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Abstract

STERNMŰLLEROVÁ, Katarína. Optimum design in nonlinear models. Comenius
University in Bratislava. Faculty of Mathematics, Physics and Informatics; Department
of Applied Mathematics and Statistics. Supervisor: prof. RNDr. Andrej Pázman,
DrSc. Bratislava 2018, 132 pages.

Keywords: optimality criteria, the cutting plane method, Conditional Value at Risk,
Kullback-Leibler I-divergence, exponential family of distributions.

Abstract:
The thesis deals with some new approaches of optimal experimental design in non-

linear models. Following the paper Pázman and Pronzato (2014) and the monograph
Pronzato and Pázman (2013), we construct new forms of optimality criteria, we inves-
tigate their mathematical properties, and we demonstrate the possibility of obtaining
optimal experimental designs using the methods of linear programming.

In the thesis we extend the criteria which are considered in Pázman and Pronzato
(2014) and are related to the stability of the least square estimate in a nonlinear
regression model. Namely, applying the I-divergence, we can at the design stage of the
experiment reach the improvement of the stability of the maximum likelihood estimate
in a generalized regression model based on the exponential family of distributions. In
addition, we formulate some other optimality criteria which follow similar purposes but
are closely related to different well-known optimality criteria not considered in Pázman
and Pronzato (2014).

Further, we elaborate the issues of the criterion based on the Conditional Value at
Risk, which was used in optimal experimental design by Valenzuela et al. (2015) for the
first time. We analyse this criterion from the point of view of the optimal experimental
design and we use linear programming to calculate optimal designs.
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Abstrakt

STERNMŰLLEROVÁ, Katarína. Optimalizácia experimentov v nelineárnych mode-
loch. Univerzita Komenského v Bratislave. Fakulta matematiky, fyziky a informatiky;
Katedra aplikovanej matematiky a štatistiky. Vedúci práce: prof. RNDr. Andrej Páz-
man, DrSc. Bratislava 2018, 132 strán.

Kľúčové slová: kritériá optimality, metóda cutting plane, podmienená hodnota v
riziku, Kullbackova-Leiblerova I-divergencia, exponenciálna trieda rozdelení.

Abstrakt:
Predkladaná záverečná práca sa venuje niektorým novým prístupom navrhovania

experimentov v nelineárnych modeloch. Vychádzajúc z článku Pázman a Pronzato
(2014) a z monografie Pronzato a Pázman (2013) formulujeme nové tvary kritérií op-
timality, analyzujeme ich matematické vlastnosti a prezentujeme možnosť získania op-
timálnych návrhov experimentov aplikovaním metód lineárneho programovania.

V práci rozšírime kritériá optimality, ktoré boli uvažované v Pázman a Pronzato
(2014) a súvisia so stabilitou odhadu metódou najmenších štvorcov v nelineárnom
regresnom modeli. Konkrétne s využitím I-divergencie vieme v štádiu navrhovania
experimentu dosiahnuť zlepšenie stability odhadu metódou maximálnej vierohodnosti
v zovšeobecnenom regresnom modeli založenom na exponenciálnej triede rozdelení.
Navyše, sformulujeme ďalšie kritériá optimality, ktoré plnia podobný účel, ale sú úzko
späté s inými známymi kritériami optimality neuvažovanými v článku Pázman a Pron-
zato (2014).

Ďalej rozpracujeme problematiku kritéria založeného na podmienenej hodnote v
riziku, ktoré bolo po prvý raz aplikované v oblasti navrhovania experimentov v článku
Valenzuela et al. (2015). Analyzujeme toto kritérium z hľadiska optimálneho navrho-
vania experimentov a opäť použijeme lineárne programovanie na výpočet optimálnych
návrhov.
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Preface

In the thesis we describe some possibilities of designing experiments in nonlinear mod-
els, where the information matrix and the criterion function depend on the unknown
parameter that is aimed to be estimated. From the statistical point of view, the exper-
iment is optimal if it brings most information on the unknown parameter, often under
some financial or material restrictions.

The monographs Pronzato and Pázman (2013) or Fedorov and Leonov (2014) are
devoted to optimal experimental design in nonlinear regression models and provide
a deep analysis of many design methods. In the thesis we try to extend some of
these known methods and we also pay attention on one approach, which has not been
sufficiently studied in the area of optimal experimental design. A common element
which is related to all the methods considered in the thesis is linear programming—
largely used here to obtain optimal designs (the cutting plane method, cf. Kelley,
1960).

Structure and aim of the thesis

Chapter 1 Preliminaries contains some basic and very general results from the ma-
trix theory, regression models, optimal experimental design and describes the
above-mentioned cutting plane method.

The remaining chapters can be considered separately. The aim of each chapter is
indicated at its beginning. Every chapter also contains some introductory notes (known
from the literature) and the conclusion, which summarizes the achieved results.

Chapter 2 Experimental design via linear programming presents the results of
Burclová and Pázman (2016a). The main goals:

• to reformulate the criteria of D-, A-, E-, and Ek-optimality into the form
which allows to use linear programming for optimal experimental design
(Theorems 2.1, 2.2, and 2.3),

1



• to demonstrate that the iterative LP method can be used to solve corre-
sponding design problems numerically (Sect. 2.3), and

• to use these reformulations in more complicated problems like the calcula-
tion of criterion robust design (Sect. 2.3.1) or optimal design under some
subsidiary linear constraints (Sect. 2.3.2).

Chapter 3 Experimental design based on some ideas from risk theory studies
the possibilities of applying results from the risk theory into the area of optimal
experimental design as suggested in the paper Valenzuela et al. (2015). The main
goals:

• to define the criterion based on Conditional Value at Risk (CVaR) as a
concave function of the design ξ and consider also discrete prior distributions
(Sect. 3.2),

• to provide an analysis of the CVaR criterion based on the theory of risk in
order to obtain its meaningful interpretation (Sect. 3.3),

• to study its relation to AVE, maximin, local (Theorem 3.19) and quantile
criteria (Sect. 3.4.2), which is also done in the examples (mainly Exam-
ple 3.25),

• to derive the directional derivative (Lemma 3.20) and to prove the equiva-
lence theorem for the CVaR criterion (Theorem 3.21), and

• to demonstrate the possibility of obtaining CVaR-optimal designs via linear
programming (Sect. 3.5).

Chapter 4 Extended optimality criteria for avoiding false estimates in gen-
eralized regression models extends the results of Pázman and Pronzato (2014)
to more general regression models defined by exponential families and partially is
based on Burclová and Pázman (2016b). The main tool used here is an adequate
adaptation of the I-divergence. Appendix A involves one further theoretical
result used in this chapter and Appendix B presents some distributions from
the exponential family. The main goals of the chapter:

• to redefine the extended criteria of E-, c-, and G-optimality from Pázman
and Pronzato (2014) so that they are applicable in generalized regression
models based on the exponential family (Sect. 4.5 and Eq. (4.27)),

• to elaborate the necessary mathematical tools to obtain extended criteria
also for theMV -, L-, and some Lp-optimality criteria, not considered earlier
(Sects. 4.4.1–4.4.3),

2



• to prove that the considered criteria are really extensions of the classical
optimality criteria (Theorems 4.16, 4.17, and 4.18), and

• to apply the results of previous chapters to optimal experimental design in
generalized regression models based on the exponential family of distribu-
tions (Sect. 4.2.1).
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Chapter 1

Preliminaries

1.1 The basic matrix algebra results

The eigenvalues λ1 (M)≤ λ2 (M)≤ . . .≤ λm (M) of any symmetric matrix M ∈Rm×m

are real. Every symmetric matrix M can be written as M =QΛQ>, where the matrix
Λ is diagonal with the eigenvalues λ1 (M) , . . . ,λm (M) on the main diagonal and Q is an
orthogonal matrix, the columns of which contain the orthonormally chosen eigenvectors
of M corresponding to λ1 (M) , . . . ,λm (M) (see e.g. Harville, 2008, Sects. 21.4–21.5 or
Gentle, 2007, Chap. 3.8).

For any p one defines the p-th power of a symmetric positive semidefinite matrix
M as Mp =QΛpQ>, since the eigenvalues on the diagonal of Λ are always nonnegative
(see e.g. Gentle, 2007, Chap. 3.8).

We formulate the Cauchy-Schwarz inequality for matrices.

Theorem 1.1. (Harville, 2008, Theorem 6.3.1) Let A and B be matrices in Rm×k.
Then one has

tr2
(
A>B

)
≤ tr

(
A>A

)
tr
(
B>B

)
.

As a consequence of Theorem 1.1 one obtains for a symmetric positive definite
matrix M = M1/2M1/2 ∈ Rm×m (after substitution A←M1/2A, B←M−1/2B) that
for any A 6= 0, B

tr2
(
A>B

)
tr
(
A>MA

) ≤ tr
(
B>M−1B

)
(1.1)

with the equality sign for A=M−1B, hence

max
A∈Rm×k:A6=0

tr2
(
A>B

)
tr
(
A>MA

) = tr
(
B>M−1B

)
. (1.2)
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We mention one more important relation from the matrix theory (see e.g. Harville,
2008, Theorem 21.5.6)

min
u:‖u‖`(2)=1

u>Mu = λmin (M) , (1.3)

where λmin (M) denotes the minimal eigenvalue of a symmetric positive semidefinite
matrix M and ‖·‖`(2) is the Euclidean norm.

1.2 Linear and nonlinear regression models

Consider the linear regression model

y (x) = f> (x)θ+ ε, (1.4)

where θ = (θ1, . . . , θm)> ∈ Rm is a vector of regression parameters, f (x) ∈ Rm is a
known continuous vector function and the regressor x is from the design space X ⊂Rd.
The design space X is throughout the thesis assumed to be compact unless otherwise
stated. The random errors ε are supposed to have zero mean and, generally unknown,
constant variance σ2.

Denote by X an exact experimental design consisting of N points form X , i.e.
X = {x1, . . . ,xN}. If we perform independent measurements in points from X with
results y (x1) , . . . ,y (xN ), then the covariance matrix of least squares estimate for θ
equals σ2M−1

X if the information matrix MX = ∑N
i=1 f (xi) f> (xi) associated with the

exact design X is nonsingular.
When the expectation of y(x) is not linear in θ, then y(x) may satisfy a nonlinear

regression model of the form
y (x) = η (x,θ) + ε, (1.5)

where η is a known mapping η :X ×Θ 7→R continuous on Θ, a compact subset of Rm.
If η(x,θ) is moreover differentiable on int(Θ), we define for θ0 ∈ int(Θ) the elementary
information matrix as a function of x ∈ X and θ0

M
(
x,θ0

)
= ∂η (x,θ)

∂θ

∣∣∣∣∣
θ=θ0

∂η (x,θ)
∂θ>

∣∣∣∣∣
θ=θ0

. (1.6)

Throughout the thesis we assume that any two observations y(x), y′(x) from (1.4)
or (1.5) corresponding to different trials are independent.

More general regression models are considered in Chap. 4.

1.3 Experimental design in nonlinear models

The issues of optimal experimental design are in detail studied e.g. in Pronzato and
Pázman (2013) or Fedorov and Leonov (2014). The aim of this section is only to
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explain the basic terms and notations.
The approximative experimental design (hereinafter referred to as „design“) is any

probability measure ξ defined on X , and the set of all such measures is denoted by Ξ.
The information matrix associated with a discrete design ξ is defined as

M
(
ξ,θ0

)
=

∑
x∈X :ξ(x)>0

M
(
x,θ0

)
ξ (x) , (1.7)

where M
(
x,θ0

)
is the elementary information matrix defined in (1.6). For brevity, we

sometimes use the notation

 x1 x2 . . .

ξ(x1) ξ(x2) . . .

 for a discrete design ξ.

Throughout this thesis, if no confusion occurs, we will use the same notation for
the information matrixM(ξ,θ), as a function of a design ξ ∈ Ξ, and for the elementary
information matrix M(x,θ), as a function of a design point x ∈ X , although the latter
one should be expressed as M(δx,θ), where δx ∈ Ξ is a Dirac measure concentrated at
x.

If ξ′ ∈ Ξ is not a discrete measure, one may write in (1.7) an integral over X
instead of the sum to obtain M

(
ξ′,θ0

)
. However, as a consequence of Caratheodory’s

theorem, see e.g. Pronzato and Pázman (2013), Sect. 5.2.3, M
(
ξ′,θ0

)
=M

(
ξ,θ0

)
for

some discrete design ξ.
In Chap. 3 of Pronzato and Pázman (2013) is proved that when X = {x1, . . . ,xN} is

a random sample from distribution given by ξ, then, under some assumptions including
a nonsingularity of M

(
ξ, θ̄

)
, the covariance matrix of the least square estimate of

θ based on independent measurements in x1, . . . ,xN is asymptotically, for N →∞,
proportional to 1

N

[
M
(
ξ, θ̄

)]−1
, where θ̄ ∈ int(Θ) is the true parameter value. One

sees that the asymptotic covariance matrix depends on the unknown true parameter
value θ̄. A more direct and simple proof is possible if X is a finite set. In that case it
is sufficient that the relative frequency of any point x within X is converging to ξ(x),
see e.g. Pázman and Lacko (2012), Sect. 3.7.

Usually, the main idea of statistical optimization of experiments lies in maximizing
(with respect to ξ) a chosen optimality criterion, which measures the largeness of the
information matrix associated with given design ξ (and hence minimizes the covariance
of the least squares estimate). An optimality criterion in a nonlinear model is a real
function φ of the design ξ and of the parameter θ given as φ(ξ,θ) = φ̄ [M (ξ,θ)] for
some function φ̄ defined on the set of all information matrices. For purposes of optimal
experimental design we will assume that M(x,θ) is continuous on X (this is always
true when X is finite) for given θ.

Below we define some optimality criteria which are for any θ ∈Θ
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• concave, i.e. φ [λξ1 + (1−λ)ξ2,θ] ≥ λφ(ξ1,θ) + (1−λ)φ(ξ2,θ) for any ξ1, ξ2 ∈ Ξ
and for any λ ∈ (0,1), and

• positively homogeneous, i.e. φ(aξ,θ) = aφ(ξ,θ) for any ξ ∈ Ξ and for any a > 0.

Definition 1.2. Let ξ ∈ Ξ, θ ∈Θ. In a nonlinear regression model we define the

criterion of D-optimality:

φD (ξ,θ) = {det [M (ξ,θ)]}
1
m ,

criterion of A-optimality:

φA (ξ,θ) =


1/tr

{
[M (ξ,θ)]−1} if M (ξ,θ) is nonsingular,

0 otherwise,

criterion of Ek-optimality:

φEk (ξ,θ) =
k∑
i=1

λi [M (ξ,θ)] ,

where λ1 [M (ξ,θ)]≤ λ2 [M (ξ,θ)]≤ . . .≤ λm [M (ξ,θ)] are the ordered eigenvalues
of matrix M (ξ,θ) respecting their multiplicity,

criterion of E-optimality:

φE (ξ,θ) = λ1 [M (ξ,θ)] = λmin [M (ξ,θ)] ,

criterion of c-optimality:

φc (ξ,θ) =


1

c>[M(ξ,θ)]−c
if c ∈ C [M (ξ,θ)] ,

0 otherwise,

where [M (ξ,θ)]− is an arbitrarily chosen g-inverse of matrix [M (ξ,θ)],

criterion of G-optimality:

φG (ξ,θ) =


minx∈X

1
f>(x)[M(ξ,θ)]−1f(x)

if M (ξ,θ) is nonsingular,

0 otherwise.

