or A-optimality (see e.g. Chap. 9 of Pronzato and Pazman, 2013 for a review of
some methods), the methods described in this chapter may be very useful to optimize
some more complicated criteria. For instance to compute the criterion robust design
of Harman (2004) as presented in Sect. 2.3.1 or the optimization with respect to one
criterion under a bound constraint on the value of another criterion, see Sect. 2.3.2.
For more detailed results and examples we refer the reader to our paper Burclova and
Pazman (2016a).

We used the method of cutting planes also to compute the CVaR optimal designs
in nonlinear models, see Chap. 3, and to maximize the extended optimality criteria
in generalized regression models, where we used the same algorithm as suggested by
Pazman and Pronzato (2014), see Chap. 4.
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Chapter 3

Experimental design based on some

ideas from risk theory

A special attention in this chapter is paid to the criterion based on the “Conditional
Value at Risk” (CVaR, see Sect. 3.3.1). Conditional Value at Risk, also called some-
times “super-quantile”, and “Value at Risk” (VaR, see Sect. 3.3.1), or simply “quantile”,
are the terms commonly used in the risk theory (finance and actuarial sciences), but
they can be applied also in the industry and engineering, see e.g. Guerra (2016).

The Value at Risk and Conditional Value at Risk are in the literature (e.g. Pflug,
2000; Rockafellar and Uryasev, 2000, 2002) considered as functions of a random vari-
able Y which measures the random loss associated with an investor decision, and are
supposed to be minimized. Unless indicated otherwise, when we will refer to these
papers we will use the notation common in experimental design, i.e. the random loss
corresponds to the criterion ¢ (£,0) and is to be maximized.

Generally, the local, AVE, and maximin criteria from Def. 1.3 have their pros and
cons, for a recent exposition we refer to Sects. 8.1, 8.2, and 8.4 in Pronzato and Pazman
(2013). Due to some undesirable properties of above-mentioned criteria, PAzman and
Pronzato (2007) suggested to use the quantile criterion for a prescribed value a €
0,1]

L (&) =max{teR: Pr¢p(£,0) >t] >1—a}. (3.1)

The quantile criterion is closely related to VaR and has many nice properties,
see e.g. Pazman and Pronzato (2007) or Sect. 8.4 in Pronzato and Pazman (2013).
But, generally, the quantile criterion is neither concave nor convex, which makes the
computation of an optimal design very complicated.

Valenzuela et al. (2015) introduced another (convex) criterion based on CVaR,
which has very similar properties as the quantile criterion. However, in the computa-

tions Valenzuela et al. (2015) used a formula developed by Rockafellar and Uryasev

24



(2000), which can be used (in their settings) only when ¢(,8) is a continuous random
variable. It is obvious that the countability or finiteness of the parametric space implies
that ¢(£,0) is a discrete random variable. Rockafellar and Uryasev (2002) extended
the results of Rockafellar and Uryasev (2000) also for noncontinuous distributions us-
ing different definition of CVaR. So in the thesis we rely on papers Rockafellar and
Uryasev (2002) and Pflug (2000), which help us to interpret and analyse the CVaR
criterion for discrete ¢(&,8).

Further technical problem is our preference for the concave definition of the CVaR-
criterion to be consistent with the other parts of this thesis. This is attained by a
simple reformulation of CVaR.

After defining some basic terms in Sect. 3.1, in Sect. 3.2 we define the criterion
related to CVaR following Pflug (2000). The criterion is concave when ¢ (£, 0) is concave
in € regardless of continuity of its cdf. The analogies of statements in this section can be
found in the literature devoted to the risk theory (e.g. Rockafellar and Uryasev, 2000;
Pflug, 2000; Rockafellar and Uryasev, 2002), but here we formulate also some proofs
for readers convenience. Section 3.3 sheds some light on the interpretation of our quite
abstract CVaR-~criterion and is inspired by the paper Rockafellar and Uryasev (2002).
In Sect. 3.4 we show the relation of the CVaR-criterion to the AVE, maximin and
quantile criteria and we formulate the equivalence theorem. In Sect. 3.5 we implement
the cutting plane method to maximize the CVaR-criterion. The algorithm is tested on

the examples in Sect. 3.6. Section 3.7 concludes this chapter.

3.1 Basic definitions

Let 7 (0) be the prior distribution of unknown parameter 6 on the parametric space
©. In this sense, 0 is a random variable or a random vector taking values from the
space ©. Consequently, the information matrix M (£,0) associated with the design &
and the criterion value ¢ (¢, 60) are random.

For purposes of this chapter, let us define the basic terms.

Definition 3.1. The cumulative distribution function (cdf) of a random variable Y is
defined as
Fy (y) = Pr(Y <y)€[0,1].

For a € [0,1] we define the a-quantile (sometimes referred as a-left-quantile) of Y as

av (o) —inf{y € R: Fy (y) > a} (3.2)
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and the a-right-quantile of Y as

Rgy (o) =sup{yeR: Pr(Y >y)>1—a}

(3.3)
=sup{yeR: Pr(Y <y) <a}.

For the term right-quantile and for more properties of quantiles we refer to Hosseini
(2010, 2009).

Note that for a € (0,1) one may write minimum instead of infimum in (3.2) be-
cause the set {y € R: Fy (y) > a} is the interval bounded from below including the
endpoint, since F'(y) is non-decreasing and right-continuous function. Similarly, the set
{yeR:Pr(Y>y)>1—a}={yeR: Pr(Y <y) <a} is the interval bounded from
above including the endpoint because the function Pr(Y < y) is non-decreasing and

left-continuous and we can write maximum instead of supremum in (3.3).
Definition 3.2. A random variable Y is:

e discrete when it is taking finitely or countably many values and Py is its prob-
ability mass function (pmf) Py (B) = Pr {Y‘l (B)} for any Borel set B,

e continuous when it is taking uncountably many values and its cdf Fy (y) satisfies
Fy (y) = [Y fy (t)dt, where the function fy () is the probability density function
(pdf) of the random variable Y.

Note that when the random vector @ has a discrete distribution, then also the
criterion value ¢ (&, 0) is distributed discretely.

When Fy (y) takes the value a € (0,1] if and only if y is from Z, some interval in R,
then the a-left-quantile corresponds to the left endpoint of Z and the a-right-quantile
corresponds to the right endpoint of Z. This property is illustrated in the next example.

Example 3.3. Consider a random variable Y ~ Bin(2,1/3) taking values 0,1,2. Its
cdf (continuous from the right) and the function Pr (Y > y) (continuous from the left)
are displayed in Figure 3.1. For a = 0.6 we obtain gy (o) = Rqy (o) = 1, but for
a=4/9 = Fy (0) we have ¢y () =0 and Rqy (o) = 1. A

One obtains for any random variable Y that

—q¢y(a)=—=inf{y: Pr(-Y <y)>a}l=sup{—y: Pr(Y > —y) >a} =
=sup{y: Pr(Y >y)>a}=Rgy (1—«). (3.4)

Since the functions y — Pr (Y <y) and y+— Fy (y) = Pr (Y <y) are non-decreasing
functions, the first is continuous from the left, the second from the right, the set
Z={y: Pr(Y <y)<a} forms a right-closed interval (half-line (—oo, Rqy(«)]), and
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Figure 3.1: Example 3.3: The relation of ¢y () to Rqy (o) when Y ~ Bin(2,1/3).

the set 7' = {y : Pr(Y <y) > a} forms a left-bounded interval (half-line [Rqy (), o0)
or (Rgy(«),00)) with the same endpoint Rqy («) € Z. One sees that

Rgy (o) =supy = inf y=inf{y e R: Fy (y) > a}. (3.5)
yel yer’

This corresponds to the definition of right-quantile in Hosseini (2010) and Rockafellar
and Uryasev (2002). It follows from (3.2) and (3.5) that

gy (o) =inf{y: Fy (y) > a} <inf{y: Fy (y) > a} = Rgy (a). (3.6)

3.2 CVaR-criterion for experimental design purposes

Definition 3.4. We define the CVaR optimality criterion for a € (0,1] as

D, (&) Emax{cjt;E[min{O,qb(f,B)—c}]}. (3.7)

ceR
We used the analogous definition of CVaR as Pflug (2000), but the formula was
originally derived in Rockafellar and Uryasev (2000). The relation of the criterion
to the theory of risk is pointed out in Sect. 3.3. Below we show some of its useful

properties.

3.2.1 Concavity of the CVaR-criterion

For the sake of completeness we give the proof of the concavity of the CVaR-criterion
®,. Our proofs are based on the proofs from the theory risk, where the convexity of

similar functions is proved.
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We introduce the following notation:

wa(6,0) = e+~ Blmin{0,6(6,0) ~c}],

1 (3.8)
Way (¢) = c+—E[min{0,Y —c}],
!
where Y is any random variable. Then one can write
o (§) = maxwa (&, ¢) = maxw, ¢(c ) (). (3.9)

Lemma 3.5. Let the criterion ¢ (&,0) be concave in & for any @ € © and let Y be a

random variable. Then for a given o € (0,1]

a) the function wqy (c) = c+2Emin{0,Y —c}] is concave in ¢ for any Y, i.e. for
any X € (0,1) and for any c1,c2 € R we have wyy [Aci + (1 —X) 2] > Awq,y (1) +
(1 - )‘) Wa,Y (02)7

b) the function wq (€,¢) = c+ = E[min{0,¢(£,0) —c}] is concave in (¢,c), i.e. for
any A€ (0,1), &1,& € Z and c1,c2 € R we have wq [AN1 4 (1 — X) 2, Aer + (1= N) ¢2]
> Mg (§1,01) + (1= A wa (§2,¢2).

Proof. Notice that we postponed analogically to proofs of the convexity of functions
similar to wq y (€, ¢) resp. wq(§,c) which are given in Proposition 2(iv) of Pflug (2000),
Theorem 2 of Rockafellar and Uryasev (2000), Theorem 10 and Corollary 11 of Rock-
afellar and Uryasev (2002).

a) The function ¢ — min{0,z — ¢} is for any z concave in ¢, since the minimum of

two concave functions is concave. Hence for any A € (0,1)
Wa,y [Act + (1 —N)eo]
=1+ (1—=XN)ea+ iE min{0,Y — Ac; — (1= N)ea}]
> Aer+ (1= XN)ea+ ;E Amin{0,Y —c1}+ (1= A) min{0,Y — ca}]
= Mgy (c1) + (1= XNwq v (c2).

b) The functions (£,¢) — 0 and (&,¢) — ¢(£,0) — ¢ are concave in (£,c) and hence
(&,¢) — min{0,p(&,0) — ¢} is concave. Proceeding similarly as in the case a) one

obtains that the function wy (€, ¢) is concave in (§,¢). O

Theorem 3.6. When ¢ (£,0) is concave in & for any 6 € O, then for given o € (0,1]

the criterion @, (§) is concave in .
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Proof. The proof is according to Proposition 2(iv) in Pflug (2000), who proved the
convexity of a function similar to ®,(£). Using the notation from (3.8) we have @, (§) =

max.cgr Wy (§,¢). Let us denote
€1 € argMaxwa (€1,0),
¢z € argmaxwa (£2,¢).
where &1 and & are from =. Then for every A € (0,1)
Dy [N+ (1—=N) &) = max wo A1+ (1 =) &, c] > wa (A1 + (1= X) &2, A1 + (1= N) 2],

and using the concavity of wq (+,-) (see Lemma 3.5b) we have

Do [A+ (1 =)&) > Awa (&1, ¢1) + (1 = A wa (§2,c2) = AP (§1) + (1 = X) Do (&2).

3.2.2 Conditions for finiteness of the CVaR-criterion

Lemma 3.7. For any given o € (0,1] the function wqy (c) is bounded from above by
E(Y). Moreover, max.cg wa,y (¢) > —2E(|Y]).

Proof. The function z — min {0,z — c} is concave and hence it follows from the Jensen’s
inequality (see e.g. Feller, 1971, Eq. 8.6 or Billingsley, 1995, Eq. 5.33) that if E(Y)

exists, then
1
way (c) =c+ &E (min{0,Y —c})
1 it E(Y)>c
<c+—min{0,E(Y)—c} =
o c+i[BE(Y)—d HE(Y)<ec,

max ¢ it E(Y) > e,

LIE(Y)— if £(Y
c;ér(l?ﬁic”a[ (Y)—c ifE(Y)<c

IN
|

On the other hand,

1 1
meﬁ(way( c) > way (0)=—Emin{0,Y})=——E(|Y||Y <0)Pr(Y <0) >
ce a a

1 1 1
> —E(Y]|Y <0)Pr(Y <0)——E(]Y||Y >0)Pr(Y >0)=——E(|Y]).
(6] (6] (6]
O

According to the previous lemma, the finiteness of the criterion @, (§) =
MaXccR Wq,¢(¢,0) (¢) s ensured when the random variable [Y| = |¢ (£, 0)] has finite ex-

pectation:
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Consequence 3.8. When E[|¢(,0)|] < oo for £ € =, then |D, ()] < oo for any a €
(0,1].

3.2.3 Continuity of the function w, (§,c) in the formulation of

the CVaR-criterion in (3.9)

Lemma 3.9. Consider the random variable Y with E(|Y]) < co. Then the function
Wy (¢) = c+2E(min{0,Y —c}) is continuous in c on every closed bounded subset of
R. Moreover, when X is finite and ¢ (€, 0) is concave function of & with E (|¢(&,0)]) <
oo for every & € Z, then the function wq (§,¢) = c+ éE(min{O,gb({,O) —c}) is contin-

uous in (&,¢) € 2 x C, where C is an arbitrary closed bounded subset of R.

Proof. The function wg, y (c) is concave (Lemma 3.5a) and, moreover, it is finite for
any ¢ € R because E(|Y|) < oo (Lemma 3.7). As a consequence of Theorem 35.1
in Rockafellar (1970), the concavity and finiteness of wqy (¢) imply that it is also
continuous in ¢ for any a € (0,1]. The continuity of wq, (€, ¢) is proved in the same way

using Lemma 3.5b and Consequence 3.8. O

Note that the continuity in c is also mentioned in Theorem 10 of Rockafellar and
Uryasev (2002).

Example 3.3. (continued) The continuity of function wqy (c) for Y ~ Bin(2,1/3) is
illustrated in Figure 3.2a. One sees that in the case a = 0.6, the maximum of w, y (c)
is reached at ¢ =1, on the other hand, for « =4/9 = Fy (0) is the maximum attained

at any ¢ € [0,1] (the location of the maximum is justified in Theorem 3.10).

3.2.4 Optimal c in the definition of CVaR-criterion ®, in (3.7)

Theorem 3.10. Let Y be any random wvariable. Then [qy (o), Rgy (a)] =

argmax.cr Wa,y (¢), where wy,y (¢) =c+ 2 E(min{0,Y —c}) and a € (0,1] is given.

Proof. In Theorem 10 of Rockafellar and Uryasev (2002) (see also Proposition 1 of
Pflug (2000)) is proved that

. 1 .
-y (1—a),Rq_y (1 —a)] = arg Icrélﬂlgc+ aE[maX{O, -Y —c}| =arg min —Wa,y (—C).
If ¢* € argmax cr Wy y (¢), then ¢* € argmin.cg —wq y (c) and hence
—c* e argnéilg —Wa,y(—¢) =[g-y (1l — ), Rg_y (1 —a)].
C

It follows that ¢* € [-Rg_y (1 —a),—q¢_y(1 — )] = [gv(«), Rgy(a)], where we
used (3.4). O
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Notice that when o =1, then Rgy(«) = Rgy (1) = oo and hence the maximum of
w1y (c) is reached in the half-open interval [gy (1), Rgy (1)). If, moreover, gy (1) = oo
for some random variable Y (e.g. Y ~ A (0,1)), the maximum of w; y (c) is reached
for ¢ — oo (and supremum is more appropriate). But, according to Lemma 3.7, the
value sup.wy y (c) stays finite when F (|Y]) < oo and, in addition, sup. w1 y(c) = E(Y)

(see also Theorem 3.19a).

Consequence 3.11. Alternatively, the CVaR~criterion (3.7) can be defined as follows
1
Oy (&) =c"+ &E min {0, ¢ (£,0) — c*}],

where ¢* is any point from {q¢(€79) (@), Raye.0) (a)].

In the proofs of this chapter we will often use the Law of total expectation (see
e.g. Billingsley, 1995, Eq. 34.6): E(min{Y —c,0}) =E(Y —c|Y <c)Pr(Y <c¢) =
E(Y|Y <c¢)Pr(Y <c)—cPr(Y <c) (or analogically with the strict inequalities), and
hence (supposing that the probabilities in the denominators are positive)

min{Y —¢,0})
Pr(Y <c¢)

E (min{Y —¢,0})
Pr(Y <c)

E
EY|Y<¢= ( +cand E(Y |Y <¢) =

(3.10)
Further, one obtains for ¢* € {q(b(g’g) (@), Rag(e.0) (a)}

vie0) = {1- UGS plo) (e o) <oy AEOISE
:C*{l_Pr[szﬁ(é,ae) <¢]}+E[¢<570)|¢(5’0) < Pr[¢(g;:9) <)

(3.11)

3.2.5 The dependence of the CVaR-criterion ¢, on the prob-
ability level «

Lemma 3.12. The function max.cgrwq,y (¢) is non-decreasing in o € (0,1] for any

random variable Y .

Proof. Let 1 > a > > 0. One sees from non-decreasing tendency of Fy, from (3.5)

and from (3.6) that ¢y (5) < Rgy () = inf{y: Fy (y) > 8} < inf{y: Fy (y) > a} =
qy (o) < Rgy (o), and hence, following Theorem 3.10, ¢, > cg, for arbitrarily cho-

Sen Cq € argmaX.cr Wa,y (¢), cg € argmax.cr wg,y (¢). Then using this we obtain that
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Figure 3.2: Example 3.3: The illustration of Lemma 3.9 and Lemma 3.12.

the difference

1 .
ceER ceR I} a EE [mln {O’ Y- CﬁH

> cq—C3+ ;E [min{O,Y —Ca}+ max{O,cB - YH

1
maxwe,y () —maxwgy (¢) = co —cg+—E[min{0,Y —cy }]

1
> cq—cg+—0Pr[Y >cq
«
1
+—E[Y—ca—|—cﬂ—Y\Y<ca} PrlY <4
a

1
> Coq—C3— o (ca—65> PrlY < Rgy (a)]

ZCQ—C/B—;(CQ—05>&:O

is nonnegative, and the criterion ®,, (£) is non-decreasing function of parameter ov. [

Example 3.3. (continued) The non-decreasing tendency of function a+— w, y (c) for
Y ~ Bin(2,1/3) is illustrated in Figure 3.2b.

Consequence 3.13. The criterion @, (§) is non-decreasing in a € (0, 1] for any given &.

3.3 Two easily interpreted criteria as lower and up-

per bound of the CVaR-criterion

If ¢(£,0) is a discrete random variable, one could restrict his attention only to “appro-

priate alphas”, such that for some value t,¢ € R Fye.0) (ta,g) = . Then

32



Fye.0) {ng(&g) (a)} = « and according to (3.11)

Fye.0) |45(c.0) ()] }

«

Do (€) = qp(¢.0) (@) {1 -

Fye.0) |40(c.0) ()]
(e}

+E[0(6,0) ] 6(6,0) < ay(e ) ()]
=E[6(£,0)|0(£.0) < gy ()]

The CVaR-criterion can be then interpreted straightforwardly. But when applying
the criterion @, (§) in experimental design, the set of “appropriate alphas” may change
with different designs &. So, in design problems, the restriction to “appropriate alphas”
is not possible and for these reasons we introduce further optimality criteria based on
the risk theory, which, as we know, were not analysed for the purposes of experimental
design, but they may help us to interpret and understand the criterion given in (3.7)

in terms of conditional expectation.

3.3.1 Formulation of some optimality criteria based on the
risk theory
Let Y be a random variable (denoting for instance the loss associated with an invest-

ment possibility). In papers related to the risk theory, the following variables were

considered and analysed:

VaRg (Y) =min{y : Fy (y) > 5} =qv (B) g € [0,1] (Value at Risk),
CVaRg(Y) = Hélﬂg lc—{— 1_155] (max {0,Y — c})] p €10,1) (Conditional Value at Risk),
CVaRf (Y)=E[Y|Y > VaRg (V)] B €[0,1] (Upper CVaR),

CVaRj (Y)=E [V |Y > VaRg (V)] B €[0,1] (Lower CVaR),

see Rockafellar and Uryasev (2000, 2002); Pflug (2000) for the definition of VaR, Pflug
(2000) for this definition of CVaR and Rockafellar and Uryasev (2002) for CVaR™ and
CVaR™.

Since Y describes the possible loss, the aim of the risk theory is to minimize VaR,
CVaR, CVaR™, or CVaR™ by proper choice of the investment strategy. For the pur-
poses of experimental design, we have to take instead of Y the expression —¢ (§,6) and
maximize the negatives of VaRg[—¢(£,0)], CVaRg[—¢(£,0)], CVaR%r [—¢(£,0)] and
CVaRj; [~6/(€.0))
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One can obtain

ViR o€ 0=~ mip et Lm0, -0 (6.0) -y}
_ %{_c-lfﬁ [max{o,—qs(f,e)—cﬂ}
e Bl 0,060 401
= et Bl (0.0(6.6) - ol | = 015(6)

So for a« = 1— 3 the last expression equals to the CVaR-criterion @, (§) defined in (3.7).
In the risk theory, the usual choices for § are 0.9, 0.95 or 0.99 (c.f. e.g. Rockafellar
and Uryasev, 2000), but here we are not limited only to these special choices for av and
we will consider different probability levels, e.g. « = 0.5 to obtain an alternative for
median criterion, which can be interesting in the applications.

The quantile criterion from (3.1) can be interpreted in the terms of VaR

—VaR[~6(£,0)] = —q_y(¢0) (8) = Rase.0) (1— B) = BF_4 ()
(see Eq. (3.4)). Similarly,

—CVaR | [~ (€,0)] = —E [~ (£.0) | —6(£.0) > VaRs (—6(£,6))]
= E[¢(£,0) | 0(£,0) < —VaRg (6 (,6))]
= B[6(6.0) 6(£.0) < 0 4(6)].
and we define
By 4(6) = E[6(5,0)]6(¢,0) < DF 4 (5)]
and
O 4 (&) =E[6(5,0)]6(¢,0) <P (8]
(the notation is summarized below in Def. 3.14). Notice that @1~ 5(¢) is not well-
defined for such 8 that Pr {(ﬁ (£,0) < @?_ﬁ (5)} =0, i.e. when CID?_ﬁ (&) corresponds to
the smallest possible value of the random variable ¢ (&,8).

We put o =1— 8 and from now we will focus on criteria which are supposed to be

maximized.

Definition 3.14. Let ¢ (£,0) be the optimality criterion dependent on unknown pa-
rameter 6. Then for « € (0,1] we define the following optimality criteria:
O (§) =max{t € R: Pr(p(£,0) > 1] > 1—a} = Ry g) (a),
1
@ (€) = max {c+ ~ Efmin {06 (¢,6) - e} |,
C

OL () =E|0(£0)|0(£,0) <2 (9)].
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For a such that Pr [gb (£,0) < D9 (f)] > (0 we also define the criterion

P, (€)= E[0(£,0) | 6(6,0) < 2 ()]

Note that we have already defined the criterion ®,(¢) in Def. 3.4 and the criterion
dQ(&) in (3.1).

3.3.2 The comparison of the criteria based on the risk theory

According to (3.6) and Consequence 3.11, it is easy to see that for any ¢ € = and for
arbitrarily chosen « € (0,1]

Y (€) = Ray(c.0) () = qy(e.0) () = P (€). (3.12)

Further bounds on @ (£) are provided in the next theorem, see also Proposition 5 of

Rockafellar and Uryasev (2002) for the analogous statement.

Theorem 3.15. Let the level o € (0,1] be given. When ® (€) is well-defined, i.e.
when Pr [gb (£,0) < Y (§)} > 0, then for any such &

D9 (£) > DL (£) > By (€) > D (€),

moreover, if there is a point t, ¢ such that Pr [(b (€,0) > ta’£/:| =1—a for some ¢,
then @ (£) = @, (¢).
If ® (&) is not defined, i.e. when Pr {(]5 (£,0) < DY (f)} =0, then for any such &

9 () = Go(e.0) (@) = OF (£) = P (€).