For the interpretation of criteria from Def. 1.2 in linear models see e.g. Pázman
(1986) or Pukelsheim (1993) and in nonlinear models see Chap. 5 of Pronzato and
Pázman (2013). The criteria of Ek optimality were defined and applied in Harman
(2004).

7



Since at the design stage of the experiment the true parameter value θ̄ is unknown,
we are not able to maximize φ

(
ξ, θ̄

)
. Hence there is a need to avoid a dependence of

φ(ξ,θ) on the unknown parameter value θ and the usual way is to consider one of the
below formulated criteria.

Definition 1.3. Suppose that φ(ξ,θ) is a real function defined on Ξ×Θ, e.g. one of
the criteria introduced in Def. 1.2. Then we define the

local optimality criterion
Φloc (ξ) = φ

(
ξ,θ0

)
, (1.8)

where θ0 is the nominal parameter value which is a priori assumed to be in the
neighbourhood of θ̄,

maximin optimality criterion

Φmin (ξ) = min
θ∈Θ

φ(ξ,θ) , (1.9)

average (AVE) optimality criterion

ΦAVE (ξ) =
∫

Θ
φ(ξ,θ)dπ (θ) , (1.10)

where π (·) is some prior probability distribution on the parametric space Θ.

The concavity and positive homogeneity of φ(ξ,θ) in ξ then imply the concavity
and positive homogeneity of the local, AVE and maximin criteria (see e.g. Pronzato
and Pázman, 2013, Sects. 8.1 and 8.2) and, typically, the optimal design for nonlinear
model maximizes one of them.

1.4 The cutting plane method

The method of cutting planes (Kelley, 1960) can be applied when optimizing a concave
criterion, see also Sect. 9.5 in Pronzato and Pázman (2013).

Let ϕ : z→ ϕ(z) be a continuous concave function of a vector variable z defined on
a compact convex set. The optimization problem

z? = argmaxz ϕ(z) (1.11)

can be solved by the iterative cutting plane algorithm, which follows from the subgra-
dient inequality, see (1.13). Suppose that z(0) is a starting point and z(1),z(2), . . . ,z(i)

are results of previous iterations. The solution of (i+ 1)-st iteration is computed as
follows

z(i+1) = argmaxz min
j=0,1,...,i

[
ϕ
(
z(j)

)
+∇>ϕ

(
z(j)

)(
z−z(j)

)]
, (1.12)
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where ∇ϕ
(
z(j)

)
is an arbitrary subgradient of ϕ(·) at z(j) (one may here also use

the term supergradient, since ϕ is concave function). The problem (1.12) is a linear
programming (LP) problem and the standard LP algorithms may be used. This is the
main idea of the cutting plane method presented in Sect. 9.5 of Pronzato and Pázman
(2013). Algorithm stops when for given ε > 0 the inequality

min
j=0,1,...,i

[
ϕ
(
z(j)

)
+∇>ϕ

(
z(j)

)(
z(i+1)−z(j)

)]
− max
l=0,...,i+1

ϕ
(
z(l)

)
< ε

is satisfied, and then argmaxz∈{z(0),z(1),...,z(i+1)}ϕ(z) is the computed solution of the
problem (1.11).

1.4.1 A subgradient of a concave function

Here we summarize some important properties of subgradients of a concave function
(see Pronzato and Pázman (2013) Sect. 9.5 and Appendix A), which will be useful in
the next parts of the thesis. For more detailed explanation we refer to Sects. 3.1.5–3.1.6
in Nesterov (2004) or Sect. 23 in Rockafellar (1970) (where subgradients of a convex
function are considered).

The subgradient of a concave function ϕ at point z̃, the element of the domain of
ϕ, is any vector ∇ϕ(z̃) satisfying the following inequality for any z in the domain of
ϕ:

ϕ(z)≤ ϕ(z̃) +∇>ϕ(z̃)(z− z̃) . (1.13)

The inequality (1.13) is known as subgradient inequality. When the function ϕ is
differentiable at z̃, then there is only one subgradient, which is, moreover, equal to the
gradient of ϕ at z̃, see Lemma 3.1.7 in Nesterov (2004).

According to Theorem 23.4 in Rockafellar (1970), the subgradient of ϕ does exist
at z̃ if and only if z̃ is an element of interior of the domain of ϕ. When applying the
cutting plane method in the optimal experimental design (supposing that X is finite),
there is a need to express a subgradient at some design ξ̃. Although we accept only
such experimental designs ξ which are non-negative in each component and summing
to one (i.e. ξ ∈ Ξ, a subset of Rcard(X ) with an empty interior), generally, the natural
domain of the criterion function w 7→ φ(w,θ) (the maximal set of vectors w for which
the function φ is defined) is much more larger and hence the necessary and sufficient
condition for existence of a subgradient is not very restrictive.

In the next lemma we summarize some well-known properties of subgradients. For
more general results see Sect. 3.1.6 in Nesterov (2004).

Lemma 1.4. Let ϕ(·) ,ϕ1 (·) and ϕ2 (·) be concave functions of a vector variable z with
the same domain. Suppose that theirs subgradients at z̃ do exist and are denoted by
∇ϕ(z̃) ,∇ϕ1 (z̃) ,∇ϕ2 (z̃). Then
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a) [a∇ϕ(z̃)] is a subgradient of the function [aϕ(z)] at z̃ for any a≥ 0,

b) [a1∇ϕ1 (z̃) +a2∇ϕ2 (z̃)] is a subgradient of ϕ(z) = a1ϕ1 (z)+a2ϕ2 (z) at z̃ for any
a1,a2 ≥ 0,

c) define the set I (z̃) = {i ∈ {1,2} ,ϕi (z̃) = min{ϕ1 (z̃) ,ϕ2 (z̃)}}, then ∇ϕi? (z̃) is a
subgradient of ϕ(z) = min{ϕ1 (z) ,ϕ2 (z)} at z̃, where i? is any index from I (z̃),

d) let % : z×θ 7→ %(z,θ) be concave function in z for any θ ∈ Θ (θ here represents
a random variable or a random vector), then E [∇%(z̃,θ)] is a subgradient of
ϕ(z) = E [%(z,θ)] at z̃.

Proof.

a) Multiplying the inequality (1.13) by a one obtains the subgradient inequality for
[aϕ(·)] at z̃.

b) Using the statement a) of this lemma and summing up the subgradient inequal-
ities for a1ϕ1 (·) and a2ϕ2 (·) one obtains the subgradient inequality for the sum
[a1ϕ1 (·) +a2ϕ2 (·)].

c) The function ϕ(z) = min{ϕ1 (z) ,ϕ2 (z)} is concave in z and according to (1.13) for
any i? ∈ I (z̃) one has ϕ(z) = min{ϕ1 (z) ,ϕ2 (z)} ≤ ϕi? (z) ≤ ϕi? (z̃) +
∇>ϕi? (z̃)(z− z̃) = ϕ(z̃) +∇>ϕi? (z̃)(z− z̃).

d) In the proof we follow Vandenberghe (2016). According to (1.13) we have %(z,θ)≤
%(z̃,θ)+∇>%(z̃,θ)(z− z̃) for any z, z̃,θ, which implies the subgradient inequality
for ϕ:

ϕ(z) = E [%(z,θ)]≤ E
[
%(z̃,θ) +∇>%(z̃,θ)(z− z̃)

]
= E [%(z̃,θ)] +E

[
∇>%(z̃,θ)

]
(z− z̃)

= ϕ(z̃) +E
[
∇>%(z̃,θ)

]
(z− z̃) .
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Chapter 2

Experimental design via linear
programming

This chapter is based on the paper Burclová and Pázman (2016a), where we elaborated
an idea of computing optimal experimental designs via linear programming (LP). In
the paper we mostly considered the classical linear regression model (1.4), but the
reformulation of results of the paper for locally optimal designs in the classical nonlin-
ear regression model (1.5) (or even in a generalized regression model, see Sect. 4.2.1)
is straightforward. Since the thesis is focused on nonlinear models, here we present
those results of Burclová and Pázman (2016a) which are applicable to local (1.8) and
AVE (1.10) optimality criteria.

In Sect. 2.1 we mention the expressions presented in Sect. 9.5.3 of Pronzato and
Pázman (2013) for computation of E-, c-, and G-optimal designs. By the use of several
results of matrix algebra (c.f. e.g. Harville, 2008) we reformulate the criteria of D-,
A-, and Ek-optimality (see Def. 1.2) in Sect. 2.2 for computation of locally and in
Sect. 2.4 of AVE optimal designs in nonlinear models. In Sect. 2.3 we present the
algorithm based on the cutting plane method and we formulate two more complicated
experimental design problems which we could solve directly. Section 2.5 provides some
bibliographic remarks and Sect. 2.6 concludes.

Throughout this chapter we will always suppose that the design space X is finite and
hence the design ξ can be considered as a card(X )-dimensional vector with nonnegative
components summing to one. We will use the notation f

(
x,θ0

)
= ∂η(x,θ)

∂θ

∣∣∣
θ=θ0 , where

η(x,θ) is the regression function in the classical nonlinear regression model (1.5). It
follows that the elementary information matrix (1.6) can be expressed as M

(
x,θ0

)
=

f
(
x,θ0

)
f>
(
x,θ0

)
.
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2.1 Reformulation of criteria of E-, c-, and G-optimality

In Sect. 9.5.3 of Pronzato and Pázman (2013) one can find that the local criteria of E-
and c-optimality can be rewritten into a form

φ
(
ξ,θ0

)
= min

u∈U

∑
x∈X

u>M
(
x,θ0

)
uξ (x) ,

where in the case of E-optimality U =
{
u ∈ Rm : ‖u‖`(2) = 1

}
and in the case of c-

optimality U =
{
u ∈ Rm : u>c = 1

}
. For the criterion of G-optimality one obtains

φG
(
ξ,θ0

)
= minx∈X minu:u>f(x,θ0)=1 u>M

(
x,θ0

)
uξ (x).

This means that the problem of finding locally optimal design ξ? for these criteria
is an “infinite-dimensional” LP problem:

max
ξ,t

(
0>,1

)ξ
t


s.t.

∑
x∈X

u>M
(
x,θ0

)
uξ (x) ≥ t for any u ∈ U ,

ξ (x) ≥ 0 for any x ∈ X , and
∑

x∈X
ξ (x) = 1,

where t is an auxiliary variable and ξ = (ξ(x);x ∈ X ) is a card(X )-dimensional vector.
The algorithm and the modification for G-optimality can be found in Sect. 9.5.3 of
Pronzato and Pázman (2013).

2.2 Reformulation of criteria of D-, A-, and Ek-
optimality

Let us denote by Ξ+ the set of such designs ζ for which the information matrixM
(
ζ,θ0

)
is nonsingular, i.e. Ξ+ =

{
ζ ∈ Ξ :M

(
ζ,θ0

)
is nonsingular

}
. Evidently, D-, A-, and E-

locally optimal designs belong to Ξ+, which is not necessarily true for Ek-optimality
when k ≥ 2. As we already mentioned, the following sections are based on the publi-
cation Burclová and Pázman (2016a).

Theorem 2.1. We can write φD
(
ξ,θ0

)
= minζ∈Ξ+

∑
x∈X HD

(
ζ,x,θ0

)
ξ (x) for any

ξ ∈ Ξ+, where

HD

(
ζ,x,θ0

)
=

det1/m
[
M
(
ζ,θ0

)]
m

f>
(
x,θ0

)
M−1

(
ζ,θ0

)
f
(
x,θ0

)
. (2.1)

Proof. Take any nonsingular square matrix S ∈ Rm×m and denote by β1, . . . ,βm the
eigenvalues of S>M

(
ξ,θ0

)
S. Since the geometric mean of positive numbers β1, . . . ,βm
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is always less than or equal to the arithmetic mean of β1, . . . ,βm (cf. e.g. Steele, 2004,
Chap. 2), we obtain

{
det

[
S>M

(
ξ,θ0

)
S
]}1/m

=
(
m∏
i=1

βi

)1/m
≤ 1
m

m∑
i=1

βi = 1
m

tr
[
S>M

(
ξ,θ0

)
S
]
.

So

φD
(
ξ,θ0

)
=
{

det
[
M
(
ξ,θ0

)]} 1
m ≤

[
det

(
SS>

)]−1
m

m

∑
x∈X

f>
(
x,θ0

)
SS>f

(
x,θ0

)
ξ (x) ,

and we have only to put S =M−1/2
(
ζ,θ0

)
to obtain on the right hand side the expres-

sion in (2.1). If S =M−1/2
(
ξ,θ0

)
, then β1 = . . .= βm = 1, and the geometric mean is

equal to the arithmetic mean, hence we have the equality for ζ = ξ which proves the
theorem.

Theorem 2.2. We can write φA
(
ξ,θ0

)
= minζ∈Ξ+

∑
x∈X HA

(
ζ,x,θ0

)
ξ (x) for any

ξ ∈ Ξ+, where

HA

(
ζ,x,θ0

)
=

∥∥∥M−1
(
ζ,θ0

)
f
(
x,θ0

)∥∥∥2
`(2){

tr
[
M−1

(
ζ,θ0

)]}2 (2.2)

and ‖·‖`(2) denotes the Euclidean norm.

Proof. For any nonsingular matrix S ∈ Rm×m and for any ξ ∈ Ξ+ we obtain from the
Cauchy-Schwarz inequality (see Eq. (1.1) after substitution A← S>, B ← I, M ←
M
(
ξ,θ0

)
) that

[tr(S)]2 ≤ tr
[
M−1

(
ξ,θ0

)]
tr
[
SM

(
ξ,θ0

)
S>
]
.

So

φA
(
ξ,θ0

)
=
{

tr
[
M−1

(
ξ,θ0

)]}−1
≤

tr
[
SM

(
ξ,θ0

)
S>
]

[tr (S)]2
=
∑

x∈X

∥∥∥Sf
(
x,θ0

)∥∥∥2
`(2)

[tr (S)]2
ξ (x) ,

and we have only to put S =M−1
(
ζ,θ0

)
to obtain on the right-hand side the expression

in (2.2). When S =M−1
(
ξ,θ0

)
, we obtain equality in the Cauchy-Schwarz inequality

and the theorem is proved.

Theorem 2.3. Denote by u1
[
M
(
ξ,θ0

)]
, . . . ,um

[
M
(
ξ,θ0

)]
the orthonormal eigen-

vectors of M
(
ξ,θ0

)
corresponding to λ1

[
M
(
ξ,θ0

)]
, . . . ,λm

[
M
(
ξ,θ0

)]
. We can write

φEk

(
ξ,θ0

)
= minζ∈Ξ

∑
x∈X HEk

(
ζ,x,θ0

)
ξ (x) for any ξ ∈ Ξ, where

HEk

(
ζ,x,θ0

)
=
∥∥∥P (k)

(
ζ,θ0

)
f
(
x,θ0

)∥∥∥2
`(2)

. (2.3)
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Here P (k)
(
ζ,θ0

)
is the k-dimensional orthogonal projector

P (k)
(
ζ,θ0

)
=

k∑
i=1

ui
[
M
(
ζ,θ0

)]
u>i

[
M
(
ζ,θ0

)]
,

and ‖·‖`(2) denotes the Euclidean norm. When the eigenvalue λk
[
M
(
ζ,θ0

)]
has mul-

tiplicity p > 1, the choice of the order of the p orthonormal eigenvectors corresponding
to λk

[
M
(
ζ,θ0

)]
is arbitrary.

Proof. For a fixed ζ denote P = P (k)
(
ζ,θ0

)
. By the definition of P (k)

(
ζ,θ0

)
we have

that P is idempotent symmetric matrix. Moreover, for given ξ define the orthogonal
matrix U =

(
u1
[
M
(
ξ,θ0

)]
, . . . ,um

[
M
(
ξ,θ0

)])
and the diagonal matrix of eigenvalues

Λ = diag
{
λ1
[
M
(
ξ,θ0

)]
, . . . ,λm

[
M
(
ξ,θ0

)]}
. Hence one has M

(
ξ,θ0

)
= UΛU>. It

follows that
∑

x∈X

∥∥∥P f
(
x,θ0

)∥∥∥2
`(2)

ξ (x) = tr
[
PM

(
ξ,θ0

)
P
]

= tr
[
PUΛU>P

]
= tr

[
Λ(PU)> (PU)

]

=
m∑
i=1

λi
[
M
(
ζ,θ0

)]{
(PU)> (PU)

}
ii

=
m∑
i=1

λi
[
M
(
ζ,θ0

)]
wi,

where we denoted wi =
{

(PU)> (PU)
}
ii

=
∥∥∥Pui

[
M
(
ζ,θ0

)]∥∥∥2
`(2)

. Since U is orthogonal
matrix, i.e. UU> = U>U = I, we have

k = tr(P ) = tr
(
P>P

)
= tr

(
P>PUU>

)
=

m∑
i=1

{
(PU)> (PU)

}
ii

=
m∑
i=1

wi.

Further, wi ∈ [0,1] since 0≤
∥∥∥Pui

[
M
(
ζ,θ0

)]∥∥∥2
`(2)
≤
∥∥∥ui [M (

ζ,θ0
)]∥∥∥2

`(2)
= 1. So, using

the inequalities λ1
[
M
(
ζ,θ0

)]
≤ . . . ≤ λm

[
M
(
ζ,θ0

)]
, we can see that the expression∑m

i=1λi
[
M
(
ζ,θ0

)]
wi is minimized exactly when w1 = . . . = wk = 1 and wk+1 = . . . =

wm = 0, hence

∑
x∈X

∥∥∥P f
(
x,θ0

)∥∥∥2
`(2)

ξ (x) =
m∑
i=1

λi
[
M
(
ζ,θ0

)]
wi ≥

k∑
i=1

λi
[
M
(
ζ,θ0

)]
= φEk

(
ξ,θ0

)
,

(2.4)
where on the left-hand side is the expression from (2.3). In the particular case when
P = P (k)

(
ξ,θ0

)
=∑k

j=1 uj
[
M
(
ξ,θ0

)]
u>j

[
M
(
ξ,θ0

)]
, we have

wi =
∥∥∥P (k)

(
ξ,θ0

)
ui
[
M
(
ξ,θ0

)]∥∥∥2
`(2)

=


∥∥∥ui [M (

ξ,θ0
)]∥∥∥2

`(2)
if i≤ k,

0 if i > k,
=


1 if i≤ k,

0 if i > k,
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and hence ∑
x∈X

∥∥∥P (k)
(
ξ,θ0

)
f
(
x,θ0

)∥∥∥2
`(2)

ξ (x) = ∑k
i=1λi

[
M
(
ξ,θ0

)]
= φEk

(
ξ,θ0

)
,

which together with (2.4) yields the statement of the theorem. From the presented
proof it is evident that the choice of the order of eigenvectors corresponding to an
eigenvalue with multiplicity greater than 1 is irrelevant, as long as these eigenvectors
are orthonormal.

From the reformulated criteria functions in Theorems 2.1–2.3 it is easy to see that
the criteria of D-, A-, and Ek optimality from Def. 1.2 are concave functions of the
design ξ and that they are positively homogeneous.

Let us use the common notation H
(
ζ,x,θ0

)
for HD

(
ζ,x,θ0

)
, HA

(
ζ,x,θ0

)
, or

HEk

(
ζ,x,θ0

)
from Eqs. (2.1)–(2.3). The reformulations in Theorems 2.1–2.3 allow us

to find a locally optimal experimental design ξ? = argmaxξ∈Ξφ
(
ξ,θ0

)
via an “infinite-

dimensional” LP problem:

max
(
0>,1

)ξ
t


s.t.

∑
x∈X

H
(
ζ,x,θ0

)
ξ (x)≥ t for any ζ ∈ Ξ∗,

ξ (x)≥ 0 for any x ∈ X , and
∑

x∈X
ξ (x) = 1,

(2.5)

where t is an auxiliary variable and ξ = (ξ(x);x ∈ X ) is a card(X )-dimensional vector.
Here Ξ∗ denotes either Ξ or Ξ+, depending on the criterion considered.

Remark 2.4. It follows directly from the proofs of Theorems 2.1–2.3 that one can
write for a fixed ξ ∈ Ξ+

φA
(
ξ,θ0

)
= min
B∈B

∑
x∈X


∥∥∥Bf

(
x,θ0

)∥∥∥2
`(2)

[tr (B)]2

ξ (x) ,

where B is any set of nonsingular matrices in Rm×m containingM−1
(
ξ,β0

)
. To ensure

the validity of the statement for any ξ ∈ Ξ+, the set B =
{
M−1

(
ζ,β0

)
: ζ ∈ Ξ+

}
, used

also in Theorem 2.2, is the smallest of such sets. In the same way one obtains for
D-optimality, see Theorem 2.1:

φD
(
ξ,θ0

)
= min
B∈B+

∑
x∈X

1
m

f>
(
x,θ0

)
Bf

(
x,θ0

)
det1/m (B)

ξ (x) ,

where B+ is any set of positive definite symmetric matrices in Rm×m including
M−1

(
ξ,θ0

)
. Similarly, in Theorem 2.3 we could minimize over any set P of k-

dimensional orthogonal projectors containing P (k)
(
ξ,θ0

)
:

φEk

(
ξ,θ0

)
= min
P∈P

∑
x∈X

∥∥∥P f
(
x,θ0

)∥∥∥2
`(2)

ξ (x) .
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This follows from the proof of Theorem 2.3, where we can substitute any k-dimensional
orthogonal projector P for P (k)

(
ζ,θ0

)
.

2.3 Algorithm and example

In this section we use the reformulated optimality criteria from Theorems 2.1–2.3 to
compute locally optimal designs. For the maximization of φ

(
·,θ0

)
, i.e. for solving

the LP problem (2.5), we apply a modification of the relaxation method (Shimizu
and Aiyoshi, 1980) as presented in Sect. 9.5.3 of Pronzato and Pázman (2013) and in
Pázman and Pronzato (2014), where its relation to the cutting plane method (Kelley,
1960) is also shown. The presented algorithm is iterative and we use an LP solver at
each iteration.

Algorithm 2.5.

0. i Take the starting design ξ(0) ∈Rcard(X ), s.t. ∑x∈X ξ
(0) (x) = 1 and ξ(0) (x)≥

0 ∀ x ∈ X .

ii Choose the accuracy ε > 0.

iii Set Ξ(0) = ∅.

iv Set ξ′ = ξ(0).

v Set i= 1.

1. Let Ξ(i) = Ξ(i−1)∪
{
ξ(i−1)

}
.

2. LP problem: find
(
ξ(i), t(i)

)
which maximizes t(i) under the constraints

t(i) > 0, ξ(i) (x)≥ 0 ∀ x ∈ X ,∑
x∈X

ξ(i) (x) = 1,

∑
x∈X

H
(
ζ,x,θ0

)
ξ(i) (x)≥ t(i) ∀ζ ∈ Ξ(i).

3. i Set ξ′ = argmaxξ∈{ξ′,ξ(i)}φ
(
ξ,θ0

)
.

ii If t(i)−φ
(
ξ′,θ0

)
< ε, return ξ?ε = ξ′ as an ε-optimal design and stop.

iii Else set i← i+ 1 and continue from Step 1.

A simple geometric interpretation of the algorithm follows from the fact that
minζ∈Ξ(i)

∑
x∈X H

(
ζ,x,θ0

)
ξ (x) is an upper piecewise linear approximation of φ

(
ξ,θ0

)
.

Increasing i, the set Ξ(i) ⊆ Ξ becomes larger, and the approximation improves.
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On the other hand, when the number of iteration i is small, the information matrix
M
(
ξ(i),θ0

)
associated with the solution of the LP problem in the i-th iteration can be

ill-conditioned or even singular. In such case, there could be difficulties with inverse
matrices when evaluating the function HD

(
ζ,x,θ0

)
or HA

(
ζ,x,θ0

)
in the (i+ 1)-st

iteration for ζ = ξ(i). However, as justified in Remark 2.4, it is possible to use any
symmetric positive definite matrix as a substitute for M

(
ζ,θ0

)
. Therefore, if the

matrix M
(
ζ,θ0

)
is ill-conditioned or singular, we replace it by the matrix M

(
ζ,θ0

)
+

βI, where β is a small positive number. Note that it is also possible to take Ξ(0) as a
nonempty set containing s≥ 1 initial designs. If s or i is large, then the solution ξ(i) of
the LP problem in the i-th iteration will be more probably associated with a nonsingular
and well-conditioned information matrix, because we expect a better approximation of
the criterion φ

(
·,θ0

)
in Step 2 of the algorithm. Note that the problem of a singular

information matrix does not appear in the case of Ek-optimality.
The stopping rule used in the above algorithm follows from the upper and lower

bounds for maxξ∈Ξφ
(
ξ,θ0

)
:

φ
(
ξ′,θ0

)
≤max

ξ∈Ξ
φ
(
ξ,θ0

)
≤ t(i). (2.6)

The first inequality is obvious. Notice that the solution of the LP problem in the i-
th iteration is t(i) = maxξ∈Ξ minζ∈Ξ(i)

∑
x∈X H

(
ζ,x,θ0

)
ξ (x), while maxξ∈Ξφ

(
ξ,θ0

)
=

maxξ∈Ξ minζ∈Ξ
∑

x∈X H
(
ζ,x,θ0

)
ξ (x), and Ξ⊇ Ξ(i). This yields the second inequality.

More standard stopping rules are based on the equivalence theorem (Kiefer and
Wolfowitz, 1959; Kiefer, 1974). Let εstop be a small nonnegative number. An iterative
algorithm will stop if d(ξ′)< εstop, where we have

d
(
ξ′
)

=
∣∣∣∣max
x∈X

f>
(
x,θ0

)
M−1

(
ξ′,θ0

)
f
(
x,θ0

)
−m

∣∣∣∣
for D-optimality and

d
(
ξ′
)

=
∣∣∣∣max
x∈X

f>
(
x,θ0

)
M−2

(
ξ′,θ0

)
f
(
x,θ0

)
− tr

[
M−1

(
ξ′,θ0

)]∣∣∣∣ ,
for A-optimality, see e.g. Kiefer (1974, 1975). According to Harman (2004), a similar
stopping rule for Ek-optimality is

d
(
ξ′
)

=

∣∣∣∣∣∣max
x∈X

k∑
i=1

{
f>
(
x,θ0

)
ui
[
M
(
ξ′,θ0

)]}2
−φEk

(
ξ′,θ0

)∣∣∣∣∣∣ ,
which can be used only if λk (ξ′)<λk+1 (ξ′). When λk (ξ′) has multiplicity greater than
one, the equivalence theorem could be still based on the directional derivative of φEk ,
which exists due to the concavity of φEk

(
·,θ0

)
but is difficult to compute.

As mentioned in Sect. 9.5.3 in Pronzato and Pázman (2013), the cutting plane
method can lead to instabilities when the number of elements in the design space X is
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large (see Nesterov, 2004; Bonnans et al., 2006). Then the level method (see Nesterov,
2004, Chap. 3.3.2 or Pronzato and Pázman, 2013, Sect. 9.5.3), which employs both
linear and quadratic programming, can be used.

For the time being we are not able to prove the convergence of the presented algo-
rithm, so we have to consider our method as a search method with a reliable stopping
rule (2.6). But it is useful to present the heuristic which is behind this search.

The algorithm solves the maximin problem ξ? = argmaxξ∈Ξ minζ∈ΞQ(ζ,ξ), where
Q(ζ,ξ) =∑

x∈X H
(
ζ,x,θ0

)
ξ (x) is a known “pay-off” function of the vector variables

ζ and ξ. We remind here that X is a finite set, so ζ and ξ are card(X )-dimensional
vectors. Shimizu and Aiyoshi (1980) studied a similar maximin problem, but with
a pay-off function satisfying specific properties. They proved the convergence of a
relaxation procedure to their maximin problem, which leads to Algorithm 2.5 presented
above. Namely, their approach in terms of our problem involves in the i-th iteration
the computation of the “relaxed problem”

max
t(i)∈R+, ξ(i)∈Ξ

t(i) under the inequalities Q
(
ζ,ξ(i)

)
≥ t(i) ∀ζ ∈ Ξ(i).

For our “pay-off” function this is an LP problem (see Step 2 of Algorithm 2.5). Shimizu
and Aiyoshi (1980) constructed their set Ξ(i+1) by adding the “worst” ζ in each step,
i.e. they chose

ζworst ∈ arg min
ζ∈Ξ∗

Q
(
ζ,ξ(i)

)
. (2.7)

We do in fact the same, since, as follows from the proofs of Theorems 2.1–2.3, in our
case ζworst = ξ(i). So we do not need to solve the possibly complicated minimization
problem (2.7) and we simply add ξ(i) to Ξ(i) to obtain Ξ(i+1).

Unfortunately, some of the assumptions for the convergence of the procedure for-
mulated in Shimizu and Aiyoshi (1980) are not satisfied here. Although the set Ξ is
compact, which is required by Shimizu and Aiyoshi (1980), once the computed ξ(i)

belongs to the set Ξ−Ξ+, the expression H
(
ξ(i),x,θ0

)
is not defined in the case of D-

or A-optimality, and we have to use a regularization in accordance with Remark 2.4,
see the discussion after Algorithm 2.5. This violates the assumptions of Shimizu and
Aiyoshi (1980). In the case of Ek optimality, the function HEk

(
ζ,x,θ0

)
is not continu-

ous in the variable ζ, which is required for their proof of convergence. This discontinuity
appears when the rank of M

(
ζ,θ0

)
changes with a slight modification of ζ.

In the example below we apply the algorithm to the model which was already
studied in Atkinson et al. (1993), so we were able to check the accordance of our results
with known optimal designs. The computations were performed in Matlab computing
environment and we used the simplex method to solve the LP problems.