Proof. The inequalities ®@ (&) > &1 (£) and OF (€) > & (¢) (if B (€) is well-defined)
are obvious from Def. 3.14, hence, first we shall prove &} (§) > @, (£) and @, (¢)
(&) (if © (€) is well-defined). Using the fact that Pr|(¢,6) < Rgy(e.g) ()]
Pr {gb(f,@) < Q4(¢.0) (a)} > a and according to Consequence 3.11 and from (3.10), we

have

>
>

L (€)= E[6(6.0)] 6(¢.0) < Rayep (o)
_ B[min{0,0(¢,6) — Raye ) ()]
Pr[(6.6) < Rag(e) (o)

1
>~ E[min{0,0(¢,8) ~ Rag(e0) (@) }] + Ragie) (@) = Ta (),

+ Ryy(e 0 ()

since the last expectation is not positive.
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Similarly, using that 0 < Pr {qb (€,0) < Rayc.0) (a)} < «a and (3.10), we obtain

@, (6) = E[6(6,6) | (6.6) < Rayieo) ()]
_ E {min {0, ¢ (§,0) — Ryy(c o) (a)H
Pr|6(€.0) < Ray(e) ()]

< B [min{0,6(6.6)~ Ragieo) ()}] + Rapieo () =2a(6),  (3.13)

+ Rqg(e 0y (@)

and the first part of the theorem is proved. Moreover, the existence of the point £, ¢
implies that Pr [¢ (€,0) < Rq¢(§/’9)(a)} = a and we obtain an equality sign in (3.13)
for £ =¢'.

Now let us assume that @ (§) is not defined, i.e. Pr [gzﬁ (€,0) < Ry c.0) (oz)} =0.
From (3.11) it follows that

Pr [¢ (§,0) < Rayc.0) (04)} }

«

Do () = Rag(e,0) (@) {1 -

Pr {fb (€,0) < Rqy(e.) (a)}

+E[0(6,6) ] 6(6,0) < Rayeo) (0)]
Pr[6(6,8) = Raye o) ()] }

(07

= Rqg(c.0) (@) {1 -

Pr [¢> (£:0) = Ryy(c p) (O‘)}

+E [qb (€,0) | 0(€,0) = Rag(e 0 (0‘)}
= chb(ﬁﬂ) (Ck) = (I)g (g) :

Hence, from previous considerations we have ®% (¢) > ®F (£) > @, (&) = @Y (€) and,
in addition, (3.12) implies ®¢ (£) > g(e.0) (@) > Do (§) = ®Q (&) which proves the last

«

part of the theorem. O

We further refer the reader to Rockafellar and Uryasev (2002), who looked at jumps
in the distribution function of ¢ (&,8), for the proofs and for comprehensive and more
precise results in the risk theory.

We remind here that, generally, ®% (¢), ®F (¢) and @ (¢) are not concave in &,
hence they are not easily optimized and we used them only to demonstrate the prop-
erties of the criterion @, (§). In general, the CVaR~criterion ®, can be considered as a
compromise criterion between ®} (£) and @, (£), which are nicely interpreted via the

conditional expectation of ¢ (¢,8).

Example 3.16. Consider the nonlinear regression model

n(z,0)= HleQQI
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with @ = (61,65)" and = € {—1,1}. The local information matrix associated with the

-1 1
design§:{(1 ) },86[0,1],15
—s) s
6292 616292 e—292 —916_292
M (,0)=s (91e292 g6, +(1—ys) g e ) (3.14)

We suppose that the parameter @ has a discrete prior distribution: #; and 69 are
independent random variables, both distributed uniformly over given finite set, #; over
{0.2,0.4,0.6,0.8,1} and 65 over {—0.4,—0.2,0.2,0.4,1}. Hence, W(QO) = 1/25 for any
0° e {0.2,0.4,0.6,0.8,1} x {—0.4,—0.2,0.2,0.4,1} = ©. We consider the criteria of D-,
A-, and E-optimality, in each case ¢ (,0) is a discrete random variable.

In Figure 3.3 are displayed the graphs of ®%(¢), ®F (£), &, (€) and @7 (€) as
functions of s to illustrate the properties formulated in Theorem 3.15 and the missing
concavity of ®% (¢), ®F (£), and @ (€).

The determinant of the information matrix M (£,0) in (3.14) does not depend on 65.
Hence the D-optimality criterion attains for given & only five possible values, each with
probability 1/5, and for e < 1/5 the criterion value ®% (€) corresponds to the minimum
of these five values. This implies that for a < 1/5 the criterion @, () is not defined and
according to Theorem 3.15, % (£) = dF (£) = D, (€) as seen in Figure 3.3a. For a>1/5
the criteria follow the property ®% (&) > ®F (€) > &, (€) > @7 (€), see Figure 3.3b.

For special choices of « such that for some ¢, € R Pr {qb (£,0) < ta,d =« (see
Figures 3.3d and 3.3f), the criteria ® (§) and @, (§) are equal at £, which is also
proved in Theorem 3.15.

Figure 3.4 displays the ¢g(&,0)-criterion values for all 25 parameters in the para-
metric space ©. One sees that the criterion values for two (or more) different parameters
6 may coincide at some points s’. The graph of function ®% (¢) contains some kinks,
which appear at such points s’, as seen in Figure 3.4 on the right hand side. More-
over, at these kink points the value of ® (£) can be significantly less compared to the
neighbouring points (because less parameters satisfy the property ¢ (&,0) < ®% (¢,9))
or, on the other hand, ®} (£) can be significantly greater (because more parameters
satisfy the property ¢ (&,0) < ®%Q(¢,0)). This justifies the existence of isolated points
which can be seen in Figures 3.3¢—3.3f at s =0.5. The isolated points appear with every
kink, which, unfortunately, can not be seen in the figures due to the computational

restrictions associated with displaying graphs of discontinuous functions. A
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Figure 3.3: Example 3.16: The graphs of ®% (£), & (£), @, (€) and & (€).
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Figure 3.4: Example 3.16: The graphs of ¢ (£,0) for each € in © (left-hand side). On the
right-hand side is the enlarged part of the same figure with displayed values of the quantile
criterion @81 &).

3.3.3 The CVaR-criterion in the case of continuous random
variable ¢ (£,0)

Theorem 3.17. Assume that for £ € = is ¢(£,0) a continuously distributed random
variable with a cdf Fy gy and a pdf fo¢ ). The level a € (0,1] is given. Then

Q
B (O =0a(© =27 O = [ thye0 (519

«

Proof. The proof follows the lines of the proof of Theorem 1 in Rockafellar and Urya-
Q

sev (2000). We have only to prove @, (§) = éf?&(g) tfg(c0) (t)dt, because from the

definitions of ®} and @ it is obvious that ®7 (£) = @ (£) and Theorem 3.15 im-

plies @ (&) = @, (€) = @, (¢). From Consequence 3.11 and from the definition of the
quantile criterion ®% (¢) in (3.1) it follows that

1 [Rage0) ()
@0 (§) = Rayeo) () +— [ [

o J—o0

t— Rqy¢.0) (a)] foeo) () dt
1 23 1
= Raye, 0) (@) + / _ toeo) (Ddt = —Rage) () Foeo) [Raoco) (@)
- / e (0t

]

Example 3.18. Consider the nonlinear regression model 7(z,0) = e=*? where z > 0

and the one-dimensional model parameter # has uniform prior on the closed interval
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[Omin, Omax] With 0 < Opin < Omax. The elementary information matrix is M (z,0) =
2220 In the example we restrict our attention to one-point designs, i.e. the exper-
iment will consist of one single measurement in z > 0.

First, we considered the D-optimality criterion ¢p(z,6) = det[M(z,0)] = 2229
The AVE-optimality give us the optimal z as the solution of the following optimization
problem

$(6_21‘9min _ e_zl’gmax )

* —
Phvp = arg

emax
/0 7¢D(x’ 9) df = arg max

min gmax - emin z:z>0 2(‘9max - 9min> ’

and, on the other hand, the maximin criterion leads to an optimal measurement 7},

which does not depend on Oyjn:
‘/E* . — L
min ~— ?
emax

(see Pronzato and Pazman, 2013, Examples 8.2 and 8.5). Direct calculations give

In( 4%
that Iy 2.0)(y) =1—Fp (gi)] and it follows that ®@(z) = z2e~ 22 [(1=)Omaxtabmin] |

which is maximized at
x* = 1 .
@ (1 - a)emax + almin
The random variable ¢p(z,0) has continuous distribution with density f4, (2.0)(y) =

S S
DT (A~ and hence

var = arg max Elop(z,0) | ¢p(x,0) < 0 ()]

1 29()
= arg max f/x YS o1 (2.0) (Y)Y

z:x>0 ¢ Jx2e—270max
T {e—2x[(1—a)9rnax+a9min} _ e—2$9max}

—are A% 20((Omax — Omin)

is the value which maximizes the CVaR criterion ®,(z).
The criterion values ®pin(2), Po (), L (2), and ®ayg(z) are for Opin = 1/2, Opax =
7/2, a =0.45 and x corresponding to the quantile-optimal single-point design, i.e.

depicted in Figure 3.5 on the left hand side. The displayed value

_ 1
T = 0557/240451/2°
®pin () is the smallest possible value of the random variable ¢p(z,0). The area under

the graph of pdf f;  (, ¢) between ®piy () and ®Q(x) equals a (the gray area in the fig-
ure). In the case of continuous random variable, the CVaR criterion ®,(x) corresponds
to the expectation of values between @i, (x) and ®Q(x). Hence, by maximizing the
quantile criterion we neglect the values of ¢p(x,0) which are smaller or larger than
the quantile, while by maximizing the CVaR criterion we neglect only the values larger
than the corresponding quantile.

In Figure 3.5 on the right hand side is illustrated the situation for uniform prior
distribution on finite © = {0.5,1.25,2,2.75,3.5}. In this case, the random variable
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¢p(x,0) is discrete and takes five possible values, each with probability 0.2. One
sees that Pr{¢p(z,0) < ®Q(2)] = 0.4 < a but Pr[pp(x,0) < ®Y(x)] = 0.6 >  and the

criteria @ (), @ (x) and @, (r) are no more equal.

o ) SRR o
N + P(X)=; (X)=5 (x o | - oux)
- dX(x) N g
a o q)u(x)
Z o - Dpve(x) ot - 0%(x)
T ™M © ® ( )
<= = * ®avelX
< X O
N~ ~ QN
& o | & o
5 o ©
% z
Pr(go(x, 8) < ®3(x))=a Sl
(@R -
A o
e T - T e T T T ; T .‘ T T T
0.02 0.06 0.10 0.14 0.02 0.06 0.10 0.14
t t

Figure 3.5: Example 3.18: The density (# uniformly distributed on © = [1/2,7/2]) and pmf (¢
uniformly distributed on © = {0.5,1.25,2,2.75,3.5}) of ¢p (x,0) for x =

corresponding values of some criteria depicted.

1 .
0557/ 04512 With

Now consider the D-optimality criterion ¢ps(z,0) = Indet [M (z,0)] with 6 uni-
formly distributed over [Opin,Omax]. The random variable ¢p.(x,0) is then uniformly
distributed on the interval [2In(z) — 220mayx, 2In(z) — 2260min] and &Y (z) = 2In(z) —

Qx[(l_a)gmax+a0min]a and hence (I)a(x) - E[ng*(ZE,Q) | ¢D*(x79) < q)dQ<x)] =
{In(z)—#[(1—)Omax+Omin] > — [In(2) —20max]>

ax (emax _emin)

, which is maximized at

.T** _ 2(emin - gmax)
CVaR ™ (= 2)02. + b2 +2(1 — @) fminOmax

The quantile and maximin single-point optimal designs are the same as in the case of
¢p(x,0), since they are invariant to nonlinear rescaling of the criterion function ¢ (see
Sect. 3.4.2). The AVE optimality criterion (see Pronzato and Pazman, 2013, Example

8.2) is maximized at

e r 2
AVE E(H) ‘gmin + emax ‘
One sees that only the maximin optimal design does not depend on 6y, at all. A

In the case of continuously distributed ¢ (&,0) we obtained as a consequence of
Theorem 3.17 an alternative definition of the CVaR-criterion via ®} () and @ (-),
and, instead of the rather abstract definition of ®, in (3.7), we can use an intuitively

more clear definition of the CVaR-criterion via the integral in (3.15). Moreover, as a
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consequence of Theorem 3.17, ®F (-) and @, () are concave in &, which is not always
true for discrete random variables.

In the simpler case when ¢ (€, 0) is assumed to be continuous random variable, the
CVaR-criterion defined in (3.7) can be formulated as

1
@0 ()= /{Q:W)@g P60, (3.16)

see also Theorem 3.17. This is the concave version of the CVaR-criterion defined
in Valenzuela et al. (2015) corresponding to the definition of CVaR in Rockafellar
and Uryasev (2000), where its convexity is proven for the case of continuous random
variable ¢ (&, 0) (see their Theorem 2). However, as proved in Sect. 3.2.1, the CVaR-
criterion (3.7), the definition of which is based on the formula derived in Rockafellar
and Uryasev (2000) and used in Pflug (2000) as definition of CVaR, is concave for any
random variable. Rockafellar and Uryasev (2002) considered a more general CVaR

than in Rockafellar and Uryasev (2000), as a mean of a random variable with cdf

Feo R [0,1]:

o 1 if t> Ryyep) (@),
Fileo) (1) = Fye.0)(t)

- otherwise,
which is given as a proper rescaling of the cdf Fj 6. This definition coincides with
the Pflugs definition, as proved in Theorem 10 of Rockafellar and Uryasev (2002).
The reason for involving also discontinuous distributions into our considerations is
that the distribution 7 (€) can be discrete (this also includes the case when the para-
metric space © is finite or countable) causing that the distribution of ¢ (£, 0) is discrete.
However, neither the case when 6 is continuous random variable is unambiguous and

simple, because the continuity of ¢ (&,8) is still not ensured.

3.4 Interpretation of the CVaR-criterion ¢, in the

context of experimental design

In this section we explain the main properties of the optimality criteria based on VaR
and CVaR, which can be effectively applied when designing experiments in nonlinear
models.

When the criterion ¢ (£,0) can be considered as a continuous random variable, we
can formulate the CVaR-criterion @, (§) as in (3.16). So, unlike the AVE-criterion, the
idea of the CVaR-criterion is to maximize the mean of ¢ (£, 6) under the condition that
¢ (£,0) < L (€) (naturally, this condition is satisfied with the probability « for any &).
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First of all, we shall compare the CVaR-criterion to the local, maximin, AVE and

quantile criteria, which are more usual in design of experiments.

3.4.1 Relation to the local, maximin, and AVE-criterion

It turns out that the local, AVE and maximin criteria are special cases of the CVaR-

criterion (3.7).

Theorem 3.19. We suppose that the unknown parameter @ has prior distribution w(0)

on the parametric space ©. Then

a) ®1(&) = Pavg (&) for any &, i.e. for a =1 the CVaR-criterion is equal to the

AVE-criterion (1.10),

b) if p(&,):R™ =R, 08— ¢(,0) is continuous function on R™ and for every open

set T CR™ such that TNO # O the probability Pr(0 € T) =71 (0NT) is positive,
then, supposing that ®pin (£') does exist, limg—0 Py (€)= Prin () , i.e. at & the

CVaR-criterion tends to the maximin criterion (1.9),

c) if (@) =1 for 6 = 0° and m(0) =0 for 0 # 0", then @, (&) = Proc (&) for any

a € (0,1}, i.e. the CVaR-criterion coincides with the local criterion (1.8).

Proof.

a)

Evidently, min{O,gb(f,O} —44(¢,0) (1)} = ¢(§,0) — qg(¢,0)(1). So, according to
Consequence 3.11, for o = 1 the CVaR-criterion (3.7) equals ) (1) +
E|¢(£,0) — gp(¢.0)(1)| = E[6(£,0)] = Jo ¢ (&,0)dr (6) which coincides with the
AVE-criterion (1.10).

Let o — 0. We shall show that lima—0 P4 (£) = mingeg ¢ (£',0) = Ppyin (), iee.
we have to prove that Ve > 03A > 0: [P5(&') — Pryin (§')| < eVO<d < A, Tt
follows from (3.12), see also the notation in (3.8) and the definition of @, (¢)
in (3.9), that G (€)= ws ¢/, Bpn (€)] < marceer wy (€,¢) = By (¢1) < B (¢)).
Hence

0< D5 (&) = Panin (¢) < 0F (¢') = unin (¢) .
and we have only to show that (I)? (&) — Pppin (&) <efor any 0 < § < A. Take any
A satisfying the inequality 1 —A > Pr[¢(£/,0) > € + ®pin (§)] which is equivalent
to the inequality A < Prl¢(£,0) < e+ Ppin (¢')]. Indeed, for any € > 0 there
does exist such A € (0,1], because the set T ={a: ¢ (¢',a) € (—o0, e+ Ppin (£'))}
is open, since it is the pre-image of the open set (—oo, ®pyin (£) +¢) and ¢ (&',-)
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is continuous function. Therefore, Pr[¢(£,0) < e+ Py (&')] = Pr(0 €T) > 0.

From the definition of the quantile criterion (3.1), we have
Prio(¢.0) 29 (¢)]21-0>1-A2Pr[o(¢.0) = e+ (¢)]. (317)

The function ¢ — Pr[¢(&',0) > t] is non-increasing, hence it follows from (3.17)
that

OF (£) < e+ Buin (€)
and the statement is proved.

c) It is easy to see that gy g (@) = ¢(f,00) = Py (€) for any « € (0,1]. From
Consequence 3.11 it follows that

P (6) = duic) (@) + B [min {0,6(6,6) ~ go(c0) (0)}] =

= Qp(c,0) (@) + ; {min {0, ¢ (S, 90) — Qg(c.0) (@)H = qy(¢.,0) (@) = Pioc (§).-

3.4.2 Relation to the quantile criterion

The quantile criterion keeps different ordering of designs than the CVaR-criterion.

Pazman and Pronzato (2007) emphasize that the quantile criterion is invariant to
nonlinear rescaling of the criterion ¢(£,0). Indeed, unlike the AVE- and the CVaR-
criterion, when taking an increasing function ¢ : R — R, then

Rqgp(¢,0) (@) =sup{t eR: Pr{o[¢(£,0)] >t} > 1—a}
=sup{o[o™ (t)] €R: Pr|¢(£,0)> 07 ()] >1-0a}
=sup{o(t) eR: Pr(p(£,0) >t]| >1—a}
= 0| Ragc0)(@)] = o[22 (6)],

hence the ordering of designs given by ®% (£) is the same regardless of the transforma-

(3.18)

tion of the initial criterion ¢ (&, 8).
On the other hand,

E{2[6(6.0)]] 06 (€.0)] < Ragio(en (@)}

:E{ [9(£,0)] ] e[o (&, )]<9[R%<§e>( )H
=E{0[6(,6)] | 6(6.6) < Raye o) (@)}

which is not necessarily equal to 0{ E [¢(€,0) | ¢ (£.8) < Ray(e ) (@) } = 0[®a (€)] (the

equality appears when p(+) is linear) and the CVaR-criterion for Q[¢ (£,0)] is not gen-
erally equal to the CVaR-criterion for ¢ (¢,80).
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We justified in Sect. 3.2.1 that the criterion @, (§) is concave in & when the crite-
rion ¢(&,0) is concave in £ for any @ € ©. This is a big advantage comparing to the
quantile criterion, because it can be optimized applying well-known methods of math-
ematical programming (see Rockafellar and Uryasev, 2000, Valenzuela et al., 2015, or
Algorithm 3.22 in Sect. 3.5).

3.4.3 Further properties of the CVaR-criterion
Let the criterion ¢ (&,0) be positively homogeneous for any 6, then
®a () = max { e+~ [min (a6 (€,0) — ,0}]}

= CLRQ¢(£’0) (Oé) + ;E [mln {a¢ (gv ) - CLRQ¢(§ 0)( >’0}}

= G{qug(g’g)(&) + ;E [m1n{¢(§ 9) RQ¢ (€,0) ,0 }}
—ar?ea]éc{c—i-;E[mln{gb( 0)— c,O}]}:a(I)a(g),

where we used Consequence 3.11 and the property aRgy (o) = Rquy (a) for a > 0,
similarly as in (3.18), to prove the positive homogeneity of @, (§).

The directional derivative and the equivalence theorem

We could see in Figure 3.3 of Example 3.16 that the CVaR criterion is not necessarily
differentiable function of the design & even if the criterion ¢(&,8) is (e.g. A-optimality).
However, the CVaR criterion is concave and hence the directional derivative at & in

the direction v always exists and is defined as follows

Fo,(§v)= lim q)a[(l_a)“ay]_q’a(f),

a—0t a

see e.g. Lemma 5.16 in Pronzato and Pdzman (2013). The equivalence theorem states
that the design £* is CVaR optimal if and only if sup,c= Fo, (§*,v) =0, see e.g. The-

orem 5.21 in Pronzato and Pazman (2013).

Lemma 3.20. Suppose that ¢((,0) is for any @ € © concave and continuous in .
Let ¢(£,0) > —oo for any 8 € ©, E||p(£,0)|] < oo, and let ¢,b € R. The directional
derivative of the function wa(&,c) = c+ L E[min{0,$(£,0) — c}] at (€,¢) in the direction
(v,b) equals

, 0 if 9(€,0) > ¢
Fua[(§5¢), (D)) =b—c+—E mln{o For0)(&v)—(b—0)}  if 9(£,0) =c|,
0)(§7V)_< _C) Zf¢(§79> <c
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where Fy(. 0)(&,v) = lim,_,+ ¢l(1=a)é+av,6]-¢(¢,6)

) a

&(+,0) at & and in the direction v and « € (0,1].

denotes the directional derivative of

Proof. The directional derivative of the function w, (&, ¢) does exist due to its concavity

in (§,¢), see Lemma 3.5b. For a fixed @ let us use the following notation

he(§.c) = ¢(¢,0) —c,
90(&,¢) =min{0,hg (&, 0)},
and for any a € [0, 1] define
&= (1—a)+av,
co = (1—a)c+ab,
where &, v € = and ¢,b € R are fixed. Now we will evaluate the directional derivative of

the function gg(+,-) at (£,c¢) in the direction (v,b), i.e.

Fool(€,0), (v.b)] = lim 98LmCa) =96(5:0)

a—0t a

The values of &,v,c,b always result in one of the following possibilities and directly
determine Fy,[(€,¢), (v,0)]:

a) The case when hg(§,c) > 0. Then thanks to the continuity of function hg(-,-)
there is a number a* € (0,1] such that hg(&,,cq) > 0 for any a € [0,a*), which
implies that gg(&,c) = go(&a,¢q) =0 and

Fool(§,¢), (v,0)] = 0.

b) The case when hg(§,c) <0. Applying the continuity of hg(-,-) as in the case a)
one obtains that there is a number a* € (0,1] such that hg(&q,cq) < 0 for any
a € [0,a*), which implies that gg(&,c) = hg(§,c) and gg(&q4,cq) = ho(&asca). 1t

follows

Fol(6:0),(nb)] = lim Pea0) =ca=0(E,0)+c

a—0t a

= Fo(.0)(&v) = (b—0).

c) The case when hg(&,¢) =0 and hg(&q,cq) <0 for any a € (0,1]. Then gg(§,¢c) =
hg(&,¢) and gg(&a,ca) = hg(&asca) like in the case b). Tt follows

Foul(6:0), (n,)] = lim 10(8arCa) ~ho(&,¢)

a—0t a

= Fo(.0)(&v) = (b—¢) <0.

d) The case when hg(&,¢) =0 and hg(Eqr,cqx) > 0 for some a* € (0,1]. Then due to
the concavity of the function hg(-,-) we have that hg(&,,cq) > 0 for any a € [0,a*].
It follows, like in the case a), that

Fyol(&.0), (v,0)] =0,
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and moreover

> 0.

Fo(0)(&v) = (b—c) = lim ho(€a; ca) —No(&:c) _ . No(&asCa)

a—0t a a—0t a

Summarizing, we have for a fixed 0

0 if ¢(€,0) > ¢,
Fyol(&,0), (v,b)] = min{0, Fy.0)(&v) — (b—c)} if ¢(£,0) =c,
Fo(.0)&v)—(b—¢) if $(£,8) < c.