18



Example 2.6. Consider the nonlinear regression model of Atkinson et al. (1993):

η (x,θ) = θ1 [exp(−θ2x)− exp(−θ3x)] , x ∈ R+, θ = (θ1, θ2, θ3)> .

We use Algorithm 2.5 to compute locally D- and E1-optimal designs for the nominal
parameter value θ0 = (21.8,0.05884,4.298)> (used in Atkinson et al., 1993). We take
the finite design space X = {0.001,0.002, . . . ,23.999,24.000} consisting of 24,000 points
and ε= 10−7. The starting design ξ(0) allocates the mass 1/3 to points x ∈ {0.2,1,23}
and zero mass to x /∈ {0.2,1,23} (see Pázman and Pronzato, 2014, Example 3). The
computed ε-optimal designs are given in Table 2.1 and performances of these designs
correspond to Atkinson et al. (1993) (D-optimality) and Pázman and Pronzato (2014)
(E1-optimality). 4

φ ξ?ε φ
(
ξ?ε ,θ

0
)

iter. time d(ξ?ε )

D

 0.229 1.389 18.417
0.3333 0.3333 0.3333

 11.7388 46 66.52 s 7.42 ·10−5

E1

 0.169 1.394 23.402
0.1993 0.6623 0.1384

 0.3163 26 30.21 s 2.63 ·10−5

Table 2.1: Numerical results in Example 2.6: locally ε-optimal designs for D- and E1-
optimality (column 2) and corresponding criterion values (column 3) rounded to four decimal
digits; number of iterations (column 4) and computational time (column 5) required until
the algorithm stopped; the value of the stopping rule d(ξ?ε ) based on the equivalence theorem
(column 6).

The long computing times, which depend mainly on the dimension of the design
space X , is a potential weakness of the presented LP method. On the other hand,
one may also use the algorithm several times, starting the computation with a sparse
initial design space X . After the algorithm has evaluated support points of the optimal
design, one may add some design points adjacent to these support points and repeat the
computation on a modified design space (see Pázman and Pronzato, 2014, Example 3).
Nevertheless, the LP approach may not be the method of choice for a “simple” problem
such as that in Example 2.6, but it can be useful when requiring optimal designs for
complicated scenarios such as those indicated in the remainder of this section.

2.3.1 Computation of criterion robust design

The criteria of Ek optimality of Harman (2004) play a special role in the experimental
design. They appear in the definition of Schur ordering of designs: we say that the

19



design ξ is locally not worse than the design ζ with respect to the Schur ordering of
designs if φEk

(
ξ,θ0

)
≥ φEk

(
ζ,θ0

)
for all k = 1, . . . ,m, see e.g. Harman (2008) for some

results on Schur optimal designs.
Another application of the class of Ek optimality criteria is related to the compu-

tation of “criterion robust” design within the class of orthogonally invariant criteria O
(see Filová and Harman, 2013 for the term criterion robust design). The class O in-
volves such criteria functions φ

(
ξ,θ0

)
which are concave and positively homogeneous in

ξ and, moreover, are orthogonally invariant in the sense that φ
(
ξ,θ0

)
= φ̄

[
M
(
ξ,θ0

)]
=

φ̄
[
Q>M

(
ξ,θ0

)
Q
]
for any orthogonal matrix Q. We are interested in computation of

criterion robust design ξ?ef which is maximin efficient with respect to the class O, i.e.

ξ?ef = argmax
ξ∈Ξ

min
φ∈O

 φ
(
ξ,θ0

)
maxν∈Ξφ

(
ν,θ0

)
 , (2.8)

where the ratio φ(ξ,θ0)
maxν∈Ξφ(ν,θ0) denotes the φ-efficiency of the design ξ at θ0.

Harman (2004) proved an important simplification in the computation of criterion
robust design (2.8), in particular

ξ?ef = argmax
ξ∈Ξ

min
1≤k≤m

 φEk

(
ξ,θ0

)
maxν∈ΞφEk

(
ν,θ0

)
 ,

i.e. it is sufficient to consider designs that are maximin efficient in the (finite) class of
all Ek-optimality criteria. But even this problem is computationally difficult, mainly
because the Ek-optimality criteria are not generally differentiable. We showed in Bur-
clová and Pázman (2016a) that we can solve this problem by the LP technique. First,
using Theorem 2.3, we compute Ek

(
opt,θ0

)
= maxν∈ΞφEk

(
ν,θ0

)
for all k (see Algo-

rithm 2.5), and then we can formulate another “infinite-dimensional” LP problem:

max
ξ,t

(
0>,1

)ξ
t


s.t.

∑
x∈X

HEk

(
ζ,x,θ0

)
Ek
(
opt,θ0

) ξ (x) ≥ t for any ζ ∈ Ξ and for every k ∈ {1, . . . ,m} ,

ξ (x) ≥ 0 for any x ∈ X , and
∑

x∈X
ξ (x) = 1.

In order to compute the criterion robust design, Algorithm 2.5 needs to be modified
in Step 2. Actually, the constraints in the LP problem will be:

t(i) > 0, ξ(i) (x)≥ 0 ∀ x ∈ X ,∑
x∈X

ξ(i) (x) = 1,

∑
x∈X

HEk

(
ζ,x,θ0

)
Ek
(
opt,θ0

) ξ(i) (x)≥ t(i) ∀ζ ∈ Ξ(i) and ∀ k = 1, . . . ,m.
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In the paper Burclová and Pázman (2016a) we illustrated the algorithm on the
quadratic regression model on one-, two-, three- and four-dimensional cube. The Ek-
optimal and criterion robust designs on these models were studied in Harman (2004);
Filová and Harman (2013) analytically or using methods of semidefinite programming
in Filová et al. (2012).

2.3.2 Computation of D-optimal design conditioned by a pre-
scribed level of A-optimality

It is not difficult to see that in the considered LP problems solved in Step 2 of Al-
gorithm 2.5 we can simply include some additional constraints linear in ξ, say, a cost
constraint ∑x∈X C (x)ξ (x) = C, where C (x) is the cost of an observation at x, and
C is proportional to the total cost allowed for the whole experiment. What is less
evident is that we can combine optimality criteria. For instance, when we want to
obtain a design which maximizes the D-optimality criterion and retains the value of
A-optimality criterion greater than or equal to some prescribed level a, we have to
solve the “infinite-dimensional” LP problem:

max
ξ,t

(
0>,1

)ξ
t


s.t.

∑
x∈X

HD

(
ζ,x,θ0

)
ξ (x) ≥ t for any ζ ∈ Ξ+,

∑
x∈X

HA

(
ζ,x,θ0

)
ξ (x) ≥ a for any ζ ∈ Ξ+,

ξ (x) ≥ 0 for any x ∈ X , and
∑

x∈X
ξ (x) = 1.

This problem can be solved by Algorithm 2.5 with a modification in the constraints of
the LP problem and in the stopping rule. The modified algorithm and an illustrative
example for linear model is presented in Burclová and Pázman (2016a).

2.4 Reformulation of AVE criteria

The reformulation of expressions in Theorems 2.1–2.3 in terms of AVE optimality
criteria (1.10) was also presented in Burclová and Pázman (2016a).

Theorem 2.7. Denote ΞΘ = {ξ :M (ξ,θ) is nonsingular ∀θ ∈Θ}. We can write∫
Θ
φ(ξ,θ)dπ (θ) = min

ζ∈Ξ∗
∑

x∈X
HAVE (ζ,x)ξ (x) ,

for any ξ ∈ Ξ∗, where HAVE (ζ,x) =
∫
ΘH (ζ,x,θ)dπ (θ) and Ξ∗ = ΞΘ for D- and A-

optimality, and Ξ∗ = Ξ for the criteria of Ek-optimality.

21



Proof. The design space X is assumed to be finite, hence the summation and the
integration are interchangeable. From Theorems 2.1–2.3 we have for any ζ ∈ Ξ∗ and
for any θ ∈Θ that

φ(ξ,θ)≤
∑

x∈X
H (ζ,x,θ)ξ (x) . (2.9)

We can write ∫
Θ
φ(ξ,θ)dπ (θ)≤

∑
x∈X

[∫
Θ
H (ζ,x,θ)dπ (θ)

]
ξ (x) . (2.10)

Since the inequality (2.10) holds for every ζ ∈ Ξ∗, evidently:∫
Θ
φ(ξ,θ)dπ (θ)≤ min

ζ∈Ξ∗
∑

x∈X

[∫
Θ
H (ζ,x,θ)dπ (θ)

]
ξ (x) . (2.11)

The proofs of theorems 2.1–2.3 imply that for any θ ∈Θ the equality in (2.9) is attained
at ζ = ξ, and so we obtain the equality in (2.10). This together with (2.11) proves the
theorem.

2.5 Bibliographic remarks on LP methods in ex-
perimental design

Since the cutting plane method based on LP is widely used in this thesis to obtain
optimal designs, here we mention some other authors, who used LP for purposes of
experimental design.

Gribik and Kortanek (1977) formulated an alternative to the Kiefer’s equivalence
theorem, so that they obtained conditions of the optimality of a design formulated as
linear functions of this design, and hence they were able to apply LP methods. The
difficulty with designs ξ(i) associated with singular information matrix (mentioned by
Gribik and Kortanek, 1977, p. 245), which we overcome by the use of Remark 2.4, is
solved in their paper differently requiring a solution of a nonlinear convex programming
problem at each iteration. Moreover, their method requires the existence of a gradient
of the considered criterion, so the Ek-criterion can not be handled. However, the
advantage of the method of Gribik and Kortanek (1977) is the existence of a proof of
convergence, obtained under some assumptions.

A possibility of an alternative approach to the results of Theorems 2.1–2.3 is in-
dicated in Sect. 9.5.3 of Pronzato and Pázman (2013). The authors evaluated the
subgradient of the considered criterion and then they applied the method of cutting
planes of Kelley (1960) (see Sect. 1.4), which can be used for any concave criterion.
Especially for the non-differentiable Ek criteria with k ≥ 2, the approach presented
in Theorem 2.3 seems to be more attractive than expressing the corresponding sub-
gradients. As already mentioned in Sect. 2.1, the authors also used an alternative
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formulation of the criteria of E-, c-, and G-optimality, which allowed them to obtain
optimal designs via LP.

Harman and Jurík (2008) consider only c-optimal designs and they show that the
famous Elfving’s theorem can be interpreted as a formulation of an LP problem. This
approach is quite different from ours.

2.6 Conclusions to this chapter

In Theorems 2.1–2.3 we demonstrate on the D-, A-, and Ek-optimality criteria that, by
matrix manipulations, we can obtain in a straightforward way expressions which allow
us to formulate the optimal design problem as an “infinite-dimensional” LP problem.
The concavity and the positive homogeneity of these criteria are then evident. For a
finite design space, the application of the relaxation method then leads not only to
a simple algorithm for optimum design, but also to stopping rules different from the
standard Kiefer’s equivalence theorem. Remark 2.4 is also important as it justifies
regularization steps in the algorithm.

Although the literature devoted to the optimal experimental design offers a lot of
methods and algorithms to obtain optimal designs which maximize standard criteria
like D- or A-optimality (see e.g. Chap. 9 of Pronzato and Pázman, 2013 for a review of
some methods), the methods described in this chapter may be very useful to optimize
some more complicated criteria. For instance to compute the criterion robust design
of Harman (2004) as presented in Sect. 2.3.1 or the optimization with respect to one
criterion under a bound constraint on the value of another criterion, see Sect. 2.3.2.
For more detailed results and examples we refer the reader to our paper Burclová and
Pázman (2016a).

We used the method of cutting planes also to compute the CVaR optimal designs
in nonlinear models, see Chap. 3, and to maximize the extended optimality criteria
in generalized regression models, where we used the same algorithm as suggested by
Pázman and Pronzato (2014), see Chap. 4.

23



Chapter 3

Experimental design based on some
ideas from risk theory

A special attention in this chapter is paid to the criterion based on the “Conditional
Value at Risk” (CVaR, see Sect. 3.3.1). Conditional Value at Risk, also called some-
times “super-quantile”, and “Value at Risk” (VaR, see Sect. 3.3.1), or simply “quantile”,
are the terms commonly used in the risk theory (finance and actuarial sciences), but
they can be applied also in the industry and engineering, see e.g. Guerra (2016).

The Value at Risk and Conditional Value at Risk are in the literature (e.g. Pflug,
2000; Rockafellar and Uryasev, 2000, 2002) considered as functions of a random vari-
able Y which measures the random loss associated with an investor decision, and are
supposed to be minimized. Unless indicated otherwise, when we will refer to these
papers we will use the notation common in experimental design, i.e. the random loss
corresponds to the criterion φ(ξ,θ) and is to be maximized.

Generally, the local, AVE, and maximin criteria from Def. 1.3 have their pros and
cons, for a recent exposition we refer to Sects. 8.1, 8.2, and 8.4 in Pronzato and Pázman
(2013). Due to some undesirable properties of above-mentioned criteria, Pázman and
Pronzato (2007) suggested to use the quantile criterion for a prescribed value α ∈
[0,1]

ΦQ
α (ξ) = max{t ∈ R : Pr [φ(ξ,θ)≥ t]≥ 1−α} . (3.1)

The quantile criterion is closely related to VaR and has many nice properties,
see e.g. Pázman and Pronzato (2007) or Sect. 8.4 in Pronzato and Pázman (2013).
But, generally, the quantile criterion is neither concave nor convex, which makes the
computation of an optimal design very complicated.

Valenzuela et al. (2015) introduced another (convex) criterion based on CVaR,
which has very similar properties as the quantile criterion. However, in the computa-
tions Valenzuela et al. (2015) used a formula developed by Rockafellar and Uryasev
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(2000), which can be used (in their settings) only when φ(ξ,θ) is a continuous random
variable. It is obvious that the countability or finiteness of the parametric space implies
that φ(ξ,θ) is a discrete random variable. Rockafellar and Uryasev (2002) extended
the results of Rockafellar and Uryasev (2000) also for noncontinuous distributions us-
ing different definition of CVaR. So in the thesis we rely on papers Rockafellar and
Uryasev (2002) and Pflug (2000), which help us to interpret and analyse the CVaR
criterion for discrete φ(ξ,θ).

Further technical problem is our preference for the concave definition of the CVaR-
criterion to be consistent with the other parts of this thesis. This is attained by a
simple reformulation of CVaR.

After defining some basic terms in Sect. 3.1, in Sect. 3.2 we define the criterion
related to CVaR following Pflug (2000). The criterion is concave when φ(ξ,θ) is concave
in ξ regardless of continuity of its cdf. The analogies of statements in this section can be
found in the literature devoted to the risk theory (e.g. Rockafellar and Uryasev, 2000;
Pflug, 2000; Rockafellar and Uryasev, 2002), but here we formulate also some proofs
for readers convenience. Section 3.3 sheds some light on the interpretation of our quite
abstract CVaR-criterion and is inspired by the paper Rockafellar and Uryasev (2002).
In Sect. 3.4 we show the relation of the CVaR-criterion to the AVE, maximin and
quantile criteria and we formulate the equivalence theorem. In Sect. 3.5 we implement
the cutting plane method to maximize the CVaR-criterion. The algorithm is tested on
the examples in Sect. 3.6. Section 3.7 concludes this chapter.

3.1 Basic definitions

Let π (θ) be the prior distribution of unknown parameter θ on the parametric space
Θ. In this sense, θ is a random variable or a random vector taking values from the
space Θ. Consequently, the information matrix M (ξ,θ) associated with the design ξ
and the criterion value φ(ξ,θ) are random.

For purposes of this chapter, let us define the basic terms.

Definition 3.1. The cumulative distribution function (cdf) of a random variable Y is
defined as

FY (y) = Pr (Y ≤ y) ∈ [0,1] .

For α ∈ [0,1] we define the α-quantile (sometimes referred as α-left-quantile) of Y as

qY (α) = inf {y ∈ R : FY (y)≥ α} (3.2)
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and the α-right-quantile of Y as

RqY (α) = sup{y ∈ R : Pr (Y ≥ y)≥ 1−α}

= sup{y ∈ R : Pr (Y < y)≤ α} .
(3.3)

For the term right-quantile and for more properties of quantiles we refer to Hosseini
(2010, 2009).

Note that for α ∈ (0,1) one may write minimum instead of infimum in (3.2) be-
cause the set {y ∈ R : FY (y)≥ α} is the interval bounded from below including the
endpoint, since F (y) is non-decreasing and right-continuous function. Similarly, the set
{y ∈ R : Pr (Y ≥ y)≥ 1−α} = {y ∈ R : Pr (Y < y)≤ α} is the interval bounded from
above including the endpoint because the function Pr (Y < y) is non-decreasing and
left-continuous and we can write maximum instead of supremum in (3.3).

Definition 3.2. A random variable Y is:

• discrete when it is taking finitely or countably many values and PY is its prob-
ability mass function (pmf) PY (B) = Pr

[
Y −1 (B)

]
for any Borel set B,

• continuous when it is taking uncountably many values and its cdf FY (y) satisfies
FY (y) =

∫ y
−∞ fY (t)dt, where the function fY (·) is the probability density function

(pdf) of the random variable Y .

Note that when the random vector θ has a discrete distribution, then also the
criterion value φ(ξ,θ) is distributed discretely.

When FY (y) takes the value α ∈ (0,1] if and only if y is from I, some interval in R,
then the α-left-quantile corresponds to the left endpoint of I and the α-right-quantile
corresponds to the right endpoint of I. This property is illustrated in the next example.

Example 3.3. Consider a random variable Y ∼ Bin(2,1/3) taking values 0,1,2. Its
cdf (continuous from the right) and the function Pr (Y ≥ y) (continuous from the left)
are displayed in Figure 3.1. For α = 0.6 we obtain qY (α) = RqY (α) = 1, but for
α = 4/9 = FY (0) we have qY (α) = 0 and RqY (α) = 1. 4

One obtains for any random variable Y that

− q−Y (α) =− inf {y : Pr (−Y ≤ y)≥ α}= sup{−y : Pr (Y ≥−y)≥ α}=

= sup{y : Pr (Y ≥ y)≥ α}=RqY (1−α) . (3.4)

Since the functions y 7→Pr (Y < y) and y 7→FY (y) =Pr (Y ≤ y) are non-decreasing
functions, the first is continuous from the left, the second from the right, the set
I = {y : Pr (Y < y)≤ α} forms a right-closed interval (half-line (−∞,RqY (α)]), and
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Figure 3.1: Example 3.3: The relation of qY (α) to RqY (α) when Y ∼Bin(2,1/3).

the set I ′ = {y : Pr (Y ≤ y)> α} forms a left-bounded interval (half-line [RqY (α),∞)
or (RqY (α),∞)) with the same endpoint RqY (α) ∈ I. One sees that

RqY (α) = sup
y∈I

y = inf
y∈I′

y = inf {y ∈ R : FY (y)> α} . (3.5)

This corresponds to the definition of right-quantile in Hosseini (2010) and Rockafellar
and Uryasev (2002). It follows from (3.2) and (3.5) that

qY (α) = inf {y : FY (y)≥ α} ≤ inf {y : FY (y)> α}=RqY (α) . (3.6)

3.2 CVaR-criterion for experimental design purposes

Definition 3.4. We define the CVaR optimality criterion for α ∈ (0,1] as

Φα (ξ)≡max
c∈R

{
c+ 1

α
E [min{0,φ(ξ,θ)− c}]

}
. (3.7)

We used the analogous definition of CVaR as Pflug (2000), but the formula was
originally derived in Rockafellar and Uryasev (2000). The relation of the criterion
to the theory of risk is pointed out in Sect. 3.3. Below we show some of its useful
properties.

3.2.1 Concavity of the CVaR-criterion

For the sake of completeness we give the proof of the concavity of the CVaR-criterion
Φα. Our proofs are based on the proofs from the theory risk, where the convexity of
similar functions is proved.
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We introduce the following notation:

wα (ξ,c)≡ c+ 1
α
E [min{0,φ(ξ,θ)− c}] ,

wα,Y (c)≡ c+ 1
α
E [min{0,Y − c}] ,

(3.8)

where Y is any random variable. Then one can write

Φα (ξ) = max
c∈R

wα (ξ,c) = max
c∈R

wα,φ(ξ,θ) (c) . (3.9)

Lemma 3.5. Let the criterion φ(ξ,θ) be concave in ξ for any θ ∈ Θ and let Y be a
random variable. Then for a given α ∈ (0,1]

a) the function wα,Y (c)≡ c+ 1
αE [min{0,Y − c}] is concave in c for any Y , i.e. for

any λ∈ (0,1) and for any c1, c2 ∈R we have wα,Y [λc1 + (1−λ)c2]≥ λwα,Y (c1)+
(1−λ)wα,Y (c2),

b) the function wα (ξ,c) ≡ c+ 1
αE [min{0,φ(ξ,θ)− c}] is concave in (ξ,c), i.e. for

any λ∈ (0,1), ξ1, ξ2 ∈Ξ and c1, c2 ∈R we have wα [λξ1 + (1−λ)ξ2,λc1 + (1−λ)c2]
≥ λwα (ξ1, c1) + (1−λ)wα (ξ2, c2).

Proof. Notice that we postponed analogically to proofs of the convexity of functions
similar to wα,Y (ξ,c) resp. wα(ξ,c) which are given in Proposition 2(iv) of Pflug (2000),
Theorem 2 of Rockafellar and Uryasev (2000), Theorem 10 and Corollary 11 of Rock-
afellar and Uryasev (2002).

a) The function c 7→min{0, z− c} is for any z concave in c, since the minimum of
two concave functions is concave. Hence for any λ ∈ (0,1)

wα,Y [λc1 + (1−λ)c2]

= λc1 + (1−λ)c2 + 1
α
E [min{0,Y −λc1− (1−λ)c2}]

≥ λc1 + (1−λ)c2 + 1
α
E [λmin{0,Y − c1}+ (1−λ)min{0,Y − c2}]

= λwα,Y (c1) + (1−λ)wα,Y (c2).

b) The functions (ξ,c) 7→ 0 and (ξ,c) 7→ φ(ξ,θ)− c are concave in (ξ,c) and hence
(ξ,c) 7→min{0,φ(ξ,θ)− c} is concave. Proceeding similarly as in the case a) one
obtains that the function wα(ξ,c) is concave in (ξ,c).

Theorem 3.6. When φ(ξ,θ) is concave in ξ for any θ ∈ Θ, then for given α ∈ (0,1]
the criterion Φα (ξ) is concave in ξ.
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Proof. The proof is according to Proposition 2(iv) in Pflug (2000), who proved the
convexity of a function similar to Φα(ξ). Using the notation from (3.8) we have Φα (ξ) =
maxc∈Rwα (ξ,c). Let us denote

c1 ∈ argmax
c∈R

wα (ξ1, c) ,

c2 ∈ argmax
c∈R

wα (ξ2, c) ,

where ξ1 and ξ2 are from Ξ. Then for every λ ∈ (0,1)

Φα [λξ1 + (1−λ)ξ2] = max
c∈R

wα [λξ1 + (1−λ)ξ2, c]≥wα [λξ1 + (1−λ)ξ2,λc1 + (1−λ)c2] ,

and using the concavity of wα (·, ·) (see Lemma 3.5b) we have

Φα [λξ1 + (1−λ)ξ2]≥ λwα (ξ1, c1) + (1−λ)wα (ξ2, c2) = λΦα (ξ1) + (1−λ)Φα (ξ2) .

3.2.2 Conditions for finiteness of the CVaR-criterion

Lemma 3.7. For any given α ∈ (0,1] the function wα,Y (c) is bounded from above by
E (Y ). Moreover, maxc∈Rwα,Y (c)≥− 1

αE (|Y |).

Proof. The function z 7→min{0, z− c} is concave and hence it follows from the Jensen’s
inequality (see e.g. Feller, 1971, Eq. 8.6 or Billingsley, 1995, Eq. 5.33) that if E (Y )
exists, then

wα,Y (c) = c+ 1
α
E (min{0,Y − c})

≤ c+ 1
α

min{0,E (Y )− c}=


c if E (Y )≥ c,

c+ 1
α [E (Y )− c] if E (Y )< c,

≤


max

c:E(Y )≥c
c if E (Y )≥ c,

max
c:E(Y )<c

c+ 1
α [E (Y )− c] if E (Y )< c,

= E (Y ) .

On the other hand,

max
c∈R

wα,Y (c)≥ wα,Y (0) = 1
α
E (min{0,Y }) =− 1

α
E (|Y | | Y < 0)Pr (Y < 0)≥

≥− 1
α
E (|Y | | Y < 0)Pr (Y < 0)− 1

α
E (|Y | | Y ≥ 0)Pr (Y ≥ 0) =− 1

α
E (|Y |) .

According to the previous lemma, the finiteness of the criterion Φα (ξ) =
maxc∈Rwα,φ(ξ,θ) (c) is ensured when the random variable |Y | = |φ(ξ,θ)| has finite ex-
pectation:
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Consequence 3.8. When E [|φ(ξ,θ)|] <∞ for ξ ∈ Ξ, then |Φα (ξ)| <∞ for any α ∈
(0,1].

3.2.3 Continuity of the function wα (ξ,c) in the formulation of
the CVaR-criterion in (3.9)

Lemma 3.9. Consider the random variable Y with E (|Y |) <∞. Then the function
wα,Y (c) = c+ 1

αE (min{0,Y − c}) is continuous in c on every closed bounded subset of
R. Moreover, when X is finite and φ(ξ,θ) is concave function of ξ with E (|φ(ξ,θ)|)<
∞ for every ξ ∈ Ξ, then the function wα (ξ,c) = c+ 1

αE (min{0,φ(ξ,θ)− c}) is contin-
uous in (ξ,c) ∈ Ξ×C, where C is an arbitrary closed bounded subset of R.

Proof. The function wα,Y (c) is concave (Lemma 3.5a) and, moreover, it is finite for
any c ∈ R because E (|Y |) ≤ ∞ (Lemma 3.7). As a consequence of Theorem 35.1
in Rockafellar (1970), the concavity and finiteness of wα,Y (c) imply that it is also
continuous in c for any α ∈ (0,1]. The continuity of wα (ξ,c) is proved in the same way
using Lemma 3.5b and Consequence 3.8.

Note that the continuity in c is also mentioned in Theorem 10 of Rockafellar and
Uryasev (2002).

Example 3.3. (continued) The continuity of function wα,Y (c) for Y ∼ Bin(2,1/3) is
illustrated in Figure 3.2a. One sees that in the case α= 0.6, the maximum of wα,Y (c)
is reached at c = 1, on the other hand, for α = 4/9 = FY (0) is the maximum attained
at any c ∈ [0,1] (the location of the maximum is justified in Theorem 3.10).

3.2.4 Optimal c in the definition of CVaR-criterion Φα in (3.7)

Theorem 3.10. Let Y be any random variable. Then [qY (α) ,RqY (α)] =
argmaxc∈Rwα,Y (c), where wα,Y (c) = c+ 1

αE (min{0,Y − c}) and α ∈ (0,1] is given.

Proof. In Theorem 10 of Rockafellar and Uryasev (2002) (see also Proposition 1 of
Pflug (2000)) is proved that

[q−Y (1−α),Rq−Y (1−α)] = argmin
c∈R

c+ 1
α
E[max{0,−Y − c}] = argmin

c∈R
−wα,Y (−c).

If c? ∈ argmaxc∈Rwα,Y (c), then c∗ ∈ argminc∈R−wα,Y (c) and hence

−c? ∈ argmin
c∈R
−wα,Y (−c) = [q−Y (1−α),Rq−Y (1−α)].

It follows that c? ∈ [−Rq−Y (1 − α),−q−Y (1 − α)] = [qY (α),RqY (α)], where we
used (3.4).
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Notice that when α = 1, then RqY (α) = RqY (1) =∞ and hence the maximum of
w1,Y (c) is reached in the half-open interval [qY (1) ,RqY (1)). If, moreover, qY (1) =∞
for some random variable Y (e.g. Y ∼ N (0,1)), the maximum of w1,Y (c) is reached
for c→∞ (and supremum is more appropriate). But, according to Lemma 3.7, the
value supcw1,Y (c) stays finite when E (|Y |)<∞ and, in addition, supcw1,Y (c) =E(Y )
(see also Theorem 3.19a).

Consequence 3.11. Alternatively, the CVaR-criterion (3.7) can be defined as follows

Φα (ξ) = c?+ 1
α
E [min{0,φ(ξ,θ)− c?}] ,

where c? is any point from
[
qφ(ξ,θ) (α) ,Rqφ(ξ,θ) (α)

]
.

In the proofs of this chapter we will often use the Law of total expectation (see
e.g. Billingsley, 1995, Eq. 34.6): E (min{Y − c,0}) = E (Y − c | Y ≤ c)Pr (Y ≤ c) =
E (Y | Y ≤ c)Pr (Y ≤ c)−cPr (Y ≤ c) (or analogically with the strict inequalities), and
hence (supposing that the probabilities in the denominators are positive)

E (Y | Y ≤ c) = E (min{Y − c,0})
Pr (Y ≤ c) + c and E (Y | Y < c) = E (min{Y − c,0})

Pr (Y < c) + c.

(3.10)
Further, one obtains for c? ∈

[
qφ(ξ,θ) (α) ,Rqφ(ξ,θ) (α)

]

Φ(ξ,θ) = c?
{

1− Pr [φ(ξ,θ)≤ c?]
α

}
+E [φ(ξ,θ) | φ(ξ,θ)≤ c?] Pr [φ(ξ,θ)≤ c?]

α

= c?
{

1− Pr [φ(ξ,θ)< c?]
α

}
+E [φ(ξ,θ) | φ(ξ,θ)< c?] Pr [φ(ξ,θ)< c?]

α
.

(3.11)

3.2.5 The dependence of the CVaR-criterion Φα on the prob-
ability level α

Lemma 3.12. The function maxc∈Rwα,Y (c) is non-decreasing in α ∈ (0,1] for any
random variable Y .