Assuming that the integration and limit are interchangeable (see Pronzato and Péazman,

2013, p. 237) one obtains the directional derivative of wq, at (§,¢) in the direction (v,b):

lim (1—a)c+ab—c

a—0t a

B {F 60, (D]} =b—c+ ~ B {Fyl(60), (b))
O

Since Py (&) = wq {5,@8(5)} and wq(&,c) is concave function in (&,¢), see
Lemma 3.5b, we can use the same reasoning as in Theorem 5.21 of Pronzato and
Pazman (2013), and, the design £* is CVaR optimal if and only if
sup Fu, [ (65,99 (€9)),(1,b)] =0. (3.19)

veED
beR

However, when the criterion ¢(&,0) is differentiable for any 6 and when ¢(£*,0) is

continuous random variable, we can apply the following equivalence theorem.

Theorem 3.21. Consider the criterion M +— ¢(M) and ¢[M(£,0)] = 4(£,0) V¢ €
2, V0 € ©. Suppose that ¢ is differentiable and denote by G(£,0) € R™*™ its gra-
dient with respect to M € R"™ ™ at M(£,0) and let k(£,0) =tr[M(£,0)G(&,0)]. Let
(E*,0) be a continuous random variable with E[|¢(&*,0)|] < oco. The design £* is then
CVaR-optimal if and only if

== — Q *
B LR
beR
1
+—F

( {0 if 6(¢7,0) > 0 (5*))]
@\ M (x,0)G(€,0)] —k(€*,0) — (b— T (€*))  if 6(£%,0) < DT (£¥)
Proof. Since ¢(¢,0) is differentiable, one has

Fo(0) (&5 v) =tr [M(v,0)G(£",0)] — k(£*,6)

=/ 0 [M(x,0)G(£%,0))dv(x) — k(£*,8),
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see e.g. Eq. 5.34 in Pronzato and Pazman (2013). As a consequence of differentiability,
¢(+,0) is necessarily continuous at £* for any @ and hence we may use Lemma 3.20. In
addition, Pr[¢(£*,0) =] =0, since ¢(£*,0) is continuous random variable.

One has for any v € = and c,b € R

‘Fwa [(6*70)7 (V> b)] - (b_ C)

1, {0 it ¢(¢%,9) >c]
C | Foo (& v)—(b—c) ifo(",0)<c
1 e 0 if p(£%,0) > ¢ av(x)
@IEX | [M(x,0)G(¢%,0)] —k(€",0) — (b—c) i ¢(¢*,0) <c]
R 0 if p(6*,0) > ¢
Q xed tr[M(0x,0)G(£*,0)] — k(¢*,0) — (b—c)  if (¢*,0) <c|
- SuplE 0 if p(£*,0) > ¢
e= @ | | tr[M(C.0)G(E,0)] —k(E",0)—(b—c) if (¢"0) <c

= SUpF, (67,0, (C.B)] — (h=0),

where dx denotes Dirac measure concentrated at x. Since the previous inequalities are
satisfied for any v € =, then they are also satisfied for the supremum over v, and we

obtain

sup Fuy, [(§7,¢), (v,0)] =

Ve
beR
1 0 if ¢(£*,0) > c
=max [b—c+—F ¢c".6) ,
ek ©OA[M(x,0)G(E.0)] - k(¢".0)— (b—c) if §(¢".0) <c
which, as follows from (3.19), proves the statement for ¢ = ®% (£*). O

3.5 Calculation of CVaR-optimal designs
The design £* is CVaR-optimal if

D, (&) = I?GaEX O, (&) = Hé.::xcxwa(ﬁ,c), (3.20)

for the second equality see Theorem 2 in Rockafellar and Uryasev (2000) or Theorem 14
in Rockafellar and Uryasev (2002). We suggest to use the cutting plane method (see
Sect. 1.4) to solve the problem (3.20).
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3.5.1 Subgradient for the function w, (£,¢) from (3.9)

For the purposes of the optimization of the CVaR-criterion ®, via the cutting plane
method, either the design space X has to be finite or we need to use a discretization X’
of X (see examples in Sect. 3.6). Consequently the (discretized) design space consists
of card(X”) points and hence the design £ corresponds to the relative frequencies of
measurements taken in these points, i.e. & = ({(x);x € X’), and can be interpreted
as card(X’)-dimensional real vector with nonnegative components summing to one.
Moreover, we assume that the criterion ¢(£,8) is concave in £ with finite expectation

Ello(¢.6)) forany &,
Now denote z = (gT,c) ,EEEC ]Rcard(xl), ce R, and

() = wa (€,6) = ¢+~ B [min{0,6(6,0) — c}] (321)

is the function to be maximized over ¢ and £. The function w, (§,¢) is concave, see
Lemma 3.5b, and hence the method of cutting planes can be applied to solve the
optimization problem

(& ,c) = aurgngauxwoé (§,¢) = maxp(z). (3.22)

,C

To be able to use the cutting plane method, we have to evaluate the formula for
subgradient. Denote by V¢¢ (E , 0) an arbitrary subgradient of the criterion ¢ (&,0)
at f . We will assume that it is known (when the criterion is differentiable, it equals

to the gradient of the criterion). Using the properties from Lemma 1.4 we evaluate a
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~ N T
subgradient of ¢ (-) at z = (f ,5)

Vi (%) = Vi (€2) =Ve+ - B[Vimin {6 (£,6) ~20}]

(0)+1E_ V0 ito(&,0) >
o \voeo)+ v ot
0 if ¢ (E, 0) > ¢,
0\ 1 0
e
1 Ve (57 6) + 0 otherwise
_ 0 1 ]
0 if ¢ (5, 9) > C,
0\ 1 0
JoR% o
1 Veo (f’ 0) otherwise
i -1 i
(3.23)

Kelley (1960) proposed the cutting plane method for maximizing a continuous
concave function defined on a compact convex set. In our case, the continuity of
¢ (2) = wq (€,¢) is ensured on every closed bounded subset of Red(¥ )+1 in Lemma 3.9.
To satisfy the requirements on compactness, we have to consider some bounds on ¢, say
Clow and cyp. When ¢ (€, -) is an isotonic criterion, the upper bound may be (pessimisti-
cally) chosen as ¢, = maxgeo ¢ (1,0), since for every 8 € © ¢(£*,0) < ¢(1,0) and ¢*
is less than or equal to the a-right-quantile, hence it can be bounded from above by
maximal possible value maxgeg ¢(1,6). Supposing that ¢0) ¢ Reard(X) and 0 ¢ R
are starting points, then one may choose ¢, as wq (5(0),0(0)) since weq (f(o),c(o)) <
W, (£%,¢*) < ¢* (the last inequality follows from the definition of wq (€, ¢) in Eq. (3.8)),
where z* = (5*,0*)T is an optimal solution of the problem (3.22). So, finally, one can
approach the solution of the problem (3.20) via the method of cutting planes (1.12),

i.e. by solving a sequence of linear programming problems:
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€(z+1)
max (07,0,1) | c(+D) (3.24)
€

t(i—|—1)
s.t. 04D > 0,0 € 100, Cup) (3.25)
g(i—i—l)
(17,0,0) | D) [ =1 (3.26)
t(i—Fl)

7 (i+1) ' B
N E : (3.27)
.

(with z(") = (g(h)T,c(h)> Ch=1 i) until €0 —max;eqo iy (29)) <e.
Note that omitting the constraints in (3.25) may cause that the LP problem (3.24)—
(3.27) is not bounded.

3.5.2 The algorithm

After evaluating the required subgradients, we are able to formulate the algorithm
which leads to e-optimal designs £ maximizing the criterion ®, (£). As a by-product
of the algorithm we obtain the value ¢f which maximizes the function wy 4(¢x ) (¢) =

c+ LE[min{0,¢(&,0) —c}] and, according to Theorem 3.10, ¢ is from the interval
ez 0 Pasier o)

Algorithm 3.22.

0. i Denote X’ the discretization of the design space X.

ii Choose the starting design £© e Reard(X) g ¢ €0 (x) >0Vx € X and
17¢0) =1,

iii Choose ¢}y < cyup, the bounds on c.

v Set 20 — (g(O)T,c(0)>T, where ¢9) € o cup].

v Take € greater than 0 but small.

vi Set i = 0.

1. Solve the LP problem (3.24-3.27).
T T
2' i Set Z/ = <£/ 7Cl) = arg maXze{z(0)7z(1)7..-7Z(i+1)} ()0 (Z)'
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i If t0+) — o (2') <€, stop and return £ = ¢’ as e-optimal design and ¢ = ¢/

as e-optimal value which maximizes the function w, 4+ gy (¢)-

iii Else set i + i+ 1 and continue from the Step 1.

The discretization of the design space in Step 0.i of Algorithm 3.22 may influence
the results. Hence, we may run Algorithm 3.22 several times, and every time enrich the
discretized design space X’ with some additional design points adjacent to the support
points obtained from previous runs of Algorithm 3.22, similarly as in Example 3 of
Pédzman and Pronzato (2014), see also Example 3.24. Notice that as the cardinality of
X’ increases the computational time is larger.

The stopping rule (Step 2.ii) follows from the subgradient inequality (1.13). Denote
z* the true solution of the optimization problem (1.11), and, according to (1.13),

el ? () 0 )
< min ¢ (Z(J')) +V'o (Z(J')) (Z* _ Z(j))

— j€{0,...,i}
g g o6)+9T) o) <

When the expectations in ¢(z) and Vi (z) are computed exactly, then the stopping

rule ensures that
Dy (£5) = 00 (&) <, (3.28)

and hence the choice of € in Step 0.v directly influences the accuracy of Algorithm 3.22

and the efficiency of design £¥. We require from the efficiency that izggﬁg > eff , where eff

is e.g. 0.999. Usually, the value @, (£*) is not known, so, after running Algorithm 3.22

one may at least check whether m <1—eff, since 1 — gzgg{ ; _ <I>a(§(£iz§‘)l (&) %Egz)'

In the case when the exact expressions for the expectations in ¢(z) and Ve (z)
(Egs. (3.21) and (3.23)) are not easily computed, but we are able to generate the
random realizations from the prior distribution 7 (@), we may use Monte Carlo meth-
ods to obtain estimates of required expected values (similarly as in Valenzuela et al.,
2015, Rockafellar and Uryasev, 2000, or Atkinson et al., 2007, Sect. 18.5), see also

Example 3.24. However, Monte Carlo simulation does not ensure the validity of (3.28).

3.6 Examples

The examples in this section were carried out in R computing environment (R Core
Team, 2016), the LP problems were solved with linear and integer programming solver
1p_solve (Berkelaar et al., 2004) via R package 1pSolveAPI (Ip_solve and Konis.,

2016). The solver uses revised simplex method for LP problems. The main purpose
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of this section is to point out that by applying Algorithm 3.22 we may obtain nearly
CVaR-optimal designs. The obtained results are compared with the known AVE,

maximin and local optimal designs (see their relations in Theorem 3.19).

Example 3.23. Consider the nonlinear regression model 7 (z,6) = e=*’. The unknown
parameter 6 has discrete distribution: 7 () =0.2 for any 6 € © = {1/77 1/V7,1,3V7, 7},
as in Example 18.2 of Atkinson et al. (2007). We take the discretization X’ =
{0,0.001,...,6.999,7} and the starting design 5(0) as the uniform measure on X’. We
set ¢® =2 and e =106, In this case, the required expectations can be quite sim-
ply computed analytically and hence we do not need to use Monte Carlo methods.
The goal is to approach ®,-optimal design for ¢p (§,0) = det!/™ [M (&,0)] via Algo-
rithm 3.22. For nonsingular information matrix M (5 , 0) one obtains {Vggb D (5 , 9) }Z =

el [ri\L/l (gﬂ)} a%(;%e) ‘x:xiMil (g’ 0) %‘x:m’ the i-th Component o gradient o

op(,0) at € (see e.g. Pronzato and Pazman, 2013, Example 9.17).

The results of Algorithm 3.22 for different levels o are summarized in Table 3.1.

a £r D, (&) cr iter. | time
6.522

1 { . } 1.3813 | 2772831 | 2 |5.36s
0.847

0.5 . 0.0296 | 0.1318 4 1543s
0.320

0.3 | 0.0071 | 0.0188 5 |5.85s
0.179

0.22 . 0.0035 | 0.0124 5 | 5.7s
0.143

0.2 { . } 0.0028 | 0.0096 5 [6.04s
0.143

0.0001 ) 0.0028 | 0.0028 5 [5.69s

Table 3.1: The numerical results of Example 3.23. All the computed e-optimal designs
are single point designs and hence £ is a Dirac measure putting unit mass to the optimal
design point (second column). In the last two columns is the number of iterations and the

computational time (both required until Algorithm 3.22 stopped) indicated.

The e-optimal design which maximizes the criterion @4 (§) corresponds to the AVE-
optimal design, see Table 18.4 in Atkinson et al. (2007). The value indicated as ¢} =
27728.31 equals here ¢,;, = maxpece ¢p (1,6).
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According to the theoretical results on maximin design for this nonlinear regression
model (see e.g. Example 3.18 or Pronzato and Péazman, 2013, Example 8.5), the

optimal maximin design puts unit mass to the point which is for our © equal

to 1/7 ~ 0.1428 and corresponds to the e-optimal design which maximizes ®¢ ggo1 (§)-
Since the distribution of ¢p (£,0) is uniform on a finite set with cardinality five, the
values of @, (§) are equal to mingeg ¢p (€,6) for any a € (0,0.2]. For a € (0.2,0.4) the
criteria @, (£) do not attain the same value (although the maximum in (3.7) is reached
for the same ¢ = qy(¢ g) (@) = Rgy ¢ 0) () because the expectation in (3.7) is multiplied

by L. A

(0%

Example 3.24. We consider the nonlinear regression model of Atkinson et al. (1993)
with 7(x,0) = 03 (e7h—e%22), 0 = (01,02,05) € © = [0 —0.01,00+0.01] x
X [98 — 1,609+ 1} x 09, where ° = (QO,QO,QQ)T = (0.05884,4.298,21.8) . The prior dis-
tribution 7g is uniform over @. The aim of this example is to find ®,-optimal designs
on the design space X = [0,00) via the cutting plane method. If the accurate results are
known from Tables 1-2 of Atkinson et al. (1993), we evaluate the efficiencies of designs
computed by Algorithm 3.22 with respect to the true optimal designs of Atkinson et al.
(1993) (see Table 3.2).

As we know, the criterion @, (§) is not invariant to nonlinear rescaling, and, to
be consistent with Atkinson et al. (1993), in this example we use the criterion of
D-optimality in the form ¢p,(£,0) = Indet[M (£,0)]. The i-th component of re-
quired gradient of ¢p, (&,0) at € is, when M (5, 0) is nonsingular, {Véqﬁp* (E, 9) }Z =
%‘x:xiM_l (E, 0) W‘Z:xi (see Pronzato and Pazman, 2013, Example 9.17).

The first encountered problem is that the expectations in (3.21) and (3.23) are not
easily expressed. Fortunately, we can effectively generate random variables from the
prior distribution 7g and hence the Monte Carlo method is applicable. Let 6%, ... 0% be
a random sample from mg generated during the Step 0 of Algorithm 3.22, i.e. the same
sample is used for all iterations and for evaluating c,p = maxyc(1,. R} @D« (179’1), In
Algorithm 3.22 we will use the expression ¢+ % Zﬁ:l min {0, ) (f , 9h> — c} to approach
¢ in (3.21) and instead of Vi in (3.23) we will have

0 if ¢ (,0") > ¢
(-
RS || (eo (6,67

—1

otherwise

The second problem is that we are not able to evaluate the gradient of ¢p. (§,0)

when M (£,0) does not have full rank. Hence at each iteration when computing
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M (f(j),eh) for j =1,...,i, we perform the following regularization step for any 6"
h=1,...,R:

if det [M (gU),eh)} <1078, then M (gU),eh) M (g<f>,0h) + 10751,

We ran Algorithm 3.22 three times. In the first run the discretization of the
design space was X' = {0.2,0.3,...,21.9,22}. Suppose that z7,...,z% are the sup-
port points of the resulting design. In the second run we used the discretization
Uy {5 —0.09,2% —0.08,...,0% +0.09} UX, and similarly in the third run, where we
enriched the previous discretization with sets {z* — 0.009,z* — 0.008, ...,2* +0.009} for
every =*, the support point obtained after the second run. In all the runs the starting
design ¢(©) was chosen randomly (respecting its non-negativity and summation to one).
For each run we set ¢(0) = cup (cup here takes the value around 21 up to 25 depending
on the length of vector 1, i.e. on the cardinality of the discretized design space X/, and
is computed as suggested in Sect. 3.5.1), € = 1074, and R = 100.

In Table 3.2 we present CVaR e-optimal designs for different levels o obtained
as a result of three runs of Algorithm 3.22. Although the e-optimal designs & were
computed by means of Monte Carlo simulation with the sample size R = 100, the
criterion values @, (£¥) and the efficiencies @, (£¥) /P2, where ®% denotes the true
optimal value known from the literature (Atkinson et al., 1993, Tables 1-2), were

evaluated with different sample size R’ =5 x 10°. A

In the next example we compare the CVaR~ and quantile optimal designs. Since the
quantile criterion @3 is not concave, and hence its optimization is not straightforward,
we think that in applications we could use the CVaR-criterion ®, and CVaR-optimal

designs as approximations of quantile optimal designs.

Example 3.25. Consider the nonlinear regression model with expectation of observed
variable at 2 € R equal to 1 (z,0) = #1e=%% where 6 = (61,69)" € Rt x [0.5;3.5].
The example is from Pédzman and Pronzato (2007), where the authors considered the

D-efficiency criterion

det M (€,6)
QbeﬂD (570) - 6 € [07 1] ) (329)
2elo

(since maxgez (/det M (£,0) = 2%2, see Pazman and Pronzato, 2007).

The parameter 2 has uniform prior on [0.5;3.5] and we set 6; =1 and X =

{0,0.1,0.2,...,5} as the design space consisting of 51 points as in Pazman and Pronzato
(2007).

To compute the CVaR-optimal designs we apply Algorithm 3.22 similarly as in Ex-
ample 3.24, and we use the gradient of D-efficiency criterion V¢gen (E , 9) =
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prior a & cr D, (&) | efficiency | time
0.229 1.389 18.417
0.333 0.334 0.335

0.230 1.420 18.570}

7.3771 | 7.3887 | 0.9999 3.42's

1 8.1106 | 7.3758 | 0.9999 | 5.44 m
0.332 0.333 0.335
0.214 1.320 17.230

o 0.5 7.4185 | 7.1215 5.13 m
0.331 0.334 0.334

0.1 7.0304 | 6.8604 4.30 m

0.334 0.334 0.332

—

0.199 1.220 16.680}

Table 3.2: The numerical results of Example 3.24. The first row corresponds to the locally
optimal design with nominal parameter value 8°. The computing time (last column) was 3.42
seconds for all three runs of Algorithm 3.22 together. The computing times for the rest of the
table were higher, since at each iteration the estimates of the expectations in (3.21) and (3.23)
were calculated. The e-optimal designs & for different probability levels a and the optimal
c; were computed using Algorithm 3.22 with R = 100 randomly generated vectors from 7g.
For v =1 we computed @1 (&) as 7 Z,?lzl DDx ( :,0h>, with R’ =5 x 10%, and the efficiency
as %?*), where ®7 is the optimal value from Table 2 in Atkinson et al. (1993). For a < 1
the value indicated is @, (§F) = ¢f + ﬁZﬁ;l {min{O,gf)D* (5,0}‘) - c:}], with R’ =5 x 10°.

%ngﬁD (E, 0) (see Example 3.23 for Veép (E, 0)) Instead of generating R real-
izations from the prior distribution of 83, we took only the sequence of R = 100 points
equally spaced in the interval [0.5;3.5], and the expectations in (3.21) and (3.23) were
approximated by arithmetic means based on these values. We set the accuracy in the
stopping rule as e = 107 and the initial design £© is the uniform measure on the
design space X'. Since the criterion in (3.29) takes the values from [0, 1], we set ¢jo, =0
and ¢(0) = cup = 1. The CVaR e-optimal designs are for a = 0.1 and a = 0.5 given in
Table 3.3.

To compute the quantile optimal designs we proceed as in Pazman and Pronzato
(2007): we approximate the quantile criterion and its directional derivatives via kernel
smoothing and then we use vertex direction algorithm (see e.g. Pronzato and Pazman,
2013, Sect. 9.1.1) to approach the quantile optimal designs for &= 0.1 and for = 0.5.
Denote by 9, the design with the unit mass at the design point x and let ]?(;gg (&,¢) be
the approximation of the directional derivative of <I>aQ at the point £ in the direction (.

The vertex direction algorithm, which we used, consisted of these steps:
Algorithm 3.26.

0. Choose the starting design £€(©) and the accuracy e > 0. Set i =0. Find (¥ =
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o & et [ @@ (e) | time

0 0.3 0.4 1.6
0.1 0.7803 0.7807 9.50 s
0.452 0.148 0.210 0.191

0.501 0.478 0.020

0 0.5 1.1
0.5 0.9246 0.9231 411 s

Table 3.3: The numerical results of Example 3.25. The CVaR e-optimal designs &} for
the D-efficiency criterion (3.29) for probability level a and the optimal ¢ computed by
Algorithm 3.22 based on R = 100 equally spaced 2 in the interval [0.5;3.5]. The value
10000 (£¥) is the direct approximation of corresponding quantile criterion value based on
10000 equally spaced 62 in the interval [0.5;3.5]. The last column gives the running time of
Algorithm 3.22.

argmaxger Fog (€7).0,).
L Set €0+ = (1- 51 ) €0+ 16,
2. Set i<+ i+1.
3. Find 29 = argmaxwe;\gf;g (f(i),5x).

4. If .7-:;8 (5 (i),(Sm(i)) > € continue from Step 1, else take £ () as e-optimal design and
stop.

We would like to emphasize that the purpose of this example and of this thesis is
not to find the effective methodology for computing quantile optimal designs and there
may be other more effective procedures how to obtain the best solution. Nevertheless,
here we took € = 0.01 and the kernel-approximation of the quantile criterion and of the

directional derivative as in Pdzman and Pronzato (2007):

e R — Gern (&,60'
q)g(é):{“:l_]l%zFN(o,l) (u HD( )):1—04},

i=1 hR(f)

R 22(6)— e (¢.6'
__ i§1f¢eHD('79i) (&) fvo ( hR(EI))( :
Fp (6,€) = — , ,
R O (€)—dern (£,07)
igl f/\/(O,l) hr(©)
where 01,...,0% is a set of vector points with first coordinates equal to 1 (corresponding

to 61) and with second coordinates given as a sequence of R equally spaced points in
[0.5;3.5]. In accordance with Pdzman and Pronzato (2007), we used R = 100 and

. 1 R 12
(66") 4 Ljy b (67))
R—-1 )

we selected hpr (&) = sr(§) R-1/5 with sp(€) = \/Zi_l {%ffD
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the standard deviation of ¢egp (5,01> sy DefiD (f,BR). The functions Fio,1)(-) and
fa,1) (+) denote the cdf and pdf of the standardized normal random variable A/ (0,1)
and Fy o (.0 (6,C) = G2 det'/>[M (£,0)]tr{[M (¢,0) — M (£,0)] M~ (£,0)} is the di-
rectional derivative of ¢egp (+,0) at & in the direction (.

As mentioned in Pazman and Pronzato (2007) (and as easily computed via Al-

gorithm 3.22 when putting Dirac measure concentrated at 6 = 2 as prior for 63),

1/2 1/2
As a starting design in Algorithm 3.26 we took the CVaR-optimal design for given

0 1/2
Eloc = { / } is the locally D-optimal design for 6 = 2.

probability level o (see Table 3.3), the local optimal design . for 02 = 2 (as in-
dicated above) and the design which puts the same mass 1/card(X’) to each design
point x from X', respectively. The results are summarized in Table 3.4. Comparing
Tables 3.3 and 3.4 one sees that the CVaR and quantile optimal values do not dif-
fer significantly, which indicates the possibility of using the CVaR-criterion instead of
the non-concave quantile criterion. Indeed, the ®%-efficiency of CVaR-optimal design
equals 0.7807/0.7930=0.9845 for v = 0.1 and 0.9231/0.9495=0.9721 for ae = 0.5.