Proof. Let 1 ≥ α > β > 0. One sees from non-decreasing tendency of FY , from (3.5)
and from (3.6) that qY (β) ≤ RqY (β) = inf {y : FY (y)> β} ≤ inf {y : FY (y)≥ α} =
qY (α) ≤ RqY (α), and hence, following Theorem 3.10, cα ≥ cβ, for arbitrarily cho-
sen cα ∈ argmaxc∈Rwα,Y (c), cβ ∈ argmaxc∈Rwβ,Y (c). Then using this we obtain that
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Figure 3.2: Example 3.3: The illustration of Lemma 3.9 and Lemma 3.12.
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is nonnegative, and the criterion Φα (ξ) is non-decreasing function of parameter α.

Example 3.3. (continued) The non-decreasing tendency of function α 7→ wα,Y (c) for
Y ∼Bin(2,1/3) is illustrated in Figure 3.2b.

Consequence 3.13. The criterion Φα (ξ) is non-decreasing in α∈ (0,1] for any given ξ.

3.3 Two easily interpreted criteria as lower and up-
per bound of the CVaR-criterion

If φ(ξ,θ) is a discrete random variable, one could restrict his attention only to “appro-
priate alphas”, such that for some value tα,ξ ∈ R Fφ(ξ,θ)

(
tα,ξ

)
= α. Then

32



Fφ(ξ,θ)
[
qφ(ξ,θ) (α)

]
= α and according to (3.11)

Φα (ξ) = qφ(ξ,θ) (α)

1−
Fφ(ξ,θ)

[
qφ(ξ,θ) (α)

]
α


+E

[
φ(ξ,θ) | φ(ξ,θ)≤ qφ(ξ,θ) (α)

] Fφ(ξ,θ)
[
qφ(ξ,θ) (α)

]
α

= E
[
φ(ξ,θ) | φ(ξ,θ)≤ qφ(ξ,θ) (α)

]
.

The CVaR-criterion can be then interpreted straightforwardly. But when applying
the criterion Φα (ξ) in experimental design, the set of “appropriate alphas” may change
with different designs ξ. So, in design problems, the restriction to “appropriate alphas”
is not possible and for these reasons we introduce further optimality criteria based on
the risk theory, which, as we know, were not analysed for the purposes of experimental
design, but they may help us to interpret and understand the criterion given in (3.7)
in terms of conditional expectation.

3.3.1 Formulation of some optimality criteria based on the
risk theory

Let Y be a random variable (denoting for instance the loss associated with an invest-
ment possibility). In papers related to the risk theory, the following variables were
considered and analysed:

VaRβ (Y )≡min{y : FY (y)≥ β}= qY (β) β ∈ [0,1] (Value at Risk),

CVaRβ (Y )≡min
c∈R

[
c+ 1

1−βE (max{0,Y − c})
]

β ∈ [0,1) (Conditional Value at Risk),

CVaR+
β (Y )≡ E

[
Y | Y > VaRβ (Y )

]
β ∈ [0,1] (Upper CVaR),

CVaR−β (Y )≡ E
[
Y | Y ≥ VaRβ (Y )

]
β ∈ [0,1] (Lower CVaR),

see Rockafellar and Uryasev (2000, 2002); Pflug (2000) for the definition of VaR, Pflug
(2000) for this definition of CVaR and Rockafellar and Uryasev (2002) for CVaR+ and
CVaR−.

Since Y describes the possible loss, the aim of the risk theory is to minimize VaR,
CVaR, CVaR+, or CVaR− by proper choice of the investment strategy. For the pur-
poses of experimental design, we have to take instead of Y the expression −φ(ξ,θ) and
maximize the negatives of VaRβ [−φ(ξ,θ)], CVaRβ [−φ(ξ,θ)], CVaR+

β [−φ(ξ,θ)] and
CVaR−β [−φ(ξ,θ)].
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One can obtain

−CVaRβ [−φ(ξ,θ)] =− min
c∈R

{
c+ 1

1−βE [max{0,−φ(ξ,θ)− c}]
}

= max
c∈R

{
−c− 1

1−βE [max{0,−φ(ξ,θ)− c}]
}

= max
c∈R

{
−c+ 1

1−βE [min{0,φ(ξ,θ) + c}]
}

= max
c∈R

{
c+ 1

1−βE [min{0,φ(ξ,θ)− c}]
}

= Φ1−β (ξ) .

So for α= 1−β the last expression equals to the CVaR-criterion Φα (ξ) defined in (3.7).
In the risk theory, the usual choices for β are 0.9, 0.95 or 0.99 (c.f. e.g. Rockafellar
and Uryasev, 2000), but here we are not limited only to these special choices for α and
we will consider different probability levels, e.g. α = 0.5 to obtain an alternative for
median criterion, which can be interesting in the applications.

The quantile criterion from (3.1) can be interpreted in the terms of VaR

−VaRβ [−φ(ξ,θ)] =−q−φ(ξ,θ) (β) =Rqφ(ξ,θ) (1−β) = ΦQ
1−β (ξ)

(see Eq. (3.4)). Similarly,

−CVaR+
β [−φ(ξ,θ)] =−E

[
−φ(ξ,θ) | −φ(ξ,θ)> VaRβ (−φ(ξ,θ))

]
= E

[
φ(ξ,θ) | φ(ξ,θ)<−VaRβ (−φ(ξ,θ))

]
= E

[
φ(ξ,θ) | φ(ξ,θ)< ΦQ

1−β (ξ)
]
,

and we define
Φ−1−β (ξ) = E

[
φ(ξ,θ) | φ(ξ,θ)< ΦQ

1−β (ξ)
]

and
Φ+

1−β (ξ) = E
[
φ(ξ,θ) | φ(ξ,θ)≤ ΦQ

1−β (ξ)
]

(the notation is summarized below in Def. 3.14). Notice that Φ−1−β (ξ) is not well-
defined for such β that Pr

[
φ(ξ,θ)< ΦQ

1−β (ξ)
]

= 0, i.e. when ΦQ
1−β (ξ) corresponds to

the smallest possible value of the random variable φ(ξ,θ).
We put α= 1−β and from now we will focus on criteria which are supposed to be

maximized.

Definition 3.14. Let φ(ξ,θ) be the optimality criterion dependent on unknown pa-
rameter θ. Then for α ∈ (0,1] we define the following optimality criteria:

ΦQ
α (ξ) = max{t ∈ R : Pr [φ(ξ,θ)≥ t]≥ 1−α}=Rqφ(ξ,θ) (α) ,

Φα (ξ) = max
c∈R

{
c+ 1

α
E [min{0,φ(ξ,θ)− c}]

}
,

Φ+
α (ξ) = E

[
φ(ξ,θ) | φ(ξ,θ)≤ ΦQ

α (ξ)
]
.
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For α such that Pr
[
φ(ξ,θ)< ΦQ

α (ξ)
]
> 0 we also define the criterion

Φ−α (ξ) = E
[
φ(ξ,θ) | φ(ξ,θ)< ΦQ

α (ξ)
]
.

Note that we have already defined the criterion Φα(ξ) in Def. 3.4 and the criterion
ΦQ
α (ξ) in (3.1).

3.3.2 The comparison of the criteria based on the risk theory

According to (3.6) and Consequence 3.11, it is easy to see that for any ξ ∈ Ξ and for
arbitrarily chosen α ∈ (0,1]

ΦQ
α (ξ) =Rqφ(ξ,θ) (α)≥ qφ(ξ,θ) (α)≥ Φα (ξ) . (3.12)

Further bounds on Φα (ξ) are provided in the next theorem, see also Proposition 5 of
Rockafellar and Uryasev (2002) for the analogous statement.

Theorem 3.15. Let the level α ∈ (0,1] be given. When Φ−α (ξ) is well-defined, i.e.
when Pr

[
φ(ξ,θ)< ΦQ

α (ξ)
]
> 0, then for any such ξ

ΦQ
α (ξ)≥ Φ+

α (ξ)≥ Φα (ξ)≥ Φ−α (ξ) ,

moreover, if there is a point tα,ξ′ such that Pr
[
φ(ξ′,θ)≥ tα,ξ′

]
= 1−α for some ξ′,

then Φ−α (ξ′) = Φα (ξ′).
If Φ−α (ξ) is not defined, i.e. when Pr

[
φ(ξ,θ)< ΦQ

α (ξ)
]

= 0, then for any such ξ

ΦQ
α (ξ) = qφ(ξ,θ) (α) = Φ+

α (ξ) = Φα (ξ) .

Proof. The inequalities ΦQ
α (ξ)≥ Φ+

α (ξ) and Φ+
α (ξ)≥ Φ−α (ξ) (if Φ−α (ξ) is well-defined)

are obvious from Def. 3.14, hence, first we shall prove Φ+
α (ξ) ≥ Φα (ξ) and Φα (ξ) ≥

Φ−α (ξ) (if Φ−α (ξ) is well-defined). Using the fact that Pr
[
φ(ξ,θ)≤Rqφ(ξ,θ) (α)

]
≥

Pr
[
φ(ξ,θ)≤ qφ(ξ,θ) (α)

]
≥ α and according to Consequence 3.11 and from (3.10), we

have

Φ+
α (ξ) = E

[
φ(ξ,θ) | φ(ξ,θ)≤Rqφ(ξ,θ) (α)

]
=
E
[
min

{
0,φ(ξ,θ)−Rqφ(ξ,θ) (α)

}]
Pr

[
φ(ξ,θ)≤Rqφ(ξ,θ) (α)

] +Rqφ(ξ,θ) (α)

≥ 1
α
E
[
min

{
0,φ(ξ,θ)−Rqφ(ξ,θ) (α)

}]
+Rqφ(ξ,θ) (α) = Φα (ξ) ,

since the last expectation is not positive.
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Similarly, using that 0< Pr
[
φ(ξ,θ)<Rqφ(ξ,θ) (α)

]
≤ α and (3.10), we obtain

Φ−α (ξ) = E
[
φ(ξ,θ) | φ(ξ,θ)<Rqφ(ξ,θ) (α)

]
=
E
[
min

{
0,φ(ξ,θ)−Rqφ(ξ,θ) (α)

}]
Pr

[
φ(ξ,θ)<Rqφ(ξ,θ) (α)

] +Rqφ(ξ,θ) (α)

≤ 1
α
E
[
min

{
0,φ(ξ,θ)−Rqφ(ξ,θ) (α)

}]
+Rqφ(ξ,θ) (α) = Φα (ξ) , (3.13)

and the first part of the theorem is proved. Moreover, the existence of the point tα,ξ′
implies that Pr

[
φ(ξ′,θ)<Rqφ(ξ′,θ)(α)

]
= α and we obtain an equality sign in (3.13)

for ξ = ξ′.
Now let us assume that Φ−α (ξ) is not defined, i.e. Pr

[
φ(ξ,θ)<Rqφ(ξ,θ) (α)

]
= 0.

From (3.11) it follows that

Φα(ξ) =Rqφ(ξ,θ) (α)

1−
Pr

[
φ(ξ,θ)≤Rqφ(ξ,θ) (α)

]
α


+E

[
φ(ξ,θ) | φ(ξ,θ)≤Rqφ(ξ,θ) (α)

] Pr [φ(ξ,θ)≤Rqφ(ξ,θ) (α)
]

α

=Rqφ(ξ,θ) (α)

1−
Pr

[
φ(ξ,θ) =Rqφ(ξ,θ) (α)

]
α


+E

[
φ(ξ,θ) | φ(ξ,θ) =Rqφ(ξ,θ) (α)

] Pr [φ(ξ,θ) =Rqφ(ξ,θ) (α)
]

α

=Rqφ(ξ,θ) (α) = ΦQ
α (ξ) .

Hence, from previous considerations we have ΦQ
α (ξ) ≥ Φ+

α (ξ) ≥ Φα (ξ) = ΦQ
α (ξ) and,

in addition, (3.12) implies ΦQ
α (ξ)≥ qφ(ξ,θ) (α)≥ Φα (ξ) = ΦQ

α (ξ) which proves the last
part of the theorem.

We further refer the reader to Rockafellar and Uryasev (2002), who looked at jumps
in the distribution function of φ(ξ,θ), for the proofs and for comprehensive and more
precise results in the risk theory.

We remind here that, generally, ΦQ
α (ξ), Φ+

α (ξ) and Φ−α (ξ) are not concave in ξ,
hence they are not easily optimized and we used them only to demonstrate the prop-
erties of the criterion Φα (ξ). In general, the CVaR-criterion Φα can be considered as a
compromise criterion between Φ+

α (ξ) and Φ−α (ξ), which are nicely interpreted via the
conditional expectation of φ(ξ,θ).

Example 3.16. Consider the nonlinear regression model

η (x,θ) = θ1eθ2x
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with θ = (θ1, θ2)> and x ∈ {−1,1}. The local information matrix associated with the

design ξ =

 −1 1
(1− s) s

 , s ∈ [0,1], is

M (ξ,θ) = s

 e2θ2 θ1e2θ2

θ1e2θ2 θ2
1e2θ2

+ (1− s)
 e−2θ2 −θ1e−2θ2

−θ1e−2θ2 θ2
1e−2θ2

 . (3.14)

We suppose that the parameter θ has a discrete prior distribution: θ1 and θ2 are
independent random variables, both distributed uniformly over given finite set, θ1 over
{0.2,0.4,0.6,0.8,1} and θ2 over {−0.4,−0.2,0.2,0.4,1}. Hence, π

(
θ0
)

= 1/25 for any
θ0 ∈ {0.2,0.4,0.6,0.8,1}×{−0.4,−0.2,0.2,0.4,1} = Θ. We consider the criteria of D-,
A-, and E-optimality, in each case φ(ξ,θ) is a discrete random variable.

In Figure 3.3 are displayed the graphs of ΦQ
α (ξ), Φ+

α (ξ), Φα (ξ) and Φ−α (ξ) as
functions of s to illustrate the properties formulated in Theorem 3.15 and the missing
concavity of ΦQ

α (ξ), Φ+
α (ξ), and Φ−α (ξ).

The determinant of the information matrixM (ξ,θ) in (3.14) does not depend on θ2.
Hence the D-optimality criterion attains for given ξ only five possible values, each with
probability 1/5, and for α< 1/5 the criterion value ΦQ

α (ξ) corresponds to the minimum
of these five values. This implies that for α< 1/5 the criterion Φ−α (ξ) is not defined and
according to Theorem 3.15, ΦQ

α (ξ) = Φ+
α (ξ) = Φα (ξ) as seen in Figure 3.3a. For α≥ 1/5

the criteria follow the property ΦQ
α (ξ)≥ Φ+

α (ξ)≥ Φα (ξ)≥ Φ−α (ξ), see Figure 3.3b.
For special choices of α such that for some tα,ξ ∈ R Pr

[
φ(ξ,θ)< tα,ξ

]
= α (see

Figures 3.3d and 3.3f), the criteria Φ−α (ξ) and Φα (ξ) are equal at ξ, which is also
proved in Theorem 3.15.