The histograms of ¢egp (£,80), where 6 is distributed according to its prior distri-
bution (uniform on [0.5;3.5]), are for some designs ¢ given in Figure 3.6. While the
quantile optimal design ensures the largeness of the « right-quantile (without taking
into account the smallness of values less than the right-quantile), the CVaR-criterion
maximizes the expectation of values less than the corresponding « right-quantile.

The performances of the quantile, AVE, maximin and CVaR-optimal designs are
illustrated in Figure 3.7, where the corresponding values of the D-efficiency criterion
deip are depicted as functions of 02 (we obtained the AVE and maximin optimal
designs as ®,-optimal designs setting o = 1 resp. a = 0.0001, see Theorem 3.19 for a
justification). The totally robust design which does not depend on the true parameter
value 65 would be in this figure represented by a horizontal line. For a = 0.1, the
AVE-optimal design gives larger values of ¢.gp than the quantile, maximin and CVaR
optimal designs for a wide range of possible values of #2. On the other hand, it performs
very bad for # near 0.5, where the best results are given by the maximin optimal design.
The quantile and CVaR~optimal designs behave similarly, as a compromise between the
AVE and maximin optimal design—the CVaR-criterion performs slightly better near
0.5, and the quantile criterion is better for the rest of the values. For a =0.5, the CVaR
and quantile (median) optimal designs behave very similar to the AVE optimal design,
the quantile optimal design attains better values for larger 6 and the CVaR-optimal
design for the smaller values of #2, where the performance of the quantile optimal

design is very poor.
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Finally, a very interesting interpretation follows from the comparison of empirical
cdfs of ¢ein(&,80), where € is AVE, maximin, CVaR, or quantile optimal design. The
graphs of cdfs in (0,1) are displayed in Figure 3.8. The criterion ¢egp(€,0) always
attains values from the interval [0,1] and the “perfect design” would lead to the cdf
Fy an(-0) (t) which equals zero for ¢t <1 and equals one for ¢ > 1. Obviously, this is not
very realistic.

In Figure 3.8a is the situation for a = 0.1 depicted. One sees that for t = 0.775, the
probability Pr{¢egp (Ein, @) < t] = 0.32, while Pr{¢esn (§¢vagr, @) < t] =0.04. Hence, by
considering the CVaR optimal design and “sacrificing” the values ¢egp ({&vag,€) Which
are smaller than mingecg defin (&1, 0), We obtain significant improvement at ¢t = 0.775
comparing to the maximin optimal design. The approach via AVE criterion is not
robust, and the AVE-optimal design leads with nonzero probability to criterion values
smaller than 0.6.

In Figure 3.8b is indicated how could we approach the cdf corresponding to 10%-
quantile optimal design by considering the cdfs of 20%- and 25%-CVaR optimal designs.
It would be very interesting if we had some theoretical results related to the possibilities
of approaching the quantile optimal design via optimizing the CVaR criterion.

Figure 3.8c displays the cdfs for a = 0.5. A
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09

o | €9 & Orermet (¢) | PP (&7) | time
0 0.3 0.4 0.6 1.2 1.3 1.4 1.6
CVaR 0.7851 0.7924 1320 s
0.459 0.253 0.097 0.007 0.048 0.129 0.007 0.001
0 0.3 0.4 0.5 1.1 1.2 1.3 1.4
0.1 local 0.7853 0.7930 1642 s
0.457 0.246 0.107 0.003 0.005 0.043 0.134 0.005
) 0 0.3 0.4 0.5 0.9 1.2 1.3 1.4
uniform 0.7839 0.7911 1910 s
0.459 0.248 0.096 0.009 0.005 0.018 0.156 0.005
0 0.4 0.5 1.1
CVaR 0.9305 0.9495 60.91 s
0.500 0.429 0.068 0.003
0 0.4 0.5
0.5 local 0.9315 0.9493 43.18 s
0.500 0.400 0.100
) 0 0.4 0.5 0.6
uniform 0.9251 0.9449 904 s
0.495 0.457 0.029 0.010

Table 3.4: The numerical results of Example 3.25. The e-optimal designs & for the quantile criterion @2 with probability level a computed via
the vertex direction algorithm 3.26 initialized at the design £¢©. The value PYrernel (£¥) is the approximation of corresponding a-quantile criterion
computed using Kernel smoothing with R = 100 equally spaced 62 in the interval [0.5;3.5] and the value <1>an0000 (&) is the direct approximation
of corresponding a-quantile criterion based on 10000 equally spaced 3 in the interval [0.5;3.5].
Algorithm 3.26.

The last column gives the running time of
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in the interval [0.5;3.5], where ¢ is either q)aQ or ®,-optimal design for a = 0.1,0.5. In each
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3.7 Conclusions to this chapter

The Conditional Value at Risk was used for the design purposes (input design problem)
in Valenzuela et al. (2015) for the first time. We think that the introduction of the
CVaR criterion in experimental design is very interesting, since it enlarges the pos-
sibilities of the popular AVE and maximin criteria—which are not quite satisfactory
from a certain point of view—and is related to the recently proposed quantile criterion
(Pazman and Pronzato, 2007), which is not concave.

In Sects. 3.2-3.3 we summarized and explained the properties of the CVaR-criterion.
We were inspired by results obtained in the risk theory (Pflug, 2000; Rockafellar and
Uryasev, 2000, 2002). The formula for the CVaR-criterion used in this thesis differs
from the formula introduced in Valenzuela et al. (2015). Its concavity is ensured (when
¢ (&,0) is a concave function of £) whether the random variable ¢(&,6) is continuous
or not. We think that the expansion to non-continuous random variables is important
because of the possibility of finiteness of the parametric space ©, which necessary leads
to a discrete random variable ¢ (£,0). This motivated our detailed investigations in
Sects. 3.2-3.3, since the case of non-continuous random variable ¢ (§,0) turned out to
be more difficult than the continuous one.

We showed that the CVaR-criterion @, (§) can be considered as a compromise
between AVE (o =1) and maximin (o — 0) criterion, see Sect. 3.4, which gave us
one possible interpretation of @, (£). As mentioned in Pdzman and Pronzato (2007),
the AVE-optimal design {3y does not exclude the situation that the probability
Pr{¢(&xyg.0) <t] is large for given small ¢t. This drawback is partially treated by
CVaR-criterion, which is related to the expected value of the criterion ¢(¢,0) under
the condition that ¢(&£,0) is less than (or less than or equal to) the corresponding
a-right-quantile Rqy ¢ g) (), see Sect. 3.3. Pdzman and Pronzato (2007) pointed out
that the maximin optimal design is often focused on @ at the boundary of the para-
metric space ©, which is not the case of AVE, CVaR or quantile criteria as illustrated
in Example 3.18.

Under some assumptions, we were able to formulate the equivalence theorem for
the CVaR criterion, and we derived the subgradient and the directional derivative
of the function wy(§,c) related to the CVaR optimality criterion. We suggested a
methodology how to obtain CVaR-optimal designs when ¢ (&,0) is concave in £ via the
method of cutting planes in Sect. 3.5, which was illustrated on examples in Sect. 3.6.

In the future, we could investigate the proper choice for probability level «

1. to obtain design which is not focused only on some values 6 like maximin optimal
design but which is still sufficiently robust or

2. to approximate the quantile optimal design as indicated at the end of Example 3.25.
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Finally, we would like to focus on application of Jeffrey’s non-informative prior when

there is no known prior on the parametric space ©.
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Chapter 4

Extended optimality criteria for
avoiding false estimates in

generalized regression models

In this chapter we deal with possible instabilities related to the maximum likelihood
estimation in generalized regression models. The aim is to prevent the problems with
the uniqueness and identifiability of the maximum likelihood estimate at the design
stage of the experiment.

To achieve this goal, we follow Pdzman and Pronzato (2014), who introduced the
extended criteria of F-, c-, and G-optimality to avoid these problems with least squares
estimation in classical nonlinear regression. For deeper analysis we also refer the reader
to Chap. 7 of the monograph Pronzato and Pazman (2013). We were able to extend
the results of Pazman and Pronzato (2014) to generalized regression models based on
exponential families of distributions, and, in addition, we also derive the extensions of
some other optimality criteria, e.g. the MV - and A-optimality criteria. Partial results
from this chapter were published in Burclovd and Pazman (2016b).

The chapter requires a scrupulous introduction not only to exponential families
of distributions and generalized regression models based on them, but also to matrix
norms and pseudonorms. We provide such an introduction in Sect. 4.1. In Sect. 4.2
we show how to design experiments in generalized regression models (even by applying
the results of previous chapters of this thesis). In Sect. 4.3 we indicate the stability
problems related to the maximum likelihood estimation and we introduce the extended
optimality criterion based on the I-divergence. In Sects. 4.4-4.5 we define the exten-
sions for some classical optimality criteria. Section 4.6 summarizes some properties
of the extended optimality criteria and Sect. 4.7 shows a method based on Pazman

and Pronzato (2014) how to calculate the optimal designs for them. Finally, Sect. 4.8
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concludes.

4.1 Introduction

4.1.1 Matrix Norms and Pseudonorms

Definition 4.1. The matrix norm is a mapping ||-|| : R™*¥ i [0,00), A — ||A|| such
that VA, B € R™*k:

a) [|[Al=0 A [A] =0 A=0],
b) [laAll = al[|A]l  Va€R,
c) [[A+ B[ <Al + Bl

See e.g. Golub and Van Loan (1996), Sect. 2.3.1. In the literature (e.g. Gentle,
2007, p. 128) is often the consistency property ||[AB|| < ||A|||B|| required, however,
this is not our case and the properties a)-c) are sufficient.

One sees that for £ =1 the mapping ||-|| introduced in Def. 4.1 reduces to a standard
vector norm on R".

In this thesis we pay attention especially to the vector ¢ (p) norm and to the Schatten

p norm on square matrices in R™*":

m 1/p
Vp=1 Vv=(vi,...,vm) ER™ IV, = (Z |Uz'|p> (¢(p) norm),
i=1

1/p
Vp>1 VAeR™™ [Allg(p) = {tr [(AAT)p/Q} } (Schatten p norm). (4.1)

The Schatten p norm is closely related to the ((p) norm since [[Allgy,) =
H(31 (A),....sm (A))Tue(p), where s; (A) =/ \i (ATA) (see e.g. Bhatia, 1997, Eq. IV.31).
Besides the well known Euclidean norm (¢(2) norm), we will often use its general-

ization on matrix spaces—Frobenius norm (see e.g. Bhatia, 1997, p. 7, Gentle, 2007,
p. 132):

k m k
VAER™® || Alp= |3 I144ll5 = |2 D 1A}, (4.2)
j=1 i=1j=1

where A1,..., A € R™ denote the columns of the matrix A € R™*¥ and {A}4; is the
element on i-th row and j-th column of A. The Frobenius norm on square matrices
coincides with the Schatten p = 2 norm.

In this thesis we do not restrict ourselves only to norms and hence the definition of

matrix pseudonorms is now in place.
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Definition 4.2. The matrix pseudonorm is a mapping [|-[|| p : R™** = [0,00), A —
I|A|ll p such that YA, B € R™**:

a) [lAllp =0,
b) llaAllp = lal [ Allp Vo R
c) [[A+Bllp < llAllp+ I Bllp-

Obviously, the case k =1 corresponds to a vector pseudonorm. The property b)
from Def. 4.2 implies that ||0]| » = 0. Notice that it follows from Def. 4.1 that every
norm fulfils also all properties of a pseudonorm.

The following lemma is a partial generalization of the statement about the equiv-
alence of norms (see e.g. Gentle, 2007, Eq. 3.236)—the well known property of norms

in finite-dimensional spaces.

Lemma 4.3. Let ||-||p be a pseudonorm and ||-|| be the Frobenius norm in R™**.
Then there exists a real number a > 0 such that YA € R™* . a||A||p < || Al 5.

Proof. We postponed similarly as Morrow (2013) in his proof of equivalence of vector
norms.

The statement of the lemma holds trivially for any matrix A such that [|Al|p =0
and in such case a > 0 can be chosen arbitrarily.

Now, let A € R™** he a matrix with a positive pseudonorm, i.e. ||| A]|p # 0. Denote
by Ej; € R™*% the matrix with one unit entry in the i-th row and j-th column and
zeros elsewhere. Then A =3>1", Z;?:l {A};; Eij, where {A},;; is the entry in i-th row

and j-th column of A and hence

k

m k m m k
0<ll4llp < X3 HAyy By < | 03 [{akyl |3 S I1E I

i=1j=1 i=1j=1 i=1j=1

m k 9
=1 4llp | > > 1Elp,

i=1j=1

where we used the properties b) and c¢) from Def. 4.2, Cauchy-Schwarz inequality and
the definition of the Frobenius norm (4.2). Emphasizing that \/Zﬁl Zé?:l |||E”|||§3 is
positive, we denote a = and we have that a||A||, < ||A] p. O

1
2
\/Z;ll Z?:l |||EU |||P

Definition 4.4. The dual norm ||-||” of the norm ||-| on R™** is for any A € R™**

given as the mapping

A ||A|P = pen L tr (AT B)|.
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See e.g. Eq. IV.50 in Bhatia (1997). Note that the dual norm also satisfies the
properties from Def. 4.1, i.e. the dual norm is a norm.

Applying the well known Holder’s inequality for vector variables one obtains that
the ¢(gq) norm with ¢ satisfying the equation 1 =1/p+1/q is the dual of the ¢(p)
norm. Analogical outcome follows for the Schatten p-norm on square matrices (see e.g.
Bhatia, 1997, Proposition IV.2.11 and Exercise IV.2.12 (ii)):

YA€ R™™ | A5, = [|Allg) . where g = pfl'

One sees that in the case of the ¢(p) and Schatten p norm the dual norm of the
dual norm is the initial norm, i.e. ||vllz(p = V]l and | Allg) = [[Allg,. Using this
and (1.2) one obtains for any symmetric positive definite matrix M that (Dette et al.,
1995, Lemma 2.2)

tr2(ATB
max tr [BTMle} = max max M
BeRm*m|[B|& =1 BeRmxmy|| B, | —1 ACR™XM:AZ0 t (ATMA)

2 ATB)

maXBeRme:HBHSD(p)zltr (

max

- AeRMXm: A£Q tr (ATMA)

2
o 1 All3(p)
AERMX™; A£Q ty (ATM A)
1

- tr(ATMA) (43)

min

Analogically,

Ta—1 1
max u M 'u= .
uERm'HuHD -1 min u' Mu
) ueR™:lul[;,y=1

4.1.2 Exponential families of distributions

Focusing on the purposes of the thesis, in this section we will mention the most impor-
tant properties of exponential families of distributions. For more results we refer the
reader to Barndorff-Nielsen (1978), Efron (1978), and Brown (1986).

Denote by Y C R! a sample space of an experiment, i.e. the space of all possible

realizations of a random vector Y.

Definition 4.5. The distribution of the random vector Y is an exponential family if
its probability density function (pdf) or (for discrete random variables) its probability

mass function (pmf) f, with respect to the o-finite measure 7, can be expressed as

Flyy) =ep{—v(y)+t (y)y—r()}, (4.5)
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where v € I' CR" is the canonical parameter,t:Y —R" ¢ : Y —- R, and k: ' — R are

known functions.

It follows that Y is a continuous random vector in the case of Lebesgue measure 7,
and Y is a discrete random vector if 7 is counting measure (7 ({y}) =1).

Using that [y, f(y,7)d7(y) = 1, one can equivalently write exp{s(vy)} =
Jyexp {—w (y)+t' (y)'y} dr (y). Later it will be appropriate to consider the extended

space I'npax:

Chax = {’y eR": /yexp{—w(y) +t" (y)’y}dT (y) < oo} oT. (4.6)

Although the canonical parameter -y is very useful in the theoretical considerations,
it does not necessarily coincide with the usual parametrization of given distribution.
For instance, consider the binomial distribution Bin(n,p) parametrized by p € (0,1)
with given n. To obtain the representation of pmf as in (4.5), one has to put v =~(p) =
In (p%l) el with ' = {ln (%) ,DE (0,1)}, see Appendix B.1. It follows that ~ can
be parametrized by some vector parameter ¥, which may (and may not) correspond
to the usual parametrization of the given distribution. Then the density in (4.5) can

be equivalently rewritten in the form

Fly (9] = exp{=¢(y) +tT (y)7(9) = c[y(9)]}. (4.7)

According to the factorization theorem (see e.g. Billingsley, 1995, Theorem 34.6),
t(Y) is a sufficient statistic. This allows us to observe ¢ (Y) instead of Y without losing
any information on parameter v (or ), and, moreover, the family of distributions
induced by the random variable ¢(Y) is again an exponential family (Brown, 1986,

Proposition 1.5).

Moments in exponential families

Theorem 4.6 (Brown, 1986, Theorem 2.2). The function ") s infinitely many times
differentiable with respect to v at any vy € int (I'yax). Moreover, for p=p1+...+py,
pi € NU{0} Vi=1,...,r one has that

MeXp{ﬁ(v)} - /yt’fl ().t (y)exp{—v (y) +tT ()7} dr (y).

Using Theorem 4.6, we obtain the expected value 7i(7y) and the covariance matrix

Y () of the sufficient statistic ¢(Y) for any given v € int (I'pax):

85(7)

_ Ok (v n
i =Byl = 250 | (48)

T st

Oyr
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0k (7) 0k (v)

_ 92k ~ 0’71.371 5’71.3% O (v

X(y) = Vary [t(Y)] = 8’7;73 — 2 : 2 : = (9'7(T> (4.9)
9°k(7) 9°k(v)
8’}/7"611 e 8’77‘817-

(see e.g. Brown, 1986, Corollary 2.3 or Pazman, 1993, Chap. 9.1).

It can be proved that () is positive definite (and nonsingular) if t1 (y), ..., ¢ (y),1
are linearly independent functions, see e.g. Chap. 9.1 in Pazman (1993). (We say
that the functions ¢1(2),...,¢n (2) are linearly dependent if there are such numbers
ai,...,an, not all zeros, that > 1* { v;(2)a; =0 Vz.) Any pdf (or pmf) from (4.7) can
be equivalently rewritten into such form that ¢;(y),...,t (y),1 and, simultaneously,
7 (9),...,7% (¥),1 are linearly independent (Brown, 1986, Theorem 1.9). Such a rep-
resentation will be called minimal, see Corollary 8.1 in Barndorff-Nielsen (1978) for
this term. Throughout this thesis we will always consider the minimal representation
of the exponential family.

It is easy to see that 71[y(9)] and X [y(9)] are expected value and covariance matrix

of the sufficient statistic for given 9.

Fisher information matrix in exponential families

For a more comprehensive explanation of the term Fisher information matrix we rec-

ommend Lehmann and Casella (1998).
Definition 4.7. Let f(-,7) be the pdf (pmf) from (4.5), then

Olnf(y,v)olnf(y.v)
oy oy’

M’Y:E’Y[

is the Fisher information matrix for the canonical parameter ~.
Definition 4.8. Let f[-,7(1)] be the pdf (pmf) from (4.7), then

Oln fy,7(9)] dln f [y, ~(9)] }

Mﬁ:Eﬂ{ 55 5T

is the Fisher information matrix for the parameter 9.

In the minimal representation of the exponential family and assuming that «, () €

int (['pax) and that the derivatives agigﬁ) and aﬁa[g(f)] exist, the direct calculations lead

to (see e.g. Pdzman (1993), Egs. 9.2.8-9.2.9)

Fnfy,v)] Onf(y, M| «,,_ ()
W] —V&I‘»y [a’_y] - 2(7) — Wa

My =By |-
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o PInfly,y(9)
Mo = Lo { 9999 }
00T (9) 9r(9)
oY 9

o (9) 00 T - onie)
~ o9 M"‘w:wﬁ) 097 09 S (@) 097
onT ()] L o)

29 1=h)]} T

It is obvious that My # M, ‘v—v ) and, unlike the expected value 7 (+) or covariance

matrix Y (+), the Fisher information matrix depends on the parametrization.

I-divergence in exponential families

The I-divergence (Information divergence or Kullback-Leibler divergence, see Kullback
and Leibler, 1951; Kullback, 1997) is often applied to measure the distance between

two distributions.

Definition 4.9. The I-divergence between two pdfs (or pmfs) f (‘,'70> and f(-,7)

from the exponential family (4.5) is defined as

f(y”yo):/ln

f(y:7)
As follows from (4.5), provided 4° € int (I'yax), one can write in the exponential
family that (see e.g. Pazman, 1993, Eq. 9.2.3)

f(¥:7°)
f(y:)

I (’yo,'y) =FE, |In f (y,'yo) dr (y).

I1(v9) =7" () (=) +r () =~ (2°). (4.11)

Notice that I [’y (19()) ,7(19)}, as a function of 9¥ and 99, is the I-divergence between
f f,y('ﬂo)} and f[-,7(9)]. One can write for 7(9°) € int ([yax) (see e.g. Pézman,
1993, Eq. 9.2.4)

1[y(9°) 7@ = 7" [5(8°)] [7(9°) —1(@®)] + k()] = 5 [ (8°) .

The I-divergence I1(4°,~) is nonnegative and equals zero if and only if f(y,~v°) =
f(y,7), see Lemma 3.1 of Kullback and Leibler (1951).

4.1.3 Generalized regression models based on exponential fam-
ilies
The classical linear and nonlinear models (1.4) and (1.5) considered in previous chapters

do not include the case of a discrete observed variable y(x) or the case when also
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the variance component of y(x) depends on the design point x. Here are generalized
regression models applicable.

Very popular are generalized linear models, which are well elaborated in the lit-
erature, e.g. Nelder and Wedderburn (1972); McCullagh and Nelder (1989); Dobson
(1990). Although there are papers not restricted to linearity, e.g. Atkinson et al. (2014),
there is a lack of complex exposition of generalized regression models in the literature.
So in the thesis we rely on the above-mentioned literature, on the known properties of
distributions in the exponential family, which were presented in the previous section,
and on the lectures given by Pazman (Nonlinear statistical models, 2015).

In this chapter we consider the generalized regression models based on exponential
families of distributions. We suppose that the set of all possible design points X is
finite.

As before, let X = {x1,...,xny}, x; € X Vi=1,..., N denote an exact experimental
design. We observe N independent random vectors yi,...,yn associated with the
design X with the pdfs (or pmfs) of the form

f (yirxi,0) = exp { = (yi) +1" (i) 9 (xi,0) = k[g (x:,0)]} (4.12)

which is obviously an exponential family with the canonical parameter ~; = g (x;,0) €
[Mpax, for any ¢ =1,...,N. Here, 8 € © C R™ is the unknown model parameter and
9(xi,0) = (g1 (x:,0),...,9r(x;,0)) " is the known regression function. Unless other-
wise stated, © is supposed to be compact set. We will assume that the function
g: X xO+— R" is three-times continuously differentiable on int (0) Vx € X and that
m < rN. Throughout this chapter we assume that (4.12) is expressed in its mini-
mal representation and that the set I'yax from (4.6) is open to ensure the existence
of moments, see Theorem 4.6. This means that we consider exclusively the reqular
exponential families in the terminology of Barndorff-Nielsen (1978) and Brown (1986).

Not only the canonical parameter 4, but also the usual parameter in given family
or the expected value of the sufficient statistic can be parametrized by 8. These two al-
ternative parametrizations can be applied in the praxis thanks to their straightforward
interpretation. In the exponential families are the relations between the canonical
parameter -y, the usual parameter in given family, and the expected value of suffi-
cient statistic fi(7y) known (see Appendix B). This allows us to use only the canonical
parametrization in our theoretical considerations.

One obtains from (4.12) that the joint distribution of the mutually independent

random vectors yi,..., YN
N N N
H f (W;Xi: = €Xp Zw yl Z ( Xz, Z K|g Xla s (413)
=1 =1 =1
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is obviously an exponential family.
The estimate @y for the unknown parameter @ is then computed via maximum
likelihood method:

N
O — . %:.0). 4.14
On argglggzl;[lf(y ,X;,0) (4.14)

In exponential families of distributions and in the generalized regression models based
on them, the estimate can be calculated iteratively e.g. via the Fisher scoring method.
Numerical methods of calculations of Oy are beyond the scope of this thesis and are
elaborated e.g. in Nelder and Wedderburn (1972); Nelder (1975); Jorgensen (1984);
Green (1984); McCullagh and Nelder (1989); Dobson (1990).