Figure 3.4 displays the φE(ξ,θ)-criterion values for all 25 parameters in the para-
metric space Θ. One sees that the criterion values for two (or more) different parameters
θ may coincide at some points s′. The graph of function ΦQ

α (ξ) contains some kinks,
which appear at such points s′, as seen in Figure 3.4 on the right hand side. More-
over, at these kink points the value of Φ−α (ξ) can be significantly less compared to the
neighbouring points (because less parameters satisfy the property φ(ξ,θ) < ΦQ

α (ξ,θ))
or, on the other hand, Φ+

α (ξ) can be significantly greater (because more parameters
satisfy the property φ(ξ,θ)≤ ΦQ

α (ξ,θ)). This justifies the existence of isolated points
which can be seen in Figures 3.3c–3.3f at s= 0.5. The isolated points appear with every
kink, which, unfortunately, can not be seen in the figures due to the computational
restrictions associated with displaying graphs of discontinuous functions. 4
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Figure 3.3: Example 3.16: The graphs of ΦQ
α (ξ), Φ+

α (ξ), Φα (ξ) and Φ−α (ξ).
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Figure 3.4: Example 3.16: The graphs of φE (ξ,θ) for each θ in Θ (left-hand side). On the
right-hand side is the enlarged part of the same figure with displayed values of the quantile
criterion ΦQ

0.1 (ξ).

3.3.3 The CVaR-criterion in the case of continuous random
variable φ(ξ,θ)

Theorem 3.17. Assume that for ξ ∈ Ξ is φ(ξ,θ) a continuously distributed random
variable with a cdf Fφ(ξ,θ) and a pdf fφ(ξ,θ). The level α ∈ (0,1] is given. Then

Φ+
α (ξ) = Φα (ξ) = Φ−α (ξ) = 1

α

∫ ΦQα (ξ)

−∞
tfφ(ξ,θ) (t)dt. (3.15)

Proof. The proof follows the lines of the proof of Theorem 1 in Rockafellar and Urya-
sev (2000). We have only to prove Φα (ξ) = 1

α

∫ΦQα (ξ)
−∞ tfφ(ξ,θ) (t)dt, because from the

definitions of Φ+
α and Φ−α it is obvious that Φ+

α (ξ) = Φ−α (ξ) and Theorem 3.15 im-
plies Φ+

α (ξ) = Φα (ξ) = Φ−α (ξ). From Consequence 3.11 and from the definition of the
quantile criterion ΦQ

α (ξ) in (3.1) it follows that

Φα (ξ) =Rqφ(ξ,θ) (α) + 1
α

∫ Rqφ(ξ,θ)(α)

−∞

[
t−Rqφ(ξ,θ) (α)

]
fφ(ξ,θ) (t)dt

=Rqφ(ξ,θ) (α) + 1
α

∫ ΦQα (ξ)

−∞
tfφ(ξ,θ) (t)dt− 1

α
Rqφ(ξ,θ) (α)Fφ(ξ,θ)

[
Rqφ(ξ,θ) (α)

]
= 1
α

∫ ΦQα (ξ)

−∞
tfφ(ξ,θ) (t)dt.

Example 3.18. Consider the nonlinear regression model η(x,θ) = e−xθ, where x > 0
and the one-dimensional model parameter θ has uniform prior on the closed interval
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[θmin, θmax] with 0 < θmin < θmax. The elementary information matrix is M(x,θ) =
x2e−2xθ. In the example we restrict our attention to one-point designs, i.e. the exper-
iment will consist of one single measurement in x > 0.

First, we considered the D-optimality criterion φD(x,θ) = det[M(x,θ)] = x2e−2xθ.
The AVE-optimality give us the optimal x as the solution of the following optimization
problem

x?AVE = arg max
x:x>0

∫ θmax

θmin

φD(x,θ)
θmax− θmin

dθ = arg max
x:x>0

x(e−2xθmin− e−2xθmax)
2(θmax− θmin) ,

and, on the other hand, the maximin criterion leads to an optimal measurement x?min,
which does not depend on θmin:

x?min = 1
θmax

,

(see Pronzato and Pázman, 2013, Examples 8.2 and 8.5). Direct calculations give

that FφD(x,θ)(y) = 1−Fθ

 ln
(
y

x2

)
−2x

 and it follows that ΦQ
α (x) = x2e−2x[(1−α)θmax+αθmin],

which is maximized at
x?Q = 1

(1−α)θmax +αθmin
.

The random variable φD(x,θ) has continuous distribution with density fφD(x,θ)(y) =
1

2xy(θmax−θmin) and hence

x?CVaR = arg max
x:x>0

E[φD(x,θ) | φD(x,θ)< ΦQ
α (x)]

= arg max
x:x>0

1
α

∫ ΦQα (x)

x2e−2xθmax
yfφD(x,θ)(y)dy

= arg max
x:x>0

x
{
e−2x[(1−α)θmax+αθmin]− e−2xθmax

}
2α(θmax− θmin)

is the value which maximizes the CVaR criterion Φα(x).
The criterion values Φmin(x),Φα(x),ΦQ

α (x), and ΦAVE(x) are for θmin = 1/2, θmax =
7/2, α = 0.45 and x corresponding to the quantile-optimal single-point design, i.e.
x = 1

0.55·7/2+0.45·1/2 , depicted in Figure 3.5 on the left hand side. The displayed value
Φmin(x) is the smallest possible value of the random variable φD(x,θ). The area under
the graph of pdf fφD(x,θ) between Φmin(x) and ΦQ

α (x) equals α (the gray area in the fig-
ure). In the case of continuous random variable, the CVaR criterion Φα(x) corresponds
to the expectation of values between Φmin(x) and ΦQ

α (x). Hence, by maximizing the
quantile criterion we neglect the values of φD(x,θ) which are smaller or larger than
the quantile, while by maximizing the CVaR criterion we neglect only the values larger
than the corresponding quantile.

In Figure 3.5 on the right hand side is illustrated the situation for uniform prior
distribution on finite Θ = {0.5,1.25,2,2.75,3.5}. In this case, the random variable
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φD(x,θ) is discrete and takes five possible values, each with probability 0.2. One
sees that Pr[φD(x,θ)< ΦQ

α (x)] = 0.4< α but Pr[φD(x,θ)≤ ΦQ
α (x)] = 0.6> α and the

criteria Φα(x), Φ+
α (x) and Φ−α (x) are no more equal.
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Figure 3.5: Example 3.18: The density (θ uniformly distributed on Θ = [1/2,7/2]) and pmf (θ
uniformly distributed on Θ = {0.5,1.25,2,2.75,3.5}) of φD (x,θ) for x = 1

0.55·7/2+0.45·1/2 with
corresponding values of some criteria depicted.

Now consider the D-optimality criterion φD∗(x,θ) = lndet [M(x,θ)] with θ uni-
formly distributed over [θmin, θmax]. The random variable φD∗(x,θ) is then uniformly
distributed on the interval [2 ln(x)− 2xθmax,2ln(x)− 2xθmin] and ΦQ

α (x) = 2ln(x)−
2x [(1−α)θmax +αθmin], and hence Φα(x) = E[φD∗(x,θ) | φD∗(x,θ) < ΦQ

α (x)] =
{ln(x)−x[(1−α)θmax+αθmin]}2−[ln(x)−xθmax]2

αx(θmax−θmin) , which is maximized at

x??CVaR = 2(θmin− θmax)
(α−2)θ2

max +αθ2
min + 2(1−α)θminθmax

.

The quantile and maximin single-point optimal designs are the same as in the case of
φD(x,θ), since they are invariant to nonlinear rescaling of the criterion function φ (see
Sect. 3.4.2). The AVE optimality criterion (see Pronzato and Pázman, 2013, Example
8.2) is maximized at

x??AVE = 1
E(θ) = 2

θmin + θmax
.

One sees that only the maximin optimal design does not depend on θmin at all. 4

In the case of continuously distributed φ(ξ,θ) we obtained as a consequence of
Theorem 3.17 an alternative definition of the CVaR-criterion via Φ+

α (·) and Φ−α (·),
and, instead of the rather abstract definition of Φα in (3.7), we can use an intuitively
more clear definition of the CVaR-criterion via the integral in (3.15). Moreover, as a
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consequence of Theorem 3.17, Φ+
α (·) and Φ−α (·) are concave in ξ, which is not always

true for discrete random variables.
In the simpler case when φ(ξ,θ) is assumed to be continuous random variable, the

CVaR-criterion defined in (3.7) can be formulated as

Φα (ξ) = 1
α

∫{
θ:φ(ξ,θ)≤ΦQα (ξ)

}φ(ξ,θ)dπ (θ) , (3.16)

see also Theorem 3.17. This is the concave version of the CVaR-criterion defined
in Valenzuela et al. (2015) corresponding to the definition of CVaR in Rockafellar
and Uryasev (2000), where its convexity is proven for the case of continuous random
variable φ(ξ,θ) (see their Theorem 2). However, as proved in Sect. 3.2.1, the CVaR-
criterion (3.7), the definition of which is based on the formula derived in Rockafellar
and Uryasev (2000) and used in Pflug (2000) as definition of CVaR, is concave for any
random variable. Rockafellar and Uryasev (2002) considered a more general CVaR
than in Rockafellar and Uryasev (2000), as a mean of a random variable with cdf
Fαφ(ξ,θ) : R 7→ [0,1]:

Fαφ(ξ,θ) (t) =


1 if t≥Rqφ(ξ,θ) (α) ,
Fφ(ξ,θ)(t)

α otherwise,

which is given as a proper rescaling of the cdf Fφ(ξ,θ). This definition coincides with
the Pflugs definition, as proved in Theorem 10 of Rockafellar and Uryasev (2002).

The reason for involving also discontinuous distributions into our considerations is
that the distribution π (θ) can be discrete (this also includes the case when the para-
metric space Θ is finite or countable) causing that the distribution of φ(ξ,θ) is discrete.
However, neither the case when θ is continuous random variable is unambiguous and
simple, because the continuity of φ(ξ,θ) is still not ensured.

3.4 Interpretation of the CVaR-criterion Φα in the
context of experimental design

In this section we explain the main properties of the optimality criteria based on VaR
and CVaR, which can be effectively applied when designing experiments in nonlinear
models.

When the criterion φ(ξ,θ) can be considered as a continuous random variable, we
can formulate the CVaR-criterion Φα (ξ) as in (3.16). So, unlike the AVE-criterion, the
idea of the CVaR-criterion is to maximize the mean of φ(ξ,θ) under the condition that
φ(ξ,θ)≤ΦQ

α (ξ) (naturally, this condition is satisfied with the probability α for any ξ).
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First of all, we shall compare the CVaR-criterion to the local, maximin, AVE and
quantile criteria, which are more usual in design of experiments.

3.4.1 Relation to the local, maximin, and AVE-criterion

It turns out that the local, AVE and maximin criteria are special cases of the CVaR-
criterion (3.7).

Theorem 3.19. We suppose that the unknown parameter θ has prior distribution π (θ)
on the parametric space Θ. Then

a) Φ1 (ξ) = ΦAVE (ξ) for any ξ, i.e. for α = 1 the CVaR-criterion is equal to the
AVE-criterion (1.10),

b) if φ(ξ′, ·) :Rm→R, θ 7→ φ(ξ′,θ) is continuous function on Rm and for every open
set T ⊂Rm such that T ∩Θ 6= ∅ the probability Pr (θ ∈ T ) = π (Θ∩T ) is positive,
then, supposing that Φmin (ξ′) does exist, limα→0 Φα (ξ′) = Φmin (ξ′) , i.e. at ξ′ the
CVaR-criterion tends to the maximin criterion (1.9),

c) if π (θ) = 1 for θ = θ0 and π (θ) = 0 for θ 6= θ0, then Φα (ξ) = Φloc (ξ) for any
α ∈ (0,1], i.e. the CVaR-criterion coincides with the local criterion (1.8).

Proof.

a) Evidently, min
{

0,φ(ξ,θ)− qφ(ξ,θ) (1)
}

= φ(ξ,θ)− qφ(ξ,θ) (1). So, according to
Consequence 3.11, for α = 1 the CVaR-criterion (3.7) equals qφ(ξ,θ) (1) +
E
[
φ(ξ,θ)− qφ(ξ,θ) (1)

]
= E [φ(ξ,θ)] =

∫
Θφ(ξ,θ)dπ (θ) which coincides with the

AVE-criterion (1.10).

b) Let α→ 0. We shall show that limα→0 Φα (ξ′) = minθ∈Θφ(ξ′,θ) ≡ Φmin (ξ′), i.e.
we have to prove that ∀ε > 0 ∃∆ > 0 : |Φδ (ξ′)−Φmin (ξ′)| ≤ ε ∀0 < δ < ∆. It
follows from (3.12), see also the notation in (3.8) and the definition of Φα (ξ)
in (3.9), that Φmin (ξ′) = wδ [ξ′,Φmin (ξ′)] ≤ maxc∈Rwδ (ξ′, c) = Φδ (ξ′) ≤ ΦQ

δ (ξ′).
Hence

0≤ Φδ

(
ξ′
)
−Φmin

(
ξ′
)
≤ ΦQ

δ

(
ξ′
)
−Φmin

(
ξ′
)
,

and we have only to show that ΦQ
δ (ξ′)−Φmin (ξ′)≤ ε for any 0< δ <∆. Take any

∆ satisfying the inequality 1−∆≥Pr [φ(ξ′,θ)≥ ε+ Φmin (ξ′)] which is equivalent
to the inequality ∆ ≤ Pr [φ(ξ′,θ)< ε+ Φmin (ξ′)]. Indeed, for any ε > 0 there
does exist such ∆ ∈ (0,1], because the set T = {a : φ(ξ′,a) ∈ (−∞, ε+ Φmin (ξ′))}
is open, since it is the pre-image of the open set (−∞,Φmin (ξ′) + ε) and φ(ξ′, ·)
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is continuous function. Therefore, Pr [φ(ξ′,θ)< ε+ Φmin (ξ′)] = Pr (θ ∈ T ) > 0.
From the definition of the quantile criterion (3.1), we have

Pr
[
φ
(
ξ′,θ

)
≥ ΦQ

δ

(
ξ′
)]
≥ 1− δ > 1−∆≥ Pr

[
φ
(
ξ′,θ

)
≥ ε+ Φmin

(
ξ′
)]
. (3.17)

The function t 7→ Pr[φ(ξ′,θ)≥ t] is non-increasing, hence it follows from (3.17)
that

ΦQ
δ

(
ξ′
)
≤ ε+ Φmin

(
ξ′
)

and the statement is proved.

c) It is easy to see that qφ(ξ,θ) (α) = φ
(
ξ,θ0

)
= Φloc (ξ) for any α ∈ (0,1]. From

Consequence 3.11 it follows that

Φα (ξ) = qφ(ξ,θ) (α) + 1
α
E
[
min

{
0,φ(ξ,θ)− qφ(ξ,θ) (α)

}]
=

= qφ(ξ,θ) (α) + 1
α

[
min

{
0,φ

(
ξ,θ0

)
− qφ(ξ,θ) (α)

}]
= qφ(ξ,θ) (α) = Φloc (ξ) .