Moments, Fisher information matrix, and I-divergence in generalized re-

gression models

When considering a generalized regression model based on exponential families, we set
the regression function g(x,6) instead of the canonical parameter 7 in (4.5) to obtain

the pdf (or pmf) of the measurement y observed at x € X

f(y,x,0) =exp{ ¢ (y) +1" ()9 (x,0) = [g(x.0)]}, (4.15)

which is assumed to be expressed in its minimal representation. Similarly as in linear
and nonlinear regression, throughout this chapter we always suppose that any two
observations y,y’ from different trials are independent. The moments for given x and
0 exist, since I'ax is open, see Theorem 4.6, and we can use all results derived for

(4.5), in particular, following from Eqgs. (4.8)—(4.11), we can define

e the expected value of the sufficient statistic ¢ (y) for given x and 6:

_ Ir (v
4(x.0) = 7ilg (x.0)] = [ 'l >] | (4.16)
T Jy=g(x.0)
e the covariance matrix of the sufficient statistic ¢ (y) for given x and 6:
= 0%k ()
5 (x.0) = Sl 0] - | ,
Oyor! v=9(x,0)
e the elementary I-divergence for given x:
f(v.x,6%)
I,(0°.0)=Eo|In————2| =T1|g(x,0°),9(x,0
(6%.6) =2, f(y,x,0) [9(x.6%).9x0) (4.17)

=u' (X,OO) [g (X,OO) —g(X,G)} +rlg(x,0)] — K [g (X,HO)} :
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e the I-divergence for the exact design X = {x1,...,xx5}:

In Hf\il ! <yi’xi’00)] = %Ego [In —f (yi’Xi’OO)]

Hiilf(ybxho) f(}’sz,O)

Iy (00,0) = By

N
= I, (6°,0),
=1

e the elementary Fisher information matrix for the parameter 6 is defined as

M (x,0) = Fy [alnf(%’x’e) alng(HyT,x,O)}' One has the following relations:

9?Inf (y,x,0)
M(x.6) = Es 00007
097 (x,0) 9 (x,0)
06 00! (4.18)
_ agT (X’O)M ‘ ag(x70> _ agT (Xae)z(x )6g(x,0)
06 Th=gx0) 99" 00 T H0"
T(x,0 x,0
_ a:u 8(0 ) )2—1 (X, 0) a,ua(e"r )7

provided that u(x,0) is differentiable with respect to 8 € int(0),

e the Fisher information matrix associated with the exact design X = {x1,...,xy}:
821 ]\i f( [ i,e N 821 (3 iag N
Mx (0)=Eg |- an)‘agery 0| 5N | B, {—naj;(gf) =it M (x,0).

If the random variable ¢ in the nonlinear regression model (1.5) or in the linear
regression model (1.4) is normally distributed with zero mean and unknown constant
variance o2 > 0, then the models (1.5) and (1.4) will be called normal nonlinear model

and normal linear model, respectively.

Remark 4.10. The nonlinear regression model (1.5) with normally distributed ran-
dom errors with zero mean and unit variance (i.e. y(x) ~ N (n(x,0),1)) can be in-
terpreted as a generalized regression model. One can see in the Appendix B.8 that
the usual parameter, the canonical parameter and the expected value of the suffi-
cient statistic coincide and the corresponding regression function is given by the rela-
tion ¢(x,0) =n(x,0). One has Ix (0070> =1/2 [77 (X,BO) —77()(,9)}2 and M (x,0) =

.
WZ (x,0) 8ga(;<+0) = 8"(8’;’9) a%(;’e) for the elementary I-divergence and elementary

information matrix, respectively. If, moreover, the relation between the regressors and

the parameters is linear, i.e. if n(x,0) = f' (x)@, we obtain a normal linear regres-

sion model as a special case of generalized regression models and M (x) = f (x)f T (x),

1, (6°,60) = 1/2(6°— ) M (x)(6°—0).
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Asymptotic properties of maximum likelihood estimate in generalized re-

gression models

Consider an exact experimental design X = (x1,...,Xy), where x1,...,X is a random
sample from the distribution given by the approximative design &. It can be shown
(see Sects. 4.2-4.3 of Pronzato and Pazman, 2013) that, under some assumptions, the
maximum likelihood estimate 8y from (4.14) is asymptotically (for large N) normally
distributed with mean equal to the true parameter value @ and with covariance ma-
trix % {M (5,9)}_1, where M (€,0) is assumed to be nonsingular information matrix
associated with design £ defined as

M(€,0)= > M(x,0)¢(x)

xeX
with M (x,0) from (4.18).

4.2 Experimental design in generalized regression

models

The design issues in generalized regression models are studied e.g. in Atkinson et al.
(2014) and in generalized linear models e.g. in papers Atkinson and Woods (2015) or
Khuri et al. (2006).

In this chapter we consider two different approaches to optimal experimental design
in generalized regression models based on exponential families:

1. The approach which uses the asymptotic properties of maximum likelihood esti-

mate as in Atkinson et al. (2014) and

2. the approach similar to Pazman and Pronzato (2014), who introduced the ex-
tended optimality criteria which lead simultaneously to stable and precise esti-
mates in nonlinear regression models. Our extension of these results is described

in the next sections of this chapter.

We remind that throughout Chap. 4 we always assume that the design space X is
finite.

4.2.1 Designing experiments in generalized regression models
using the asymptotic properties of maximum likelihood

estimate

The main idea of this approach is to maximize the proper function of Fisher information
matrix M(&,0) = Y cx M(x,0)(x) as in Atkinson et al. (2014). The asymptotic

76



properties of maximum likelihood estimate indicated at the end of Sect. 4.1.3 are then
applied.
Unlike the classical nonlinear regression model (1.5), where the rank of elementary

information matrix equals one, in generalized regression models we have
M(x,6)=F (x,6)F' (x,6),

where F'(x,0) = (X 99 (x0)511/2 (x,0), see (4.18), is m x r matrix and its rank is not
necessarily equal to one (it equals one if the sufficient statistic ¢ (y) is one-dimensional).

In generalized regression models we can also apply the results of Chap. 2 and
compute locally optimal designs via linear programming after the proper reformulation
of the optimality criterion into the form

VEEE Bpoe(6) = ¢>(50)—ggmzﬂ(g,x 6°)¢ (), (4.19)

where the function H (-,-,-) and the set =* depend on the criterion which is reformu-
lated:

D-optimality criterion =* = {(: M ((,€0) is nonsingular}

det!/™ [M

H((,x,8) = - (C’B)]tr[FT (x,0) M~ (C,0) F (x,0)],

A-optimality criterion =" = {(: M ((,0) is nonsingular}

tr|FT(x,0) M~%((,0) F (x,0)]
tr?[M~1(¢,0)] ’

H((,x,0)=

Ej-optimality criterion =" ==

H(¢,x,0) =tr[FT (x,0) P¥) (¢,0) F (x,0)],

where P*) (¢,0) =% u; [M (¢,0)]u) [M ((,0)] is a k-dimensional orthogonal
projector and u; [M ((,0)] i =1,..., k are the orthonormal eigenvectors of matrix

M (¢, 0) corresponding to its k smallest eigenvalues.

The reformulation (4.19) can be justified in the same way as in Chap. 2. The
maximization of criterion @), then corresponds to an LP problem with infinitely many
linear constraints, which leads to the similar algorithm as introduced in Chap. 2.

To avoid the undesirable dependence of the information matrix on the unknown
parameter @, one may also apply the maximin optimality criterion (1.9), AVE opti-
mality criterion (1.10), or criterion based on the conditional value at risk (CVaR) as a

compromise (see Chap. 3).
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4.3 The problem of stability and identifiability of
maximum likelihood estimate. The extended
optimality criteria.

For a detailed discussion on estimability and identifiability of parameters in classical
nonlinear regression we refer to Chap. 7 of Pronzato and Pazman (2013).

It turns out to be very important to describe and identify the possible instabil-
ities which may appear in maximum likelihood estimation in generalized regression
models. Especially for a normal nonlinear regression we observe the same instabilities
as described in Pazman and Pronzato (2014) or in Chap. 7 of Pronzato and Pazman
(2013), since in the case of normally distributed random errors, the maximum likelihood
method and the method of least squares lead to the same estimates.

Let 0 be the true and unknown parameter value and let 0 N be its maximum like-
lihood estimate (4.14) based on N independent measurements in xi,...,xy such that
the relative frequency of x within xi,...,xy tends for N — co to £(x). Suppose that
the nominal parameter value 8" is allocated in the neighbourhood of 8. Then the
variability of the estimator Oy near 6 is well expressed via the information matrix
M (5 ,00), since M1 (5 ,9) is proportional to the asymptotic covariance matrix of the
estimate @y (see Sect. 4.1.3). The experimental design which maximizes the classical
local optimality criterion (1.8) ensures that the parameter 8 is locally well identified
in the neighbourhood of 8° (i.e. the covariance matrix of @ is “small”).

We are interested in the global identifiability (or stability) of the parameter that is
related to points @ distant from 0. The problem appears when for such 6 the likelihood
function L (0) = [IX, f (ys,%i,0) is very close to L (é) =TI, f (yi,xi,é), i.e. when
the difference ’1n [L (é)} —In[L (0)]’ is very small. In such cases, the maximum of
the likelihood function can be attained at @, a point distant from the true parameter
value 0. It follows from (4.13) and (4.16) that this instability may appear when the

“canonical surface”

#={(s" x1.6)....9" (x,0)) 6 €O}
or “expectation surface”

&= {(,uT (x1,0),...,1" (XN,B))T,B € @}

are “nearly overlapping”, e.g. when they are shaped as in Figure 4.1 on page 97. The
importance of the canonical and expectation surface in curved exponential families was
emphasized by Efron (1978).
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The problem of both global and local identifiability can be well described via the

I-divergence. Directly from (4.17) we obtain the following remark.

Remark 4.11. Consider an exact experimental design X = {x1,...,xy} and an ap-
proximative design £. In the generalized regression model with the density of measure-

ments (4.15) one has

I (00,9) = Ey [1nf (y,x,oo) - 1nf(y,x,0)] VxeEX,

Ix (6°,6) = Ego

N N
lan(yi,xi,HO) —IHHf(Yi,XiaB)] ;
=1

=1

and, obviously,

> Ik (00,0> §(x) = Ey { > {lnf (y(x),x,90> —Inf (y(x),x,@)] {(X)} :

xeX xeX

At the design stage of the experiment, neither the observed values y1,...,yn nor the
difference In [Hfilf (yi,xi,éﬂ —In [Hi]\il f(yi,xi,O)] (which we prefer to be as large
as possible for @ distant from @) are known. According to Remark 4.11 and under
the assumption that 6% is in the neighbourhood of 6, one can use the I-divergence
Yoxex Ix (00, 0) £(x) to express the global identifiability of the parameter at 0° associ-
ated with the design &.

On the other hand, the I-divergence reflects also the variability of the estimate On
near 0° as a consequence of the following lemma.

3 0
Lemma 4.12. Let the third order derivatives %giégj) be bounded for any x € X and

any 0 € int(O) Yh,i,j € {1,...,m}. Then, in the generalized regression model with the

density of measurements (4.15),
1. (6°,6) = ; (6°-6)" M (x.6") (6°~6)+0 (Heo - 0Hj(2)> .

The big O notation O(-) here describes the behaviour of a given function when
0
HO _OHz(z)_)O'

Remark 4.13. One writes that ¢ (2) = O[e(z)] for z — 0 for some functions g (z) and
¢ (z) if and only if A > 0,Q > 0 such that |¢(2)] < Q|o(2)| for |z] < A. This also
implies that if for some n € NU{0} ¢, (2) is O (2") and ¢p11(2) is O (z”“) for z — 0,
then ¢, (2) +vnt1(2) =0 (2"), vn (2) Pp+1(2) =0 (zQ”H) for z — 0.

Proof of Lemma /.12. Equations (4.16)—(4.18) imply that

Ol (90,9)] . [awx (90,9)] ().
0=6° 60=6°

I, (6°,6°) =0, e e
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Then by using the Taylor expansion of Iy (00,0) at ° (see e.g. Trench, 2003, Theo-
rem 5.4.8) can the lemma be proved.

Notice that in the Taylor expansion we used the Lagrange reminder (Abramowitz
and Stegun, 1972, p. 880):

3! 005,00;00;

L[]

hi,j

for some 6* on the line segment connecting 8" and 6. The boundedness of the deriva-

tives ensures the existence of such )y that

‘ [83[,( (00,0)}

<
96,0000, = Qo

for any h,i,j € {1,...,m}. It follows that there is @ > 0 such that

1 I, (6°,6
o 2 (0n—00) (6:—00) (0, ) laeha(eiaej)] og* :

h,i,j

Q
= J}%HO_OOHZ)@) = QHO_OOHZ)@)

3
which justifies that the last addend in the Taylor expansion is O (HB — HOHE (2)>. O

Lemma 4.12 implies for the information matrix M (5,00) =Y gex M (X,OO)S(X)
that

S 1 (69,0) € (x) = ; (0°-6) A (,6°) (6"~ 8)+O (Heo _ OHZ'(Q)> o (4.20)

xeX

4.3.1 The general definition of extended optimality criteria

Let us introduce a very general definition of extended optimality criterion which is

intended to be maximized with respect to £ € =.

Definition 4.14. Let £ € N be a given number and K > 0 be a tuning constant. The

extended optimality criterion for a given nominal parameter value 8 is defined as:

O g SE O ] o

(07 70k 69 xeXi=1

where p : Rm>(k+1) R (00,01,...,0k> — p<00;01,...,0k) is a distance between a

k-tuple of points 01, ..., 6" and the nominal value 6° in the parametric space O.
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The choice of the distance p and of the number k € N directly determines the
extension of which criterion is dealt with, as we will see in Chaps. 4.4 and 4.5.

The term extended optimality criteria is from Pédzman and Pronzato (2014), who
introduced the extended criteria of E-, c-, and G-optimality in classical the nonlinear
regression models (1.5). They considered the case k =1 and instead of the double
I-divergence in the numerator, they put [77 (X,OO) — n(x,@)r. They also justified the
relation of the extended criteria to the classical criteria of E-, c-, and G-optimality.

In the thesis we always denote the extended optimality criteria by ezt in the super-
script to avoid possible confusions with the classical (not extended) optimality criteria.

The extended criteria (4.21) are based on properly “standardized” I-divergences.
Notice that the I-divergence has already been used in the optimal experimental design
by Lépez-Fidalgo et al. (2007), who introduced the criterion of K L-optimality for
(different) purposes of model discrimination.

For K =0 (see Sect. 4.6.1 for more properties of the tuning parameter) is the
interpretation of the criterion in (4.21) as follows: the aim of the experimental de-
sign is to find & which maximizes the minimal ratio of the summary I-divergence
>xex Zle 21x (00701)5()() to the distance p(00;01, . ,0’“). The ratio is minimized
over the set of all possible ordered k-tuples of vectors 61, .. .,Hk , hence, the optimal
design &* prevent such situation when the summary I-divergence is small for 0',... ,Ok’
very distant from 6", and, subsequently, the probability of false maximum likelihood
estimate is minimized (see Remark 4.11). Pazman and Pronzato (2014) considered
only the case k =1 when one searches for one “bad” @ minimizing the above men-
tioned ratio. If £ > 1, we can consider more than one “bad” @, and hence the resulting
criterion is more “robust” in this sense.

Nevertheless, the interpretation is clearer for £ =1 and we also have to mention the

computational complexity increasing with k.

4.4 The extension of pseudonorm optimality crite-
ria
Consider the class of (local) pseudonorm criteria

34, (£.0) inf  tr|ATM(£0)4], (4.22)

" AcRmE] Alp=1

where m is equal to the dimension of the unknown parameter 8, k € N is a given
number and ||| is an arbitrary pseudonorm on R”™** not identically equal to zero.
The criterion (b\ll'\llp is concave and positively homogeneous in &, since it is defined as

infimum of functions linear in &.
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When |[|-[| p corresponds to an arbitrary norm |[|-|| on R™** then the infimum
in (4.22) is reached, because the set {A cR™k || A| = 1} is compact and the mapping
A tr {ATM (& ,O)A} is a continuous function in A on R™**. Moreover, in this case,
the criterion (4.22) is equal to the information function of Dette et al. (1995), who
worked with the corresponding convex class of criteria, also called minimax criteria.
Here we use the term pseudonorm criteria for ¢y, from (4.22) to distinguish between

the maximin criterion ®p,;, defined in (1.9).

Lemma 4.15. Suppose that ||-||p is a norm ||-|| on R™**. When the matriz M (¢,0)
is singular, then the criterion ¢|. (§,0) equals 0.

Proof. When M (&,60) is singular, then there is a vector a # 0 € R™ such that
M (£,0)a =0 and we set A= (a,...,a) € R™* obviously ||A| # 0 due to Def. 4.1.

|
One sees that 0 = W = inf yegmxi) g1 BT [ATM(@O) A} = o O

If the distance p in (4.21) is given through a pseudonorm ||-|, so that
p(eo;el,...,e’“):\H(eo—el,...,e@—ek)”

norm criteria

P We deal with the extended pseudo-

1
LK
(6°~0".....00— 0"

)

k
o (€,0°)=  inf S S 21, (0°,67) ¢ (x)
(RFS ( ) (6'...6" 0" T ( ) m
and their relation to the classical pseudonorm criteria (4.22) is indicated in Theo-
rems 4.16, 4.17, and 4.18. Analogical statements about the extended criteria of F-,
c-, and G-optimality in classical nonlinear regression were pointed out in Pazman and
Pronzato (2014) and in Chap. 7 of Pronzato and Pdzman (2013).

Theorem 4.16. Let © = R™ and p<00;01,...,0k) = [|To—T||p, where
T = (01,...,9k) e Rk T\ = (00,...,00> e R™** with a given nominal parame-
ter value 8° and an arbitrary pseudonorm ||-||p on R™** not identically equal to zero.
In the normal linear regression model (1.4) with Varly (x)] =1Vx € X and with an
information matriz M (§) = > xex f (x)f(x)€(x), the following equality holds for any
K>0

K| =

k
inf > > 20 (6%,6')¢(x) !

(01,...,9k)€9kx6/yi:1 p2 (00;01,...,0k>

= inf tr|ATM (€) A
AeR™k:|| Al p=1 | |
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Proof. Using Remark 4.10 one obtains

0 i 1
- X;(ZZEI (6°.6") ¢ (x >L2<90;91,,..,ek)+K
- i 7 0 7 [ ]
"o e 2 O 78 MO (O =00
. . 0 7 0 7 1
" a(or e 25 (8 70) MO0 ) iy e
. 1
=B () @ (1)
= inf inf [AT ] K62 + 1}
0>0 AcRm¥k:|| Al p=6 | O
= inf inf tr [AT } {K(SQ + 1}

0>0 AcRm*k:|| A]| p=1

= inf tr|AT M (€) Al
AeR™*k:||A]| p=1 { « }

O

Theorem 4.17. Suppose that the assumptions of Lemma 4.12 hold. Denote by
B (00,7“) an m-dimensional ball centred at 8° with a diameter r > 0, i.e. @(00,7"> =
{0; HO_OOHZ(Q) < r}. Let M(ﬁ,OO) =>xex M (X,Ho)ﬁ(x) be nonsingular, and
p(6%6".....0") = [[To—"T|lp, where T = (6",....0") € R"**, Ty = (6".....6") €

R™*k and where ||-||p is an arbitrary pseudonorm on R™ ¥, Moreover, suppose

that there is a matriz Ap € R™*F sych that |Ap[lp =1 and tr [AIEM (5,90) AP] —
o4, (£.6°). Then for any K >0

i 1
..o L (#".0)¢6 p2(00;01,...,0k)+K = o (6:6")

) 0 T)xGXz 1

For the existence of the matrix Ap in the assumptions of Theorem 4.17 it suffices
that Theorem Al from Appendix can be applied to the pseudonorm criterion or that
[I|Il p is & norm (since then the infimum in (4.22) is always attained). In the thesis we
consider only such pseudonorm criteria for which the matrix Ap does exist. Namely, the
criteria of F-, MV-, c-, and G-optimality in Sect. 4.4.1, the criterion of A-optimality
in Sect. 4.4.2 and the criterion of L-optimality in Sect. 4.4.3.
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Proof. Using (4.20) one obtains for T = (01, . ,0’“) that

1

00;01,...,0k)+K

0< Y Zk:2lx (6°,6) ¢ (x) L2<

xeX =1

k (eo_ei)TM(g,oo)(eo_ei) O(Heo—ei Z’@)) )
- IITo —T||% IITo — )% (110 — Tl K]

tr[(To—T)" M (,6") (To—T)] O (I To—TI})

[1+[ITo - T3 5],

2 2
o — Tl o — Tl
(4.24)
13
where (as a direct consequence of Lemma 4.12) one has that O (HOO -0 6(2)> is big
O notation for HOO — 6" «@ — 0, i.e. dA; > 0,Q; > 0 such that if HOO—Oi «@ < Ay,
then |0 ([6°— [ )| < @i ]6° - 67|
(2) )| — 02)°

Moreover, there is A =min{Aq,..., A} and Q = Zle Qi such that if | To— Tz <
A, then we have HOO -6 @) <||To—T|p <A<A,;foranyi=1,...,k, where we used

the definition of the Frobenius norm (4.2). Hence one obtains

3
5(2)>

and ¥ 0 (HOO—Oi (2)> is O(||T0—T||z}> for |To—T||» — 0, which justifies the
usage of O (HTO — TH;}) in (4.24).
Denote A, = {A HAillpgy Srvi=1,..., k} Using the definition of the Frobenius

0’ — o'

|§ij (Heo —0
i=1

k
<> Q;
i=1

3 3
o) S QT =T

3
{

norm (4.2) one sees that |A» = \/||A.1||§(2) +. 4 Al < Vhr for any A € Ay,
and hence O (||A]|z) = O(r) for r — 0 and for A € A,. In addition, it follows from

Lemma 4.3 that for some a >0
IAllp < 1Al p/a < VEr/a

for any A € A, and hence |||AH]?3 is O (7’2> for r — 0 and A € A,. Denote A, =rE—.
[ApPlp
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Obviously A, € A, ||Ar|lp =

> 0 and this together with (4.24) leads to

HA Iz
1
5y B 2050 [ o]
o |w[aTM (e,6%) A] v O (A1)
~ liy inf i [+ 147 K]
T 0 2
< lim tr {ATM(&B )Arl‘f‘O(HArHF) {1+H|AT”|?DK}
o A
AT M (£,6%)A]  O() 5
_ 1 1+0(r?) K
A w4 | i GOR

=tr[ApM (£,6°)

Ap| = oy, (€.6°).

3
since ||OA< ”|2) is O(r) for r — 0. On the other hand, one sees:
lip
lim ZZQI (6°,67)¢(x )[12+K]
T%OT:(gv vgk)edgk 00 )XEXZ 1 |||TO_T|||P
tr[ATM (¢.6" Bl
iy g [PATM(EO) 2] O (I41) 1+ 1Al K]
A, A%
A T 0
o tr(mn) (59><|An)+0() )
T .
A
. tr[(m” ) () (sts)| e
in
o G,
| () 69 ()| -
> lim in
e &l
1A= )|l p
tr[ATM (£,6°) A] - Qr
= lim 5
o0 AfAll =1 Al
1 Qr
, tr[AT M (£,6°)A]
=lim in 5
r—0A:|| Al p=1 1Al
tr[AT M (£,0")A]
_Qr
> lim i 2
r—0A: HAHF—I Al
tr[AT M (£,0°)A]
1
=lim (1--=-) inf = 6"
rlﬂ%( A >A3||114IhF=1 |HA|H?D ¢H|H|P (5’ )’
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where we used the notation A = )\mm [ (5, 00)} > 0 and that each matrix A: [|A]|p =
1 includes at least one column a such that 1 > |lal|y) > 1/ V'k and hence using (1.3)
T 0
a'M (f 0 )a 1
T 0 T 0 _ 2 ’ - . 0y| _

tr[ATM (£,6°) A] > a" M (£,6°)a = |la]}y ——— 2 7 min (M (£,6°)] =
Moreover, there always exists such r > 0 that the expression (1 - %) is positive.

]

Theorem 4.18. Suppose that the assumptions of Lemma 4.12 hold. Let M (5,00) =
Sxex M (X,Oo)g(x) be nonsingular, and p(00;01,...,0k) = ||To—T||p, where T =
(91,...,0k) cR™* Ty = (00,...,90) e R™F and ||-||p s an arbitrary pseudonorm
on R™** - Moreover, suppose that there is a matriz Ap € R™F such that ||Ap||p =1
and tr [A]T;M (5,90) Ap} = Ol (5,00) < 00. Assume that there is 6 > 0 such that

4 (00,5) C ©, where $#B (00,5> = {0 : HB —GOHK(Q) < 5} and © denotes the parametric

space. Suppose that there is no overlapping in 8° under the design &, i.e. ¥r > 03¢, >
0Woeco:|o- GOHM > 7 Yxex Ix (0°,0) 6(x) > ¢, then

lim inf Z 22] (00 9Z> (x) [pz( ! K :¢H|'H|P (5,00).

+
K—00 (g1, 0" cok iy i3 0%0',....6")

Proof. According to Theorem 4.17 one has for any K >0

< oy, (£.6°).

0.l
(6',....0")e0F ycxiz=1 0,0, ...,

inf 2221 (0092)()[/)2( ! Ok)+K

Moreover, the function

(07 70k)€®kX€X’L 1

0 pt 1
PR R —

is evidently non-decreasing in K, hence there is the limit for K — oo and is less than
0
or equal to qu.mp (f,@ )

Now we prove the opposite inequality. Since there is no overlapping, for every r > 0

£ 0 pi 1
> > 2n(6°,6)¢(x) L2< Ok)+K

inf S

(01,...,0k)€6k xeXi=1 0°:0-,...,

16°=6°|] 5y >rVi=1,...k
k
1
> inf 2207« 0o ? + K (4.25)
(6',...0"e0k 3 p? (0 :0°,....0 )
[6°=0°] 5y >7Vi=1,...k

> 2k, K — o0.
K—oo
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Hence for any 0 < r <9,

1
li f 21, (6°,0%) ¢ + K
Kl—r>noo(0 Helk e@kxgmzl ( ) (x )[ 2(00.01"”70/«)

(4.26)

Koo (g!,..,0%)es*(0° r) xexi=1

1
= lim inf 21, (6°,0) ¢ + K|,
2 Z (6%6)¢ ) L? (6%96',....0")
since, as follows from (4.25), there is Ky such that the infimum over the set

(#"(6°.1)] = {(01,...,9’“) cot o

—00H€(2)>rW:1,...k}

would be greater than ¢y, (f , 90) for any K > Ky, while the infimum in (4.26) is less
than or equal to ¢|\|-|\|p (5,00> for any K.
Finally, it follows from Theorem 4.17, that Ve > 0droVr < rq

k
(017~-~79’“i)nef%’fw°m> XEG;(;ZIX (#1.07)¢09 LZ (00;01, ~..,0%) FE| 20y, (66") -
Hence, for every Ve > 0droVr < rg
lim inf 2221 (6°,6")¢(x )[ T } ~+K
(6",....6%)eB*(0°r) xcxi=1 P (0 0 .. ,0)
> oy, (6:6°) -
which together with (4.26) proves the theorem. O

So, to summarize, the extended pseudonorm criterion mﬁﬁp (§ ,00) coincides with
the classical pseudonorm criterion ¢|H~|||p (5 , 00) if the model is normal linear regression
model (Theorem 4.16). It approximately coincides with Pl (5 , 90) if the parametric
space is a ball centred at 8° with a very small diameter (Theorem 4.17) or if the
tuning constant K is very large (Theorem 4.18). These theorems affirm that the

criterion gzﬁmﬁ is an extension of the classical pseudonorm criterion ¢H|'”|P'
P

4.4.1 The case when £ =1

Let us summarize some well-known optimality criteria which are special cases
of pseudonorm criteria. We will also formulate their extensions to the generalized re-
gression models based on exponential families of distributions. First, we will consider
the case k = 1.
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The E-optimality criterion and its extension

One obtains the extended E-optimality criterion by taking the Euclidean norm ||-|[;)
as |[|-|p, since as follows from (1.3) and Def. 1.2 that ng.Hw) (5,00) =

min - u' M (£60%) u= A [M(£6°)] = 65 (£,6°), hence

ueRm:HuHZ(z):l

1

7“90 - QHj@) +K|. (4.27)

o2y

03" (€.6°) = offf,,, (€.6°) = jinf ; 21 (6°,0) € (x)

The MV-optimality criterion and its extension

The convex MV -optimality criterion is defined as the maximal diagonal element of the

matrix M ! (f , 00> , which can be equivalently written as max u' M1 (§ , 00) u
ueR™:|lul[;qy=1

(see Lopez-Fidalgo et al., 1998) and is supposed to be minimized with respect to &.
Using (4.4) and the fact that the £(oc0) norm, [Jufl;) =maxi=1,..m[ui], is dual to

the /(1) norm we can define the concave MV -criterion

oMY (5,00) = ¢|l'”£(oo) (5,90) = min u'M (5,00) u,

i
ueR™:||lul[y(o0)=1

which is supposed to be maximized with respect to £. Its extension is then given as

it (6.6°) = off, . (¢.6°)

lI-lle(oo)
Txex Hg _OHK(OO)
1
= inf Y 21, (0°,0)¢(x) 5+ K
0€0 cex ( ) “max (9? — Qi)
Li=1,....m
The c-optimality criterion and its extension
Define the vector pseudonorm
1l pe : R™ = [0,00), u = [ po = u"c|. (4.28)

Lemma 5.6 from Pronzato and Pazman (2013) (or Theorem Al in Appendix for L = c)
implies that
D)l pe (5,90) = inf u' M (5,90) u = inf u' M (5,90) u

ueR™:||uf| p.=1 ueRm:|uTc|:1

W ifcec[M(s0%)]

=¢c (£,0°),

0 otherwise
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see Def. 1.2. The extension is then

. _ 1
it (607) = ol T2 (00) 600 | i
L Pc
. 1
:5253,(;(2[" (6%.6) € (x) {(90_9)%}2 o

We refer the reader also to a more general definition of the extended c-optimality

criterion in Sect. 4.5.
The G-optimality criterion and its extension
Define the vector pseudonorm
-
Il < B v [0,00) < = [l s = max [ £ ()] (4:29)

Under the assumption that Vx € X f (x) # 0, the application of Lemma 5.6 from Pron-

zato and Pazman (2013) (one may also use Theorem Al for L = f (x)) gives

min inf u' M (5, 00) u=
xeX u:|qu(x)’:1

0 if 3xe X f(x)¢C[M(£0%)],
Minyey fT(x)Mfl(g,oo)f(x) otherwise,
where the left hand side equals
. - u' M (§,90) u ' u'M (5,00) u
min in = in
xeX ueR™:u f(x)#0 {u—rf (X)} 2 ucR™:u ' f(x)#0 {maXxeX ‘qu (X) H 2

= inf uTM (5, 00) u= (bHHHPG (5,00) .

ueR™: [ull po=1

It is easy to verify that [||-||| po is @ norm if the set {f (x),x € X'} includes m linearly

independent vectors. Then, using Lemma 4.15, we have (see Def. 1.2)

if M(¢,0°) is nonsingular

- 1
MiNxcx = 1 0

0 f'(x)M ,07)f(x

Ol (6:0°) = OMHE )0

0 otherwise

=¢c(€.6").

Moreover, even if ||| p; is not norm, ¢y . (€ 0°) = ¢ (£,8°) for M(€,60°) nonsingular.
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The extended ¢|\|’|\|pa optimality criterion is defined as

1
oo (60°) = o, T 20 (07.0) €09
x€X _‘Heo _OWPG

1

MaXxe v [(90 — 0) Tt (X)]

— 0
_elg(fax;ﬂx(e 0)¢(x) s+ K

Notice that the above mentioned criteria of c-, and G-optimality can be further

generalized, see Sect. 4.5.

4.4.2 The case when k£ =m and the distance p(-;-,---,-) is given
through Schatten p norm

One obtains different extended optimality criteria applying the Schatten p norm (4.1)

as the distance p:

f oL, (69,6 ¢ 1 K|. (430
o B 2 (000) ) TCr s N

Lemma 4.19. Let U € R™*™ be an orthogonal matriz and let A € R™*™.  Then
[AUlg(p) = I Allg (), where [|-|lg(y) s the Schatten p-norm.

Proof. ||AU||S(p) = {tr [(AUUTAT) }} = {tr {(AAT) }} = ||A||S(p)‘ 0

Consequence 4.20. The Schatten norm of a matrix T is invariant to rearrangements
of the columns of the matrix T = (01, . 9m> —TP=(6,...,6°), where P is some
permutation matrix and pq,...,py, is the corresponding permutation of the numbers
L,...,m. Indeed, | TP|gy = [|ITg(,) since every permutation matrix is orthogonal
(see e.g. Harville, 2008, Sect. 8.4c). Moreover, summation is a commutative operation
and therefore in (4.30) we are searching for an m-tuple of vectors from O and the order

of those vectors is not important.

The L)-optimality criteria and their extension

We consider the class of concave L,-criteria (see e.g. Kiefer, 1974, Eq. 4.11 or Kiefer,
1975, Eq. 2.1 for convex L,-criteria or Pronzato and Pazman, 2013, Eq. 5.15 for their

concave versions), but we restrict ourselves to p > 1,

1 _ 1
o1 (€,0) = (w{prreopry'”  IMTEOsq)
D )

0 otherwise.

if M (&,0) is nonsingular,
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For instance, one obtains the A-optimality criterion if p =1 (directly from Def. 1.2)

and the F-optimality criterion if p — oo (see Kiefer, 1975, Eq. 2.1).

Lemma 4.21. (Dette et al., 1995, p. 36) Let q=2p/(p+1),p>1. Then ¢r,(£,0) =
Pl lsq) (&:0)-

Proof. We follow the proof given in Dette et al. (1995) on p. 36. We will use the
notation M = M (£,0) since the statement of the lemma does depend on M (&,8), not
on ¢ and @ separately. The case when M is singular is proved in Lemma 4.15, hence
we proceed by nonsingular M.

According to (4.3), it suffices to prove that

AGRmXI"?:E\Tng(q):ltr [ATM 4] = HM_IHS(p) .

Since ||- is the dual norm to ||- , we obtain
() ([
max tr [ATM_lA} = max tr [ATM_IA]
AER™*m:|| Al =1 AGRmxm:HAHS(%):l
= max tr [ATM_IA}
=

= max tr [M_lAAT}
AeRme:HAATHS(p%):l

= max tr [M_lF} ,
FGRmxmiHFHS(L):l
p—1

F is positive semidefinite

where we used for r = ZTpl > 2 that if ||Allg) =1, then
p r)

1= 1) = e[ (aan) ]} = e (aamaary Y = aar

Then, using Def. 4.4, we have

max tr [M_lF} <
FGRmXWiHFHS(L):l
p—1

F is positive semidefinite
D

< m D= =,
“F”s(%):l
Now, to prove the opposite inequality, we set
, M (p—1)/2 B M (p—1)/2
= HM—(p—l)/2HS(p2_pl) - {tr [pr]}(p—l)/2p.
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2p
p—1

One sees || A’ HS< ) =1 and hence we obtain

max tr [ATM_lA} = max tr [ATM_lA}
AeRm*m:| A1 =1 AER™ M Al 2p =1
S(a) S(p—l)

tr [M_p]
{tr [M—p]}(Pfl)/p
= o ()] = e [ (vt

- HMilHS(p).

> tr [A’TM*A’} -

1/p

]

As a consequence of Lemma 4.21, the Ly-criteria with 1 <p = %_q, 1<qg<2are
only special cases of pseudonorm criteria based on the Schatten norm, and hence it is
easy to derive their extended versions, see (4.30). Particularly, when the distance p
from Def. 4.14 is chosen as p (00; o', ... ,Bm) = H (00 —0',....0"— Gm)

the extension of A-optimality

, one obtains

s

k
ot = inf > Y 2n,(0°,67) ¢(x)

T:(Hl,...,em)eenl XGXZ:1

1
2+K] :
ITo —Tll5)

and for p(6%0',...,0™) = H(eo—01,...,00—9m)HS(2) = H(eo—el,...,eo—am)HF

one has the extension of F-optimality criterion

ext’ _ : d 0 pi 1
= e e S 52 )€ L ]
where in both cases we used the notation Ty = (90, e 00).

In Sect. 4.4.1 we defined the extended E-optimality ¢5** via the Euclidean norm.
Theorems 4.17 and 4.16 indicate that the extensions ¢! and (b%xt/ approximately
coincide when the parametric space © is a ball in R centred at 0" with a very small
diameter or they coincide if the model is linear. Generally, we managed to prove that

Pt > gert’ > L ¢%#. We have from the definition of the Frobenius norm (4.2) that

B (¢.0')
_ g oL (6°,0 ! K
(91,.,.351m)e@mx§§12 (6%6)¢ ) _\](90_01,...,90—9’”)”;+
b Y Y 25 (60 1
o By B BP0 | o
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It follows that

%" (€.0°)

< in 33 24, (60°,0) ¢ () !

(6',...0m)cox{0°}x..x{60°} i Tl xex er;ngO_ei j(2)
= inf Y 2I,(6°,0 : #(60%).
] | B

On the other hand, without loss of generality, one may assume that HOO—01H >

Heo —0'|| Vi=1,...,m (see Consequence 4.20) and hence
(<)
0 B BRI OO K
> inf mfj 3 2y (eo,ei)g(x) ! 5 ol ¢“t (f, )
(6',...0m)co™ = i _mHOO—"lHM m
4.4.3 The case when k <m and the distance p(-;-,---,-) is given

through a pseudonorm
The L-optimality criterion and its extension

Assume that L € R™** k < m is a given nonzero matrix. The L-optimality criterion

is defined as

tr(LTM}(g,eo)L) ifC(L)cc [M (5’00)] ’

0 otherwise,

o1 (£,6°) =

where M~ (§ ,00) is an arbitrary generalized inverse of M (5 ,00) (see e.g. Pronzato
and Pazman (2013) p. 116).

Define now the pseudonorm
Il : R™F 1 [0,00) : A= [ Al py, = [t (ATL)|. (4.31)

Then it follows from Theorem A1l that

, 0% = inf ATM (€,0°) A= inf ATM (¢,6%) A
(b\” H|PL (f ) AeRmxk:MAmpL:l (f ) AERka:|tr(ATL)‘:1 (5 )

=1, (,6%),
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and the extended L-optimality criterion is

(€,6°) = of = NPRLDY sz (6°,6) ¢ (x) [12+K]

=(6",. )G@ xeXi=1 T —To||[pf,

+K|,

= mf Z 221 (90 92) (x)

T:(O xGXz 1

12 [(T—To)' L]

where Tg = (00,...,00>.

The members of the class of pseudonorm optimality criteria (4.22), which were
presented in Sects. 4.4.1-4.4.3, are summarized in Table 4.1. The required extended
optimality criterion (4.23) is then obtained directly by applying the corresponding

pseudonorm.

optimality criterion k corresponding pseudonorm

B 1 - le2)

MV 1 e
c 1 I/l pe as defined in (4.28)
1 I/l p; as defined in (4.29)

A m s
L m>k>1/|||||p; as defined in (4.31)

Table 4.1: Some well-known optimality criteria involved in the class of pseudonorm crite-

ria (4.22). The parameter k and the corresponding pseudonorm are also indicated.

4.5 Alternative extensions of c- and G-optimality

criteria in generalized regression models

Definition 4.22. Let K > 0 be a tuning constant. In a generalized regression model

based on exponential families of distributions we define

the extended c-optimality criterion as

crt (¢ %) = inf ¥ 21, (60°,0 L K|¢(x),
¢ (¢.6°) = in 12 ( )’h@o)_h(e)‘ﬁ £ (x)

where h: © — R is a given function of parameters, and
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the extended G-optimality criterion as

at(¢,0%) = inf ¥ 2I,(0°,0 ! K )
% (5 ) ég@x;( ( ) MaXxex [oz (X,BO)—a(X,O)]2+ <0

where x € X — «(x,6) is a given regression function (especially, one may take
o (x,0) = g (x,0) or a(x,0) = u(x.0)).

The criteria from Def. 4.22 were together with the extended E-optimality criterion
(4.27) studied in our paper Burclovd and Pazman (2016b). In the nonlinear regres-
sion model (1.5) with normally distributed random errors € with zero mean and unit
variance, these criteria coincide with the extended criteria from Pazman and Pronzato
(2014), since then 21, (8°,6) = [77 (X,HO) - n(X,O)]Q, see Remark 4.10.

One sees that when h(8) =0 ¢ for some ¢ € R\ {0}, then the criterion ¢¢** (f, 00)

C

2
coincides with the criterion qﬁmﬁﬁp (5,00) from Sect. 4.4.1 since ‘h(@ﬂ) —h(@)‘ =
2
llo—e°1l..
Similarly, when a(x,0) = 0'f(x) with f(x) € R\ {0} Vx € X, then the crite-

rion gzﬁgmt (5 , 00) corresponds to the extended pseudonorm criterion %{U\ﬁpc (5 ,90) from

Sect. 4.4.1, since maxyey {a (X,00> —a(x,@)}2 = ‘HO— OO‘HZG.

Provided that the criteria ¢ and ¢& coincide with the corresponding extended

pseudonorm criteria (as indicated above), in the normal linear regression model (1.4)
with random errors of zero mean and unit variance, @&t <§,00> = (¢ (5,90) and
Pt (5,00) = ¢|\|'|\|pa (5,00) vOe" € © = R™ V¢ € =, where we directly applied Theo-
rem 4.16. Notice that the criterion ¢y, coincides with classical G-optimality if

I/l pz is norm or if M (5,00) is nonsingular, see Sect. 4.4.1.

4.6 Properties of extended optimality criteria de-

fined in (4.21)

One sees that the extended optimality criteria (4.21) are positively homogeneous and
concave in &, since they are defined as infimum of functions linear in &.

The concavity ensures the existence of the directional derivative. Pazman and Pron-
zato (2014) in Theorems 2 and 4 or Pronzato and Pazman (2013) in Theorems 7.16-7.17
derived the directional derivatives for the extended E- and c-optimality criteria in the
nonlinear regression model (1.5). See also Theorem 3 from Pézman and Pronzato
(2014) for the formulation of the equivalence theorem.

The extended optimality criteria (4.21) are local in the sense that the nominal

parameter value 8° is required. On the other hand, they are global since they are
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taking into account the parameter values distant from 8°. The undesirable dependence
on 0° can be avoided by considering mingo_g ¢fj”t (5 ,00), as suggested in Pazman and
Pronzato (2014).

4.6.1 Parameter K

The tuning parameter K in (4.21) plays very important role. By an adequate choice of
K we can express our preference for the precision or for the stability of the estimator.

For K =0, the infimum in (4.21) may be reached simply because 0',...,0" are
very distant points from 8° (i.e. p (00; o', ... ,0’“) is very large) even if the I-divergence
Y oxex Zle Ix (00, Oi) € (x) is not necessarily small, and hence there is no real instability
in the model.

On the other hand, as K — 0o we obtain the classical (not extended) pseudonorm
optimality criteria (see Theorem 4.18), and hence the extended criteria lose their global

properties for very large K.

4.7 Algorithm and examples

The design &* is qﬁf}” (~,00) optimal if {* = argmax¢cz qbfft (5,00). We can use LP
methods to compute £*, since the extended criteria (4.21) are defined as infimum of
functions linear in &:

t 0) _ : 0 pl k
5 (6.6°) = O ROIL (x.6%.6"....0") ¢ (%),

where

k
Hy (x,0°,6%,....0%) =5 21, (6°,6° +K|. 4.32
( ) z::l ( ) p2(90;91,...,9k> (4.82)
The following algorithm and examples were presented in Burclova and Pazman (2016b).

Example 4.23. The example illustrates the possible instabilities related to the maxi-
mum likelihood estimation of parameter 8 in a generalized regression model. We were
inspired by the Example 1 in Pazman and Pronzato (2014). Consider now the binomial

model with the pmf

£ (g,x.6) = (Z)p<x,e>y 1= p(x 0", (4.3

which can be rewritten in the exponential form (4.15):

f(y,x,0) =exp {ln (Z) +yg(x,0) —nln {1 + eg(x’e)} } , (4.34)
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with ¢ (x,0) =In{p(x,6)/[1 —p(x,0)]}, and with the mean of sufficient statistic ¢ (y) =
y equal to 11 (x,0) =np(x,0) =ned®?0/ {1 + eg(x’g)} (the logistic function, see also Ap-
pendix B.1). We set n = 10 and apply the regression function (similar to that in the
Example 1 of Pazman and Pronzato, 2014)

g(x,0) =2cos(t—ub); x = (t,u) . (4.35)

The experiment consists of two trials, one in x; = (O,u)T and the second in x =
(m/2, u)T. The design problem is to find the optimal value u € [O, %W} for the maximum
likelihood estimation of the unknown parameter 6 € [0,1]. The information matrix
M, (0) = M (x1,0) + M (x2,0) is obtained from (4.18). Suppose that the true and
nominal parameter values equal 0, i.e. 8 = 0" =0. Hence, the classical design approach,
which maximizes the information matrix M, (6’()) = nu?, leads to the locally optimal
design achieved at u;,. = %ﬂ'.

In Figure 4.1 are the circular canonical surface # = {(g (x1,60),9(x2, 0))T : 0 €0, 1]}
and the expectation surface (which is not circular due to the nonlinearity of the logis-
tic function) & = {(,u(xl,Q) (x2,0)) ;€ [0,1]} depicted for the design u,.. Since
the surfaces are nearly overlapping, the maximum likelihood estimate 2 (see (4.14))
can be, with a large probability, in the neighbourhood of 8 = 1, which indicates the

possibility of a false maximum likelihood estimate.

~
© |
-]
© |
=) =)
g ] 2
[&)] 3
<
—
|
~
[
: T T T T T T T T T
-2 -1 0 1 2 2 4 6 8
9(x1,8) H(x1,0)
(a) Canonical surface (b) Expectation surface

Figure 4.1: Example 4.23: The canonical and expectation surface for locally optimal design

_ 11w
Uloc = ~¢ -

Now we can use the extended criterion in the following form

¢e:ct (U,QO) _ 63(1)?1] (9079,U) / (9 — 90)2
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with the I-divergence [ (90, 0; u) =Ix, (90, 9) +Ix, (90, 9), where in the binomial model

one has

x,6° 1—p(x,6°
I (6°.0) =n |p(x,0°) 1n1;<<>(ﬁ))+{1 —p(x,eo)}ln{w}] (4.36)
(see Appendix B.1). The numerical optimization indicates that the criterion ¢¢** (u, 90)
is maximized approximately at u.,; = 7, and for this value is the maximum likelihood
estimator more stable and the probability of a false 0y is negligible. As seen even in
Figure 4.2, the points (g (x1,0) ,g(XQ,H))T for # =0 and @ =1 are now as distant as
possible. The same holds for (4 (x1,6) 7/L(X2,9))T.

We could also include the tuning parameter K and consider the extended criterion
in the form mingeg )/ (00, Q;U) [ﬁ + K]Q. The optimal u would be between 7 and
%W for K positive.

The dependence of H,, (90,6) =1 (QO,H;u) / (9 — 00)2 on 6@ for different values of u
is displayed in Figure 4.3. One sees that uj,. = HT” maximizes H,, (90, 9) for 6 near the
nominal value 6°, i.e. uj,. is optimal in the local sense. On the other hand, minimum
of H, (90,9> over 6 is maximized for ueyr = 7, i.€. Ueyr is optimal in the global sense.
Finally, u = 7 /4 is optimal neither from the global nor from the local point of view.

We performed a simulation where we 10000 times repeated the experiment (4.34)—
(4.35) consisting of two measurements x; = (O,u)—r and xg = (7?/2,u)—r for wjpe = HT”
and ueyr = 7, respectively. The true parameter value € was equal to 0. In the case
of e, the simulated probability of a false maximum likelihood estimate, i.e. the
probability that by > 0.5, was approximately 0.1981, for wue,; the same probability
was approximately equal to 0.0021, which is significantly smaller. In Figure 4.4 are
displayed some likelihoods L (6) = f (y1,x1,60) f (y2,%2,0) as functions of 6. One sees
that for wuezs is the likelihood usually maximized near 0 = 0, which is not true for

Ulpe- AN

In more difficult situations than in Example 4.23, one may use iterative Algo-
rithm 4.24, which was suggested in Pdzman and Pronzato (2014). Algorithm 4.24
optimizes the extended criterion (4.21) reformulated in (4.32), for k=1, i.e. we will

consider Hp (x700’0) =21y (90,0) LW—}—K]. The modification for & > 1 would

be straightforward. We remind that in this chapter we suppose that X is finite and
hence the design € is a vector from Re@rd(¥),

Algorithm 4.24.

0. i Choose the starting design £© e R@d(®) gt ¢(0)(x) >0Vx € X and
EXGX 6(0) (X) =1
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9(x2,6)

9(x1,8)

(a) Canonical surface

H(X2,6)

4

H(x1,8)

6

(b) Expectation surface

Figure 4.2: Example 4.23: The canonical and expectation surface for u.,; = 7 (black color,

gray color corresponds to u,.) which maximizes the criterion ¢*t (u,OO).
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Figure 4.3: Example 4.23: H,(6°,0) as a function of 6 for different w.

ii Take e greater than 0 but small.
iii Set ©0) =9,
iv. Construct a finite set GO in ©.

v Set i =0.

1. Compute ot = argmingeo Y oxex Hi (X, 6", 0) (@) (x) as follows:

i Compute 6

~(i+1

)

= argmineeg(i) EXGX Hy (X,0070) 5(1) (X)
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L(6)

0.00 002 004 006 008 010 0.12
1
L(6)

0.00 002 004 006 008 010 0.12
1

- INC

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0
[*] 0
117
() Uoe = 6 (b) Uewt =T

Figure 4.4: Some likelihoods based on the simulation of the experiment in Example 4.23.

(i+1)

ii Perform a local minimization over © initialized at 6 and denote by

0(”1) the solution.
2. Set gli+1) = g {49(”1)}.
3. Set OU+D — @) u{e“*”}.

4. Use an LP solver to find (t(”l),f (”1)) which maximizes t(*1) under the con-

straints:
o 1) =
o (D (x)>0Vx€E X,
o Tuex Y (x) =1,
o Sxex Hi (x,6°,6) 0D (x) > t+D) vo € (D),

5. Set Al = ¢(i+D) _ geat (1) §0).

6. If AU+ < €, take §(i+1) as an e-optimal design and stop, else set 72 < i+ 1 and

continue from Step 1.

Notice that when the parametric space © is finite, then we can obtain the optimal
& after first iteration as a solution of the LP problem formulated in Step 4 (the
inequalities in the LP problem then have to be satisfied for any @ € O, not @(Hl)).
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The stopping rule in Step 5 follows from following inequalities:

§€E geolitl) 7

¢ext (5 (i4+1) 90) < I?Gaxgbewt (g 90) ?gfglgf Z oI, (00 0) £(x) [p2(010’0)+K
0 g 1 _ L (i+1)
<max inf Z 21x (0 ) X) LQ (00;0) + K| =",

We can compute the criterion value gzﬁf,xt (5(”1),00) in Step 5 of the algorithm

similarly as the optimization in Step 1, i.e.

~(i42)

i Compute @ =arg minaeg(iﬂ) Yoxex Hi <X7 907 9) f(iﬂ) (x).

(i+2)

ii Perform a local minimization over © initialized at 6 and denote by 60+2)

the solution.
iii (bzcct (5(1’—}—1)700) _ er)( H, (X,BO,G(H—Z)) g(i-i-l) (X)

If the algorithm continues to the next iteration, we can skip Step 1 and directly use
the result 8012 of the above procedure.

The computations in the next example were performed in Matlab computing envi-
ronment and we used the linprog function with the default interior point algorithm

to solve the LP problems.

Example 4.25. In this example we would like to present a numerical computation of
the extended E-optimum design (see Eq. (4.27)), using Algorithm 4.24. The mean of
the random variable y observed at the design point x = (xl,xg)T was chosen according

to Pazman and Pronzato (2014), Example 2

11(x,0) = np (x,0) = %{1+91x1+9§(1 — 1)+ my + 03 (1~ 22) b, 0= (61,62)
(4.37)
Here we again consider a binomial model with y distributed according to (4.33), with
n =10 and p(x,0) given by (4.37).

We maximized the extended FE-optimality criterion (4.27) with the binomial I-
divergence (4.36) and the nominal parameter value 8° = (1/8,1/ 8)" from the paramet-
ric space © = [—1,1] x [0,2]. The design space X = {0,0.1,...,0.9, 1}2 was finite.

The set GO corresponded to a random Latin hypercube design with 10000 points
renormalized to ©. The starting design £(0) was taken as uniform measure on X'

For the accuracy € = 10710, the algorithm stopped after 20 iterations for K = 0 and
after 47 iterations for K = 5. The results are given in Table 4.2. A
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o' (¢,0°) | o' (¢7.0)
K & for K =0 for K =5
0,0" (0" (1,1
0.345 0.029 0.626
- {(o,of (Lo)" (0.1)" <1,1>T}

0.0215 0.0249

0.0165 0.1972
0.247 0.072 0.197 0.484

Table 4.2: Example 4.25: ¢$**-optimal designs for K =0 and K =5 computed by Algo-
rithm 4.24 and corresponding values of ¢, see (4.27), for K =0 and K = 5.

4.8 Conclusions of new results in this chapter

In Sect. 4.2 we summarized some ways of designing experiments in generalized regres-
sion models taking into account the results of previous chapters of this thesis.

The rest of the chapter was devoted to the extended optimality criteria, the main
purpose of which is to avoid the possible instabilities appearing when estimating pa-
rameters in regression models.

While Pazman and Pronzato (2014), who introduced the extended optimality cri-
teria, considered the instabilities related to the least squares estimation in classical
nonlinear regression (1.5), we considered the maximum likelihood estimation in gener-
alized regression models. The potential instabilities were described in Sect. 4.3.

The first and most important outcome of this chapter is that in Sects. 4.3, 4.4, and
4.5 we formulated the extended criteria related to the maximum likelihood estimation.
We restricted ourselves to the generalized regression models based on exponential fami-
lies of distributions. The reason of this restriction is that in the exponential family is the
I-divergence (see Def. 4.9) markedly simplified (the integral is removed, see Eq. (4.11))
and can be approximated by the Fisher information matrix, see Lemma 4.12. Hence
the extended criteria defined by us are based on the I-divergence, which is related to
the information obtained in the experiment and, simultaneously, helps to identify the
instabilities in the model.

The second important outcome is that we formulated the extended version of the
criterion of MV -optimality (Sect. 4.4.1), A-optimality (Sect. 4.4.2), and L-optimality
(Sect. 4.4.3). This is a new result also for classical nonlinear regression, since Pdzman
and Pronzato (2014) defined only the extensions of E-, c-, and G-optimality criteria.
We remark that the extended A- and L-optimality require the minimization over a
k-tuple of points 0, ... ,Gk, k> 1. The relations of all considered extended criteria (FE,
c, G, MV A, L) to their classical versions were presented in Theorems 4.16, 4.17, and
4.18.
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Section 4.6 provides some properties of extended optimality criteria and Sect. 4.7
consists of one illustrative example and of one example, where the optimal design was

computed iteratively via the Algorithm suggested in Pdzman and Pronzato (2014).
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Conclusion

The thesis is focused on designing experiments in nonlinear models. The usual aim of
such experiments is to obtain an accurate estimate of the model parameter. However,
the presence of this unknown parameter in the information matrix and in the criterion
function makes the optimization of the experiments in nonlinear models more compli-
cated comparing to the same task in linear regression models. On the other hand, the
nonlinear models, and especially generalized regression models, become very popular
in many scientific and financial areas.

In the thesis we considered two different approaches to experimental design. The
first (and more usual) approach uses the asymptotic properties of parameter estimators
and focuses on maximizing the corresponding information matrix (or Fisher informa-
tion matrix in the case of generalized regression models) and is applied in Chaps. 2, 3
and in Sect. 4.2.1.

Chapter 2 uses an LP method for calculating the local and average D-, A-,
E-, and Ej-optimal designs following from proper reformulations of these criteria by
methods of linear algebra. As the main contribution of this chapter we consider the
method for computing the criterion robust design of Harman (2004), which is a quite
difficult nondifferentiable problem that cannot be handled by many standard algo-
rithms.

In Chap. 3 we follow the considerations of Pazman and Pronzato (2007) that the
local, AVE, and maximin criteria do not always satisfactory reflect the whole parametric
space. They suggested to use the quantile criterion as an alternative, but they admitted
that its concavity is not ensured. From this point of view, the application of the
CVaR criterion—used in Valenzuela et al. (2015) for the first time—seems to be more
attractive. We prove that the CVaR criterion is a compromise between the AVE
and maximin criterion, and after deriving the subgradient we apply the cutting plane
method to obtain CVaR optimal designs. We formulate the equivalence theorem and
some other relevant results based on the risk theory. We think that also the examples
in this chapter are interesting, especially the last one, where we are able to compare

AVE, maximin, CVaR, and quantile optimal designs. The question of approaching
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quantile optimal design by using CVaR criterion remains still open.

The asymptotic approach to optimal experimental design appears also in Sect. 4.2.1,
where the application of results of Chaps. 2 and 3 to generalized regression models is
indicated.

The remainder of Chap. 4 is based on the second (different) approach that pre-
vents unstable maximum likelihood estimates in generalized regression models. Hence,
instead of maximizing the information matrix, here we maximize the suitably stan-
dardized I-divergence and so we extend the results of Pazman and Pronzato (2014).
In particular, Pazman and Pronzato (2014) pointed out the problem of stability and
uniqueness of the estimator in classical nonlinear model and formulated the criteria
of extended E-, c-, and G-optimality. Here we reformulate those criteria for purposes
of maximum likelihood estimation in generalized regression models and, moreover, we
define the extended criteria of MV-, A- and L-optimality that can also be applied in
classical nonlinear regression. We prove that the extended optimality criteria coincide
with the classical optimality criteria if the model is linear with normally distributed
random errors or in the case of a suitably restricted parametric space. The danger
of possibly false maximum likelihood estimate is demonstrated on the illustrative ex-
ample and the numerical example applies the algorithm for maximizing the extended

optimality criteria as suggested in Pazman and Pronzato (2014).
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Resumé

Uvod

Dizertacna praca sa zaobera optimalizovanim experimentov v nelinearnych regresnych
modeloch, najma novymi kritériami optimality vhodnymi pre nelinedrne modely.
Experiment nazveme optimalnym pokial prinasa experimentatorovi najviac infor-
mécie o nezndmom parametri. Standardne sa maximalizuje tzv. informacéna matica,
ktora sice ,meria“ velkost tejto informéacie, ale len lokalne pretoze zavisi prave od
hodnoty neznameho parametra. V préaci sme sa venovali aj rozsireniu alternativneho
pristupu uvedeného v ¢lanku Pazman a Pronzato (2014), kde informa¢nd matica ne-

zohrava tak kltcovu ulohu.

Navrhovanie experimentov v nelineArnom regresnom modeli

Nech meranie y(x) spliia nelinedrny regresny model, teda y(x) = n(x,0) +¢, kde 0 €
© CR™ je neznamy parameter a 7n: X x © — R je spojité diferencovatelné zobrazenie na
kompaktnom parametrickom priestore ©. Predpokladajme, ze X je konecna mnozina
bodov x, v ktorych mozeme vykonat merania a ze vSetky merania v experimente st
vykonavané nezavisle. Navrh experimentu & je potom lubovolné pravdepodobnostné
rozdelenie na X a = je mnozina vSetkych takych navrhov £. O nahodnych chybéach e
predpokladdme, ze maji nulovi stredni hodnotu a konstantni (nezndmu) varianciu.

Pre 6° € int(0) a névrh ¢ € Z m4 informacné matica tvar
M(£0%) =3 M(x,6%)¢(x),
xXeX

kde elementarna informacna matica je

on(x,0)
00

on (x,6)
o—g0 06

M (X,OO) =

6=6°
Cielom standardného pristupu k navrhovaniu experimentov je maximalizovat lokalne
kritérium optimality, teda zvolent realnu funkciu ¢ (f ,90), ktora meria velkost infor-

macnej matice M (f ,00> (vid napr. monografie Pronzato a Pazman (2013), Fedorov a
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Leonov (2014)). V stcasnosti pozname Sirokd skalu roznych kritérii, medzi ktoré pa-
tria kritéria D-, A-, E-, c- a G-optimality (vid napr. Kap. 5.1.2 v Pronzato a Pazman
(2013)).

V nelinedrnom modeli sa nevyhneme zavislosti kriteridlnej funkcie na parametri
6. Pri navrhovani experimentu teda bud uvazujeme nominalnu hodnotu parametra 6°
nachddzajicu sa v blizkosti skuto¢nej hodnoty (tzv. lokédlne kritérium), alebo maxi-
malizujeme kritérium ¢(&,60) pri najhorsej moznej hodnote parametra (tzv. maximinné
kritérium) ¢i uvazujeme nejaké apriérne rozdelenie m na parametrickom priestore © a
nasledne maximalizujeme strednit hodnotu ¢(&,0) vzhladom na toto apriérne rozdele-

nie (tzv. priemerovacie kritérium).

Navrhovanie experimentov v zovSeobecnenom regresnom mod-

eli zalozenom na exponencialnej triede rozdeleni

V dizertacnej praci sme sa zamerali na zovseobecnené regresné modely zaloZené na
exponencialnej triede hustot, teda pri danom x € X a neznamom parametri 8 € ©

pozorujeme y € R! s hustotou

J(y,x,8) = exp{—v(y)+t (y)g(x,0) —r[g(x,0)]}, (5.1)

kde ¢ a k st zname funkcie, t(y) € R" je postacujica Statistika pre parameter 0 a
g(x,0) zodpoveda tzv. kanonickému parametru. Modely zaloZené na (5.1) zahfnaji
aj klasickd nelinearnu regresiu s normalne rozdelenymi chybami ¢i logisticki regresiu.
Odhad parametra 6 sa pocita metédou maximéalnej vierohodnosti. Modely popisané
hustotou (5.1) boli uvazované napr. v Pazman (1993), ale v préci sme sa opierali o
vlastnosti exponencidlnych tried rozdeleni rozoberanych v Brown (1986); Barndorft-
Nielsen (1978); Efron (1978). Z uvedenej literatiry vyplyva, ze elementéarna Fisherova

informa¢nd matica pre meranie z (5.1) ma tvar

99" (x,0)
90

Jg(x,0)

¥ (x,0)

Y

kde ¥ (x,0) je kovarian¢nd matica postacujucej Statistiky ¢(y) pri danom x a 6.
Klasicky pristup navrhovania experimentov v zovsSeobecnenych regresnych mode-
loch (nie nutne zaloZenych na exponencidlnych triedach rozdeleni) bol popisany napr.
v Atkinson et al. (2014) a opiera sa o maximalizaciu vhodnych funkcii matice
Sxex M(x,0)E(x) vzhladom na . Podobne ako v obyc¢ajnej nelinedrnej regresii je
mozné pouzit lokdlne, maximinné a priemerovacie kritéria na odstranenie neziaducej

zavislosti od 6.
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V praci sme vsak za tcelom navrhovania experimentov pouzili aj I-divergenciu
(Kullback-Leiblerovu I divergenciu, vid Kullback a Leibler (1951)), ktord meria vzdia-
lenost medzi dvomi rozdeleniami pravdepodobnosti a ukazali sme jej isty suvis s Fi-
sherovou iformacnou maticou. Pre nase potreby bolo nutné meraf vzdialenost dvoch
hustot (5.1) pri hodnote parametra 6" a 6. V modeloch zaloZenych na exponencidlnych

triedach méa tato I-divergencia tvar
Ix (90,0> =pul (x, 00> [g (x, 00) —g(x, 0)] +r[g(x,0)] — kK [g (x, 00)} ,

kde (X,00> oznacuje stredni hodnotu t(y) pri x a 0°.

Ciele dizertacnej prace

Dizertacni pracu a jej ciele mozno rozdelit do troch viac-menej nezavislych celkov:
1. Navrhovanie experimentov pomocou linearneho programovania:
e prepisat kritéria D-, A- a Ejp-optimality do takej formy, ktord umoznuje
vyuzitie linedrneho programovania pri optimalizacii experimentu a

e vyuzif tieto nové formulacie kritérii na riesenie zlozitejsich problémov ako je
hladanie tzv. robustného navrhu vzhladom na triedu ortogonélne invariant-
nych kritérii alebo optimalizovanie experimentu pri doplnkovych linearnych

ohraniceniach.
2. Navrhovanie experimentov pomocou kritérii inspirovanych teériou rizika:

e definovat kritérium zalozené na podmienenej hodnote v riziku ako konkavnu
funkciu nédvrhu £ a uvazovat aj diskrétne apriérne rozdelenia (vychadzajic z
Valenzuela et al. (2015), kde bolo toto kritérium pouzité za tic¢elom navrho-

vania experimentu po prvykrat),
e analyzovaf a interpretovat toto kritérium,

e studovaf vztah tohto kritéria k priemerovaciemu, maximinnému, lokalnemu

a kvantilovému kritériu,

e odvodit smerovi derivaciu a dokazat vetu o ekvivalencii pre toto kritérium

a

e ukazaf moznost vypoctu optimalnych navrhov pomocou linearneho pro-

gramovania.

3. Formulédcia rozsirenych kritériii optimality za tcelom obmedzenia mylnych

odhadov v zovseobecnenych regresnych modeloch:
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e predefinovat rozsirené kritéria E-, c- a G-optimality z Pazman a Pronzato
(2014) tak, aby boli aplikovatelné aj v zovSseobecnenych regresnych modeloch
zalozenych na exponencialnych triedach rozdeleni,

e navrhnuf rozsirené verzie aj pre kritéria MV-, L- a A-optimality,

e dokézat, ze tieto kritéria si naozaj rozsirenim klasickych kritérii optimality
a

e aplikovat linedrne programovanie a kritérium zalozené na podmienenej hod-

note v riziku aj v zovSeobecnenych regresnych modeloch.

Vysledky prace

Navrhovanie experimentov pomocou linearneho programovania

V Kap. 9.5.3 monografie Pronzato a Pazman (2013) bolo ukdzané akym sposobom
mozno pouzit metddy linedrneho programovania na optimalizaciu experimentov pomo-
cou kritérii F-, c- a G-optimality.

V ¢élanku Burclova a Pazman (2016a), na ktorom je zaloZend tato cast, sa poda-
rilo pomocou maticovej algebry odvodit ekvivalentné formulacie dalsich konkavnych
a pozitivne homogénnych kritérii optimality vhodnych pre aplikiciu linedrneho pro-

gramovania, menovite:

kritérium D-optimality

vE €ET op(€,0°) = {det [M(¢,6°)] }”m
_ det/™ [M (g, 00)}
= min

=+
CE= xeX m

£ (x, 00) M1 (g, 90) f (x, 00) £(x),

kde =+ — {5 M (5790) je regulérna} af (X,OO) = W‘e:eo’

kritérium A-optimality
1
w{[m(e0)] )
2
(00 f (e 6°)

— min Y £(x),

CeEt fex {tr [M_l (C’ 90)} }2

kde [|-[|42) oznacuje euklidovski normu,

Ve =Y 04(¢,0)
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kritérium Ej-optimality
VE € Z 0, (6,0°) = ZA (M (¢,6°)]
= in Z HP (C’HO) £ (X’OO) Hj(z)f(x

(eE

~—

kde A\q [M (f,@oﬂ <...< A\ [M (5,00)} si usporiadané vlastné ¢isla matice

M (5,0()), up []\/[ (C,HO)} U | Py [M (C,BO)} si zodpovedajice ortonormalne

vlastné vektory a P*) (¢,0°) = oK w; [M (¢,6%)] u [M (¢,0°)] je ortogonalny
projektor.

Z uvedeného vyplyva, zZe tieto kritéria optimality sa daji vyjadrif pomocou vhodne

*

zvolenej funkcie H (C ,X,OO) a mnoziny =* ako

qb(f' 0)—52111 ZH(C,X 00)5( ).

Optimalny navrh experimentu £* maximalizujici kritérium ¢ ({ , 90) je potom riesenim

problému linedrneho programovania s nekonecne vela linedrnymi ohrani¢eniami:

max (071) (f)

tak, ze > H(¢,x,0°)€(x) >t pre kazdé ¢ € =7, (5.2)
xXEX

§(x)>0prekazdé x e X, a Y £(x) =

xeX
Tento problém sme riesili pomocou iteracného algoritmu navrhnutého v Shimizu a
Aiyoshi (1980). Neskor sa ukazalo, Ze k rovnakému algoritmu a prepisu kritérii moézene
dospiet pouzitim subgradientov (vid napr. Kap. 3.1.5-3.1.6 z Nesterov (2004)) a
metddy cutting planes z ¢lanku Kelley (1960), vid. Kap. 9.5.3 z Pronzato a Pazman
(2013). Pouzity algoritmus poskytuje pravidlo zastavenia, ktoré sa lisi od beznych
pravidiel zalozenych na vete o ekvivalencii.

Dalej sme sa v praci venovali rieseniu komplexnejsich problémov navrhovania ex-
perimentov, kde mozu byt uplatnené prave metédy linearneho programovania. Jednym
z nich je problém hladania navrhu experimentu robustného vzhladom na triedu tzv.
ortogonalne invariantnych kritérii. Harman (2004) dokézal, ze takyto navrh je rieSenim

nasledovnej optimalizacnej tlohy

= argmax IﬂlIl
Sor = arg £€E 1<k<m

0
[ o, (£.6°) ] 53
max,cz O f, (1/ 0 )

Ulohu (5.3) je mozné formulovat ako tlohu linearneho programovania s nekonecne vela

ohraniceniami a opéf aplikovat algoritmus z Shimizu and Aiyoshi (1980). Hlavnou
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myslienkou je, Ze najprv vypocitame hodnotu menovatela vo vyraze v (5.3) pre kazdé
k (napriklad metédou linedrneho programovania) a oznacime ju Fj, (0pt,00). Problém

linedrneho programovania, ktory riesi (5.3) potom pozostéva aj z tychto ohranicent:
0

HEk (C7X7 0 )
wex Er(opt,0°)

kde Hp, oznacuje funkciu H zodpovedajicu kritériu ¢, . Podotykame, Ze v clanku

€(x) >t pre kazdé ¢ € = a pre kazdé k € {1,...,m},

Filova et al. (2012) bol problém (5.3) rieseny metédami semidefinitného programovania.
Vsimnime si, Ze medzi linedrne ohranicenia v (5.2) lahko pridame dalsie — napriklad
linearne ohranicenie na cenu experimentu. Dodanim dalSich linearnych ohraniceni, ako
sme ukdzali v Burclovd a Pazman (2016a), mozeme tiez optimalizovat jedno kritérium
pri sticasnom dolnom ohranic¢eni na hodnotu iného kritéria.
Dalej sme dokézali vetu, ktora rozsiruje nase tivahy z lokdlnych na priemerovacie

kritéria v nelinearnych regresnych modeloch.

Veta Nech 7w je apriorne rozdelenie na parametrickom priestore ©. Oznacme =g =
{£: M (&,0) je reqularna V0 € ©}. MozZeme pisal
| ¢(6.:0)dr(8) = min 3 Hayu(¢x)€(x),
© (€= xeX
pre kazdé £ € %, kde Hayvp((,x) = [o H ((,x,0)dr (0) a =* = =g pre D- a A-optimalitu

a =F =Z pre kritérid Ey-optimality.

V dizertacnej praci sme sa venovali aj moznosti ako tieto vysledky rozsirit pre
pripad navrhovania experimentov v zovseobecnenych regresnych modeloch zalozenych
na exponencialnej triede rozdeleni. Hlavny rozdiel pri odvodzovani preformulovanych

T
kritérii D-, A- a Ej-optimality spoc¢iva v pouziti matice F(x,0) = WEVQ(X,O)

namiesto vektora f(x,80).

Navrhovanie experimentov pomocou kritérii inspirovanych
tedriou rizika

Pédzman a Pronzato (2007) poukazuji vo svojej praci na niektoré nedostatky
priemerovacich a maximinnych kritérii, ktoré st bezne pouzivané na odstranenie zavis-

losti kritéria optimality od skuto¢nej (nezndmej) hodnoty parametra. Ako alternativu

navrhuji pouzit kvantilové kritérium pri pevne zvolenej hladine « € [0,1]
OF (&) =max{t €R: Prp(£,0) > 1] >1-a}.

Spominané nedostatky sa sice kvantilovym kritériom odstranili, ale zaroven autori
pripustaju vyrazni nevyhodu kvantilového kritéria, ktorou je jeho nekonkavnost, resp.

nekonvexnost, ¢o so sebou prinasa isté obtiaznosti pri vypocte optimalnych néavrhov.
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Na druhej strane Valenzuela et al. (2015) poprvykrat navrhli pouzitie podmienene;
hodnoty v riziku (CVaR, z ang. Conditional Value at Risk) pri navrhovani experi-
mentov a inSpirovali sa pri tom pracami z oblasti teodrie rizika. Na zaklade prac Pflug
(2000), Rockafellar a Uryasev (2000), Rockafellar a Uryasev (2002) sa nam podarilo
previest hlbsiu analyzu kritéria zalozeného na CVaR. Hlavnou vyhodou tohto kritéria,
ktord bola zmienend uz v ¢lanku Valenzuela et al. (2015), je jeho konkdvnost (aby
sme boli tplne presni, prace Pflug (2000), Rockafellar a Uryasev (2000), Rockafellar a
Uryasev (2002), Valenzuela et al. (2015) uvazuju konvexni verziu CVaR, ¢o je typické
pre tedriu rizika) a sucasne, ze ma velmi podobné vlastnosti ako kvantilové kritérium.

Nami definované CVaR kritérium je pre a € (0,1] dané nasledovnym predpisom

By (€) zrgleaﬁ({c—l—;E[min{O,qﬁ(f,H) -} (5.4)
Kritérium je konkdvne v &, ak je aj péovodné kritérium ¢(€,0) konkdvne v £ a jeho
formuldcia v (5.4) sa najviac podoba na definiciu CVaR v ¢lanku Pflug (2000), ale
vychadza zo vztahu prvotne odvodeného v Rockafellar a Uryasev (2000). Na zdklade
¢lanku Rockafellar a Uryasev (2002) vieme, ze jednym z bodov, ktoré pre dané &
rieSia maximalizaény problém v (5.4) je bod ¢ = ®L(¢). Vychadzajic z Rockafellar a
Uryasev (2002), kde je dokézané ekvivalentné tvrdenie, sme ukézali, Ze CVaR kritérium

sa nachadza vzdy medzi dvomi podmienenymi strednymi hodnotami, konkrétne

E[6(£,0) | 6(£,0) < DL(E)] < Du(€) < E[6(€,0) | ¢(€,0) <@9(¢)],  (5.5)

¢o ndm pomohlo interpretovat CVaR kritérium (5.4). Uvedené vysledky platia pre
Iubovolné apriérne rozdelenie m na parametrickom priestore ©, a teda pre ITubovolnu
ndhodni premenni ¢(&,0) (diskrétnu alebo spojitil). Ak je ¢(£,0) spojitd ndhodna

premennd, tak (5.5) plati so znamienkom rovnosti a navyse

1

@0 (6)= | 0160)dn(0),

/{0:¢><s,0)<<1>8(§)
¢o je vyraz analogicky k definicii CVaR kritéria v ¢lanku Valenzuela et al. (2015).

V dalSej casti sme sa viac zaoberali CVaR kritériom z pohladu navrhovania ex-
perimentov. Podarilo sa nam ukéazat, ze pre a =1 sa CVaR kritérium zhoduje s
priemerovacim kritériom a za uréitych podmienok konverguje CVaR kritérium pre
a — 0 k maximinnému kritériu. Kym priemerovacie kritérium moze viest k velmi zlym
hodnotdm pre niektoré body parametrického priestoru, maximinné kritérium je zas
prilis orientované na okraje parametrického priestoru (vid Pdzman a Pronzato (2007)).
Prave vhodnou volbou parametra « by sme mohli dosiahnut primerany kompromis

medzi tymito dvomi kritériami, ktory bude dostatocne robustny a sucasne nebude
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zamerany len na okrajové body. Hodnota o = 0.5 stvisi s medianom a vedie k podo-
bnym vysledkom ako priemerovacie kritérium, preto zrejme vhodna volba parametra
a bude niekde z intervalu (0,0.5). Musime podotknit, Ze na rozdiel od kvantilového
kritéria, kritérium CVaR nie je invariantné vzhladom na nelinearne skalovanie povod-
ného kritéria ¢(&,0).

Kedze CVaR kritérium je konkavne, méa zmysel prenho sformulovat vetu o ekvi-
valencii, ktora tzko sivisi so smerovou derivaciou. Podarilo sa nam ukazat, ze ak je
kritérium ¢(€,0) konkavna a spojita funkcia v £ pre kazdé 6 € ©, tak navrh £* je CVaR
optiméalny prave vtedy ak

0 ak ¢(£*.0) > c
1
Jp bt DB | ymin{0, Fy.g)(€%v) = (=)} ak o(€%,0)=c || =0,
Fao(E v~ (-0 ak (6.0) <

pricom Fy. g)(§,v) oznacuje smerovii deriviciu kritéria ¢(-,6) v bode § a v smere v.
Vyrazné zjednodusenie nastane ak je ¢(§,0) spojitd ndhodnd premenna a kritérium
O[M(£,0)] = ¢(&,0) je diferencovatelné na mnozine informaénych matic. Oznaéme
G(£,0) € R™™ gradient ¢ vzhladom na M € R™¥™ v bode M(£,0) a k(£,0) =
tr[M(£,0)G(€,0)]. Potom névrh £* je CVaR-optimalny vtedy a len vtedy ak

0 =max |b—®D (£*) +

xeX @
beR

Rl ak 6(¢7,0) > o (¢7)

C M. 0)G(E.0)] - k(E".0)— (b-0F (§7)  ak 6(£".0) < DF (£")
Dalej sme sa v préaci venovali metodike vypoétu optimélnych navrhov. Podobne ako
v pracach Pflug (2000), Rockafellar a Uryasev (2000), Rockafellar a Uryasev (2002),
Valenzuela et al. (2015) sme riesili tlohu najdenia takého navrhu £ a takého ¢*, ze
(£%,¢*) = argmaxgcz cer Wa (&, ), kde wa (€, ¢) = c+ éE [min {0,¢(£,0) —c}]. Na riese-
nie tejto tlohy sme sa rozhodli pouzit Kelleyho metédu cutting planes z ¢lanku Kelley

(1960). Najprv sme vSak museli vyjadrit subgradient funkcie w, v bode (&,¢), pricom

sme dostali

0 ak ¢(§, 0) >z,
s 0 1 0
Vwa(g,c):< )—i—E _ ,
! : Veo ({,0) inak
—1

kde V¢o (E, 0) je subgradient kritéria ¢(¢,0) vzhladom na & v bode . Pokial bolo

zlozité vydcislit stredni hodnotu v subgradiente presne, pouzili sme jej aproximaciu na
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zaklade Monte Carlo simulécii, pricom sme generovali nezavislé realizacie z apriérneho
rozdelenia 7 (podobne postupovali aj Valenzuela et al. (2015) pri aproximécii strednej
hodnoty v (5.4)) . Algoritmus, ktory opéf riesil problém linedrneho programovania
s nekonecne vela ohrani¢eniami, sme potom otestovali na prikladoch, kde sme porov-
nali optiméalne navrhy vzhladom na priemerovacie, maximinné, kvantilové a CVaR

krietérium.

Formulacia rozsirenych kritériii optimality za ticelom obmedzenia

mylnych odhadov v zovseobecnenych regresnych modeloch

V ¢lanku Pazman a Pronzato (2014) a v Kap. 7 monografie Pronzato a Pdzman (2013)
sa autori venuju problému stability a jednoznacnosti odhadu metédou najmensich
stvorcov v klasickej nelinearnej regresii. Tomuto problému moézeme predchadzat este
na urovni navrhu experimentu pouzitim ich rozsirenych kritérii optimality, ktoré na
jednej strane maximalizuji informaciu obsiahnutii v experimente, no na strane druhej
minimalizuji moznost mylného odhadu parametrov. Menovite autori zaviedli rozsirené
kritéria E-, c- a G-optimality, ktoré sa pri klasickom lineArnom regresnom modeli a
v modeli s obmedzenym parametrickym priestorom spravaju tak isto ako Standardné
kritéria F-, c- a G-optimality.

V praci sme rozsirili vysledky ¢lanku Pazman a Pronzato (2014) a Kap. 7 z Pron-
zato a Pazman (2013) pre tucely stabilizovania odhadov metédou maximalnej viero-
hodnosti v zovseobecnenych regresnych modeloch zalozenych na exponencidlnej triede
rozdeleni. Klacovi tlohu tu zohrava I-divergencia, ktora nesie informéaciu o variabilite
odhadu metédou maximalnej vierohodnosti ale stucasne odraza aj tzv. identifiko-
vatelnost parametra, ¢o je pojem casto spominany v Kap. 7 z Pronzato a Pazman
(2013). Niektoré vysledky sme publikovali v ¢lanku Burclova a Pazman (2016b).

Vo vSeobecnosti sme v praci definovali (konkavne a pozitivne homogénne) rozsirené

kritéria optimality pre nominalnu hodnotu parametra 6" nasledovne

6= 0 500 gy 0

(9 )66 xeXi1=1

kde k € N je dané ¢islo, K > 0 je ladiaca konstanta a p: Rm* (k1) R (00, o', ... ,Bk) >
P (90; o', ... ,Hk) je vzdialenost medzi k-ticou bodov o', ..., 6" a nominalnou hodnotou
6" na parametrickom priestore ©. Prave volba vzdialenosti p, s ¢im suvisi aj volba k,
urcuje, o rozsirenie akého kritéria sa jedna.

V préci sme sa intenzivnejsie venovali aj kritéridm, ktoré sme nazvali pseudonormné.
Pseudonorma ||-||| p je zobrazenie, ktoré spiiia vietky vlastnosti normy ||-|| okrem nasle-

dovnej: ||A|| =0« A =0. Casto sme pritom pracovali s normou resp. pseudonormou
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definovanou na priestore matic R™**. Klasické (nerozsirend) verzia pseudonormnych
kritérii je

_ - T
A1, (€.0) = AEIWI%AMP:lu [ATM (£,0)A]. (5.7)

Dette et al. (1995) sa venuju konvexnej verzii tychto kritérii s normou a nazyvaji
ich minimaxné kritéria (my sme pouzili ndzov pseudonormné kritérid na odliSenie od
maximinnych kritérif, ktoré tu znacia nieco iné). Cldnok Dette et al. (1995) okrem
toho obsahuje ddlezité tvrdenie o tlohe dudlnej normy (vid napr. Bhatia (1997) pre
definiciu duélnej normy) pri prechode medzi konvexnymi a konkdvnymi kritériami a
dalsi relevantny vysledok sa tyka faktu, Ze trieda L, kritérii pre p > 1 patri do triedy
(5.7) a dostaneme ju pouzitim Schattenovej normy ||-[|g(,) (vid napr. Bhatia (1997)
pre definiciu Schattenovej normy) pri k = m a vhodne zvolenom ¢. Na zaklade Dette
et al. (1995) sme teda mohli vyjadrit A-optimalitu a kritérium AMV-optimality (vid
napr. Loépez-Fidalgo et al. (1998)) ako prvky triedy (5.7). Okrem toho st prvkami
triedy (5.7) aj dalsie kritérid, o ktorych je to vsak dobre zndme (vid napr. Kap. 5.1.2
z Pronzato a Pazman (2013)). V nasledujtcej tabulke sme zhrnuli niektoré kritéria

patriace do pseudonormnej triedy (5.7).

kritérium k pseudonorma
B L | ullyg =vuTu
MV 1 [allg(o) = maxi=1,...m |ui|
c L | ullpe = "¢l
G 1 [l p; = maxsex [u £(x)]
A m | [ Allgq) = trl(ATA)2]
L m>k>1||[|Allp = tr(ATL)

Niektori znami predstavitelia pseudonormnej triedy. Klasické definicie jednotlivych kritérii

mozno najst napriklad v Kap. 5.1.2 z Pronzato a Pdzman (2013).

Ked vzdialenost p(+) z (5.6) definujeme pomocou pseudonormy, dostaneme rozsirené

pseudonormné kritéria

|
(90—01,...,00—0"“)\”; o
(5.8)

Aplikovanim konkrétnych pseudonoriem z tabulky vyssie dostavame rozsirenia zndmych

k" .
s (5,00): inf ZZZIX(OO,OZ)f(X) \H

(01,...,0"')e@k xeX i=1

kritérii E-, c- a G-optimality, a tiez MV-, A- a L-optimality, ktoré v prvotnom ¢lanku
Pazman a Pronzato (2014) neboli uvazované.
To, ze kritérid v (5.8) st naozaj rozsirenim kritérii (5.7), vyplyva z nasledovnych

vlastnosti, ktoré boli pri splneni urcitych podmienok v praci dokézané:
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e v pripade klasického linedrneho regresného modelu s normélne rozdelenymi chy-

bami sa kritéria (5.8) zhoduju s tymi v (5.7),

e ak parametricky priestor © je m-rozmerna gula s polomerom r, tak kritéria v

(5.8) konverguju pre r — 0 ku kritériam (5.7),

e ak model neobsahuje ziadne prekrytia v 0° pri danom navrhu ¢ (teda
Sxex Ix (00,0> £(x) konverguje k nule len pre 8 — 8°), tak kritérid v (5.8) kon-
verguju pre K — oo ku kritériam (5.7).

V dizertacnej praci sme rozobrali aj alternativne vseobecnejsie definicie rozsirenych
kritérii c- a G-optimality, ktoré sme rozpracovali v ¢lanku Burclova a Pazman (2016b)

vychadzajic z Pazman a Pronzato (2014).
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Appendix

A Reformulation of L-optimality criterion

Theorem Al. Let L # 0 be a matriz from R™* and let M € R™ ™ be a symmetric,
positive semidefinite matriz. Then
if C(L) SC(M)

-1
inf tr (ZTMZ) — tr(LTM—L)
ZeRm*k:|tr(LT Z)|=1 0 otherwise,

where M~ denotes an arbitrary generalized inverse of M. Moreover, the infimum is
always attained on {Z e Rmxk ‘tr (LTZ)‘ = 1}.

Proof. The theorem is an extension of known property of c-optimality criterion, see e.g.
Lemma 5.6 from Pronzato and Pazman (2013). In the proof we postponed similarly as
Pronzato and Pazman (2013).

We start the proof with the case C(L) C C(M), then tr (LTM_L> =0 if and
only if L = 0. Indeed, there is a matrix F' such that L = MF (see Harville, 2008,
Lemma 4.2.2) and hence tr (LTM~L) =0 tr (FTMM~MF) =0 tr (FTMF) =
0 [MYV2F|) =0 MY2F = 0= L =0 and straightforwardly L =0 implies
tr (LTM _L) = 0. Moreover, one sees that the expression L'M™L is invariant to
the choice of generalized inverse (see also Harville, 2008, Theorem 9.4.1).

We set AT = LTM*TMY2, B=MY2Z, where M+ is Moore-Penrose generalized
inverse of M and Z € R™*¥. According to Theorem 20.5.3(2) in Harville (2008) M ™ is
symmetric matrix, and moreover, from Lemma 9.3.5 in Harville (2008), one has LT =
LTM*M. The Cauchy-Schwarz inequality (Theorem 1.1) for matrices A and B gives
tr? (LTM+MZ) = tr? (LTZ> <tr (LTM+L> tr (ZTMZ) for any matrix Z € R™*¥,

which gives

iy tr (ZTMZ) 1 1

ZeRmxk:tr(LTZ)#0 tr? (LTZ> = tr (LTM+L> T i (LTM_L) ’ (A1)

since the last expression does not depend on the choice of generalized inverse. Now set
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Z* = M* L. Tt follows that tr (LT 2*) = tr (LT ML) #0. We obtain

tr (Z*TMZ*) tr (LTM+MM+L) 1 1
a =—— — — —. (A.2)
tr (LTZ*) tr (LTM+L) tr (LTM+L) tr (LTM L)
It follows from (A.1) and (A.2) that
T
inf M: inf tr(ZTMZ) :;.
zerRm3ka(LTZ)20 22 (LTZ)  zerm<k|u(LT2)[=1 tr(LTM-L)

Now suppose that C(L) € C(M). Then, according to Lemma 4.2.1 and The-
orem 12.1.3 in Harville (2008), there are two matrices L; # 0 and La such that
L=1Li+ Ly, C(L2) CC(M) and tr (LIG) =0 for any matrix G € R™** such that
C(G)CC(M). One sees that tr (LT Ly) =t (L{ L+ L3 L) =tr (L{ L) = || L1 3 > 0

since L1 # 0. We set Z** = tr(LLTlLl)‘ Then tr (LTZ**) =1 and

tr(L{ ML)

w?(LTLy) =0

. T *k | *%)
OSZERmxk:ﬁf(LTz)\:ltr(Z Mz)g(z MZ )_
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B Some examples of distributions from the expo-

nential family

Here we provide an overview of some well known distributions from the exponential
family and we derive the corresponding Fisher information matrices and I-divergences.
Where possible, we check our results with Atkinson et al. (2014) (Fisher information
matrices in their Tables 2 and 4, and in Sect. 4.3) and Vajda and van der Meulen (1998)
(I-divergences). Here we will always use the notation 9 for the usual parametrization

in the given exponential family.

B.1 Binomial distribution Bin (n,p)

n € N is given, p € (0,1), y € {0,1,...,n}

fy.p) = (Z)py(l—p)"y

¢ v=p o 1l () =mp
"= * My =u)

¢ 1) =In(525) o Iy ()7 (p)] =

o= () o () + -0 ()

s =ninlieey o 1(1%7) =n|(10 =) ;S +In L
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B.2 Poisson distribution Po(\)

A>0,yeNU{0}

Flad) =
=exp{—In(y!)+yln(\) —A}
. 9= o il (V] = A
o t(y)=y o My=1/\
e 1) =In(\) o 1[y(X).7 (V)

A1)

o I(fy ,7) = (fyo—'y) e +er—er

>~

B.3 Geometric distribution Ge (p)

pe(0,1), y e NU{0}
fy,p)=Q1-p)pY
— exp{yIn(p)+In(1—p)}

°J=p o ilv(p) =15

° t(y)=y o My= 7"

e 7(p) =In(p) « 1[v(1°) ()] =

o ¥(y) =0 o [0 (2) + (1) m (42
) + 1(17) = (2" =) g5+
¢ 1(v) =15
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B.4 Negative binomial distribution N Bin (r,p)

pe€ (0,1), r € Nis given, y € NU{0}

f@m>:(”+;‘ﬁp%1—mr

V=p
ty) =y
7(p) =In(p)

e
=exp{ In
Y

B.5 Exponential distribution Ezp())

A>0,y>0

Fly, ) =re™
=exp{—Ay+In\}
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B.6 Weibull distribution W (\ k)

A>0, k>0is given, y >0

RN e
fy,\) = B\ (A) e

= exp {ln (k) + (k—1)In(y) —y*A=F - k:ln)\}

o V=) o fily(N)]=—A"
o ty)=—y" * Mo= o
° f)/()\):)\_k ° ]{7()\0),’}/(/\)] =—1+()}?>k_k1n():\o>

B.7 Pareto distribution Pa(a,0)

a>0,0>0is given, y > o
_a(yy
f(y70é) - y <0_>
=exp{—(a+1)In(y)+Ina+alno}

e J—a e i[y(a)]=-1/a—Ino
o t(y) = —In(y) o My=1/a®
e (@) =a+1 o I|y(a%),7(a)] = e+
s oty =t (3o ne) (o) (a8 ) o
o [(70’7) = lnL__l1 +
° K =—In(y—1)—(y—1)lno
™) G=h-0=1) (—oty —Ino) (10 —9) + 707—7)111“

o i(y)=-1/(y—1)—Ino
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B.8 Normal distribution N (v,0?) with o2 given

veR, 02> 0is given, y € R

f(y,v)= \/21_7ra exp{—i(y_y)Q}

:exp{—ln( 2770')—2%‘22‘1'%—;‘22}
. i=v o iy () =v
o t(y)=y « My=s
« 1) =4 o« I[7 () 7)) = o (0 —v)’
« 00 =In(vVIo) + £ o 1(00) =5 (=)’
o K(7)=T5"
o fi(y) = %y

B.9 Normal distribution N(V, 02)

veR, 02>0,yeR

% 2 2 (U 2>2>
* ¥(y)=1n(v2r) T 7
0/.0
0 _ 71 (’Y1 —71)
o k(y)=—LIn(2) + 2 ° 1(+") - o
0 0
2 (o4=) |- (3) 2+ (3
— V2
CE=_ A 0?6
2 4y, dy2 479
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B.10 Gamma distribution G (k,«)

k>0, a>0,y>0

yk—le—ayak
f(y7k7a) - F(k‘)
et () k]
o ((]z) . ﬁ{,.y [(k’Q)T}} _ (—IHOJ_—::\I/ (k))

[ ]
)
=
Q
—
J
I
~
B
|
—
N————
[ ]
~
—N
5
oy
o
\‘O
Q
o
N—
)
=
Q
~—
]
+ ——
I

@ (k0= k) W (k0) + kIn (%) + In[£555] +
¢ Y(y) =0 ko (% —1)
e k(Y ==+ D) +[Cm+D] e I(¥y) = (H-m)(H+1) +
73) [F(%H)]
o fi(v)= <_ln(72)+‘l’(%+1)) (+ 1 (72  In I(19+1) *
- 1+
o (1) (%-1)
['(k) = [§° zF~le7?dz is the gamma function, ¥ (k) = al%l;c(k) is the digamma function
2
and V' (k) = a\g,(f) =92 glkl;(k) is the trigamma function, see Abramowitz and Stegun

(1972) Sects. 6.3.1 and 6.4.1.
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B.11 Beta distribution Be(a,b)

a>0,b>0,y€(0,1)

f(y,a,b) =

_( In(y)
"= <m<1_y>) oy
a1 U (a) — W' (a+0) —U' (a+0)
o v[(@b)'] = (b—l) W (atb) V() -V (a+b)
« U(y)=0 o 1{5(a") ] @y} -
Bla, C
e k(v)=In[B(y1+1,72+1)] n B(a", bo} (ao) (ao ) T

[
o (1) (¢ -0) -
o

o f(y)= a®+10) (a® = a+b°—b)
(Mm+1) =¥ (y1+92+2)
( U (2+1) - %+72+2>) (") = ln[m} -
v <V?+ 1) (7? —71) +

¥ (19) (19 —2) -
U (W +13+2) (W—n+8-1)
1 a-1 b—1 ;5 . : _ lT(k) . :

B(a,b) = [y 27 (1—2)" "dz is the beta function, ¥ (k) = =5~ is the digamma

2
function and V' (k) = a‘gl(f) =9 glkl;(k) is the trigamma function, see Abramowitz and

Stegun (1972) Sects. 6.3.1 and 6.4.1.
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B.12 Multinomial distribution Mult(n,p1,...,p;_1)

n €N is given, p; >0 for i = 1,...,l —1 and Zé;ipi <1, y; € NU{0} for
izl,...,l—landZé;%yign

n!
FWLe e U—1:p15 s pim1) = ——————p{t . p) !
( ) yil oyl =1
b1
In (%)
=expqIn(n!) —Infyi!. ..y 'y + (w1, 9-1) : +nln(p) ¢,
Pi-1
In (“50)
where py = 1— 3" py and = n— ¥l
D1 D1
. _ T .
.79: : .M{y[(plu'”?pl—l) ]}:n
Pl—1 Pl—1
n Pl}jlpl R 1
_ . p2+p;
Yr—1 . :
1 1. eun
P1 Pr—1
(me) T
_ : T
o 7[(2917---719%1) }— : ° [{fy[(p?,...,p?l) ],’y{(pl,...,pl_l) }}

Pi—1
w5 e ()] ()

e (y)=—Innl+In(n!...y—1lu!)

o I(v"7) =
1 0 -1~
e k(v)=—nln| ——— _ O _;)ei 14y el
( ) (14’,25{_1 6’\/7«> n Zi:% % +ln Ziill ’YO‘|
1+ijle J 14 e’k

e

SN
o fi(y)=n :

N1

LYy e
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