3.4.2 Relation to the quantile criterion

The quantile criterion keeps different ordering of designs than the CVaR-criterion.
Pázman and Pronzato (2007) emphasize that the quantile criterion is invariant to

nonlinear rescaling of the criterion φ(ξ,θ). Indeed, unlike the AVE- and the CVaR-
criterion, when taking an increasing function % : R→ R, then

Rq%[φ(ξ,θ)] (α) = sup{t ∈ R : Pr{% [φ(ξ,θ)]≥ t} ≥ 1−α}

= sup
{
%
[
%−1 (t)

]
∈ R : Pr

[
φ(ξ,θ)≥ %−1 (t)

]
≥ 1−α

}
= sup{%(t) ∈ R : Pr [φ(ξ,θ)≥ t]≥ 1−α}

= %
[
Rqφ(ξ,θ) (α)

]
= %

[
ΦQ
α (ξ)

]
,

(3.18)

hence the ordering of designs given by ΦQ
α (ξ) is the same regardless of the transforma-

tion of the initial criterion φ(ξ,θ).
On the other hand,

E
{
% [φ(ξ,θ)] | % [φ(ξ,θ)]<Rq%[φ(ξ,θ)] (α)

}
=E

{
% [φ(ξ,θ)] | % [φ(ξ,θ)]< %

[
Rqφ(ξ,θ) (α)

]}
=E

{
% [φ(ξ,θ)] | φ(ξ,θ)<Rqφ(ξ,θ) (α)

}
,

which is not necessarily equal to %
{
E
[
φ(ξ,θ) | φ(ξ,θ)<Rqφ(ξ,θ) (α)

]}
= % [Φα (ξ)] (the

equality appears when %(·) is linear) and the CVaR-criterion for % [φ(ξ,θ)] is not gen-
erally equal to the CVaR-criterion for φ(ξ,θ).
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We justified in Sect. 3.2.1 that the criterion Φα (ξ) is concave in ξ when the crite-
rion φ(ξ,θ) is concave in ξ for any θ ∈ Θ. This is a big advantage comparing to the
quantile criterion, because it can be optimized applying well-known methods of math-
ematical programming (see Rockafellar and Uryasev, 2000, Valenzuela et al., 2015, or
Algorithm 3.22 in Sect. 3.5).

3.4.3 Further properties of the CVaR-criterion

Let the criterion φ(ξ,θ) be positively homogeneous for any θ, then

Φα (aξ) = max
c∈R

{
c+ 1

α
E [min{aφ(ξ,θ)− c,0}]

}
= aRqφ(ξ,θ)(α) + 1

α
E
[
min

{
aφ(ξ,θ)−aRqφ(ξ,θ)(α),0

}]
= a

{
Rqφ(ξ,θ)(α) + 1

α
E
[
min

{
φ(ξ,θ)−Rqφ(ξ,θ)(α),0

}]}
= amax

c∈R

{
c+ 1

α
E [min{φ(ξ,θ)− c,0}]

}
= aΦα (ξ) ,

where we used Consequence 3.11 and the property aRqY (α) = RqaY (α) for α > 0,
similarly as in (3.18), to prove the positive homogeneity of Φα (ξ).

The directional derivative and the equivalence theorem

We could see in Figure 3.3 of Example 3.16 that the CVaR criterion is not necessarily
differentiable function of the design ξ even if the criterion φ(ξ,θ) is (e.g. A-optimality).
However, the CVaR criterion is concave and hence the directional derivative at ξ in
the direction ν always exists and is defined as follows

FΦα(ξ,ν) = lim
a→0+

Φα[(1−a)ξ+aν]−Φα(ξ)
a

,

see e.g. Lemma 5.16 in Pronzato and Pázman (2013). The equivalence theorem states
that the design ξ? is CVaR optimal if and only if supν∈ΞFΦα(ξ?,ν) = 0, see e.g. The-
orem 5.21 in Pronzato and Pázman (2013).

Lemma 3.20. Suppose that φ(ζ,θ) is for any θ ∈ Θ concave and continuous in ζ.
Let φ(ξ,θ) > −∞ for any θ ∈ Θ, E [|φ(ξ,θ)|] <∞, and let c,b ∈ R. The directional
derivative of the function wα(ξ,c) = c+ 1

αE [min{0,φ(ξ,θ)− c}] at (ξ,c) in the direction
(ν,b) equals

Fwα [(ξ,c),(ν,b)] = b− c+ 1
α
E




0 if φ(ξ,θ)> c

min{0,Fφ(·,θ)(ξ,ν)− (b− c)} if φ(ξ,θ) = c

Fφ(·,θ)(ξ,ν)− (b− c) if φ(ξ,θ)< c

 ,
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where Fφ(·,θ)(ξ,ν) = lima→0+
φ[(1−a)ξ+aν,θ]−φ(ξ,θ)

a denotes the directional derivative of
φ(·,θ) at ξ and in the direction ν and α ∈ (0,1].

Proof. The directional derivative of the function wα(ξ,c) does exist due to its concavity
in (ξ,c), see Lemma 3.5b. For a fixed θ let us use the following notation

hθ(ξ,c)≡ φ(ξ,θ)− c,

gθ(ξ,c)≡min{0,hθ(ξ,c)},

and for any a ∈ [0,1] define
ξa = (1−a)ξ+aν,

ca = (1−a)c+ab,

where ξ,ν ∈ Ξ and c,b ∈R are fixed. Now we will evaluate the directional derivative of
the function gθ(·, ·) at (ξ,c) in the direction (ν,b), i.e.

Fgθ
[(ξ,c),(ν,b)] = lim

a→0+

gθ(ξa, ca)−gθ(ξ,c)
a

.

The values of ξ,ν,c,b always result in one of the following possibilities and directly
determine Fgθ

[(ξ,c),(ν,b)]:

a) The case when hθ(ξ,c) > 0. Then thanks to the continuity of function hθ(·, ·)
there is a number a? ∈ (0,1] such that hθ(ξa, ca) > 0 for any a ∈ [0,a?), which
implies that gθ(ξ,c) = gθ(ξa, ca) = 0 and

Fgθ
[(ξ,c),(ν,b)] = 0.

b) The case when hθ(ξ,c) < 0. Applying the continuity of hθ(·, ·) as in the case a)
one obtains that there is a number a? ∈ (0,1] such that hθ(ξa, ca) < 0 for any
a ∈ [0,a?), which implies that gθ(ξ,c) = hθ(ξ,c) and gθ(ξa, ca) = hθ(ξa, ca). It
follows

Fgθ
[(ξ,c),(ν,b)] = lim

a→0+

φ(ξa,θ)− ca−φ(ξ,θ) + c

a
= Fφ(·,θ)(ξ,ν)− (b− c).

c) The case when hθ(ξ,c) = 0 and hθ(ξa, ca) < 0 for any a ∈ (0,1]. Then gθ(ξ,c) =
hθ(ξ,c) and gθ(ξa, ca) = hθ(ξa, ca) like in the case b). It follows

Fgθ
[(ξ,c),(ν,b)] = lim

a→0+

hθ(ξa, ca)−hθ(ξ,c)
a

= Fφ(·,θ)(ξ,ν)− (b− c)≤ 0.

d) The case when hθ(ξ,c) = 0 and hθ(ξa? , ca?)≥ 0 for some a? ∈ (0,1]. Then due to
the concavity of the function hθ(·, ·) we have that hθ(ξa, ca)≥ 0 for any a∈ [0,a?].
It follows, like in the case a), that

Fgθ
[(ξ,c),(ν,b)] = 0,
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and moreover

Fφ(·,θ)(ξ,ν)− (b− c) = lim
a→0+

hθ(ξa, ca)−hθ(ξ,c)
a

= lim
a→0+

hθ(ξa, ca)
a

≥ 0.

Summarizing, we have for a fixed θ

Fgθ
[(ξ,c),(ν,b)] =


0 if φ(ξ,θ)> c,

min{0,Fφ(·,θ)(ξ,ν)− (b− c)} if φ(ξ,θ) = c,

Fφ(·,θ)(ξ,ν)− (b− c) if φ(ξ,θ)< c.

Assuming that the integration and limit are interchangeable (see Pronzato and Pázman,
2013, p. 237) one obtains the directional derivative of wα at (ξ,c) in the direction (ν,b):

lim
a→0+

(1−a)c+ab− c
a

+ 1
α
E {Fgθ

[(ξ,c),(ν,b)]}= b− c+ 1
α
E {Fgθ

[(ξ,c),(ν,b)]} .

Since Φα(ξ) = wα
[
ξ,ΦQ

α (ξ)
]

and wα(ξ,c) is concave function in (ξ,c), see
Lemma 3.5b, we can use the same reasoning as in Theorem 5.21 of Pronzato and
Pázman (2013), and, the design ξ? is CVaR optimal if and only if

sup
ν∈Ξ
b∈R

Fwα
[(
ξ?,ΦQ

α (ξ?)
)
,(ν,b)

]
= 0. (3.19)

However, when the criterion φ(ξ,θ) is differentiable for any θ and when φ(ξ?,θ) is
continuous random variable, we can apply the following equivalence theorem.

Theorem 3.21. Consider the criterion M 7→ φ̄(M) and φ̄[M(ξ,θ)] = φ(ξ,θ) ∀ξ ∈
Ξ, ∀θ ∈ Θ. Suppose that φ̄ is differentiable and denote by G(ξ,θ) ∈ Rm×m its gra-
dient with respect to M ∈ Rm×m at M(ξ,θ) and let k(ξ,θ) = tr [M(ξ,θ)G(ξ,θ)]. Let
φ(ξ?,θ) be a continuous random variable with E [|φ(ξ?,θ)|]<∞. The design ξ? is then
CVaR-optimal if and only if

0 = max
x∈X
b∈R

b−ΦQ
α (ξ?)+

+ 1
α
E




0 if φ(ξ?,θ)> ΦQ
α (ξ?)

tr [M(x,θ)G(ξ?,θ)]−k(ξ?,θ)− (b−ΦQ
α (ξ?)) if φ(ξ?,θ)< ΦQ

α (ξ?)


 .

Proof. Since φ(ξ,θ) is differentiable, one has

Fφ(·,θ) (ξ?,ν) = tr [M(ν,θ)G(ξ?,θ)]−k(ξ?,θ)

=
∫

x∈X
tr [M(x,θ)G(ξ?,θ)]dν(x)−k(ξ?,θ),
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see e.g. Eq. 5.34 in Pronzato and Pázman (2013). As a consequence of differentiability,
φ(·,θ) is necessarily continuous at ξ? for any θ and hence we may use Lemma 3.20. In
addition, Pr[φ(ξ?,θ) = c] = 0, since φ(ξ?,θ) is continuous random variable.

One has for any ν ∈ Ξ and c,b ∈ R

Fwα [(ξ?, c),(ν,b)]− (b− c)

= 1
α
E




0 if φ(ξ?,θ)> c

Fφ(·,θ)(ξ?,ν)− (b− c) if φ(ξ?,θ)< c



= 1
α

∫
x∈X

E




0 if φ(ξ?,θ)> c

tr [M(x,θ)G(ξ?,θ)]−k(ξ?,θ)− (b− c) if φ(ξ?,θ)< c

dν(x)

≤ 1
α

max
x∈X

E




0 if φ(ξ?,θ)> c

tr [M(δx,θ)G(ξ?,θ)]−k(ξ?,θ)− (b− c) if φ(ξ?,θ)< c



≤ sup
ζ∈Ξ

1
α
E




0 if φ(ξ?,θ)> c

tr [M(ζ,θ)G(ξ?,θ)]−k(ξ?,θ)− (b− c) if φ(ξ?,θ)< c


= sup

ζ∈Ξ
Fwα [(ξ?, c),(ζ,b)]− (b− c),

where δx denotes Dirac measure concentrated at x. Since the previous inequalities are
satisfied for any ν ∈ Ξ, then they are also satisfied for the supremum over ν, and we
obtain

sup
ν∈Ξ
b∈R

Fwα [(ξ?, c) ,(ν,b)] =

= max
x∈X
b∈R

b− c+ 1
α
E




0 if φ(ξ?,θ)> c

tr [M(x,θ)G(ξ?,θ)]−k(ξ?,θ)− (b− c) if φ(ξ?,θ)< c


 ,

which, as follows from (3.19), proves the statement for c= ΦQ
α (ξ?).

3.5 Calculation of CVaR-optimal designs

The design ξ? is CVaR-optimal if

Φα (ξ?) = max
ξ∈Ξ

Φα (ξ) = max
ξ,c

wα(ξ,c), (3.20)

for the second equality see Theorem 2 in Rockafellar and Uryasev (2000) or Theorem 14
in Rockafellar and Uryasev (2002). We suggest to use the cutting plane method (see
Sect. 1.4) to solve the problem (3.20).
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3.5.1 Subgradient for the function wα (ξ,c) from (3.9)

For the purposes of the optimization of the CVaR-criterion Φα via the cutting plane
method, either the design space X has to be finite or we need to use a discretization X ′

of X (see examples in Sect. 3.6). Consequently the (discretized) design space consists
of card(X ′) points and hence the design ξ corresponds to the relative frequencies of
measurements taken in these points, i.e. ξ = (ξ(x);x ∈ X ′), and can be interpreted
as card(X ′)-dimensional real vector with nonnegative components summing to one.
Moreover, we assume that the criterion φ(ξ,θ) is concave in ξ with finite expectation
E [|φ(ξ,θ)|] for any ξ.

Now denote z =
(
ξ>, c

)>
, ξ ∈ Ξ⊂ Rcard(X ′), c ∈ R, and

ϕ(z) = wα (ξ,c) = c+ 1
α
E [min{0,φ(ξ,θ)− c}] (3.21)

is the function to be maximized over c and ξ. The function wα (ξ,c) is concave, see
Lemma 3.5b, and hence the method of cutting planes can be applied to solve the
optimization problem

(ξ?, c?) = argmax
ξ,c

wα (ξ,c) = maxz ϕ(z). (3.22)

To be able to use the cutting plane method, we have to evaluate the formula for
subgradient. Denote by ∇ξφ

(
ξ̃,θ

)
an arbitrary subgradient of the criterion φ(ξ,θ)

at ξ̃. We will assume that it is known (when the criterion is differentiable, it equals
to the gradient of the criterion). Using the properties from Lemma 1.4 we evaluate a
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subgradient of ϕ(·) at z̃ =
(
ξ̃, c̃
)>

:

∇ϕ(z̃) =∇wα
(
ξ̃, c̃
)

=∇c̃+ 1
α
E
[
∇min

{
φ
(
ξ̃,θ

)
− c̃,0

}]

=
0

1

+ 1
α
E



∇0 if φ

(
ξ̃,θ

)
> c̃,

∇φ
(
ξ̃,θ

)
+∇(−c̃) otherwise



=
0

1

+ 1
α
E





0
0

 if φ
(
ξ̃,θ

)
> c̃,

∇ξφ
(
ξ̃,θ

)
0

+

 0

−1

 otherwise



=
0

1

+ 1
α
E





0

0

 if φ
(
ξ̃,θ

)
> c̃,

∇ξφ
(
ξ̃,θ

)
−1

 otherwise


.

(3.23)
Kelley (1960) proposed the cutting plane method for maximizing a continuous

concave function defined on a compact convex set. In our case, the continuity of
ϕ(z) =wα (ξ,c) is ensured on every closed bounded subset of Rcard(X ′)+1 in Lemma 3.9.
To satisfy the requirements on compactness, we have to consider some bounds on c, say
clow and cup. When φ(ξ, ·) is an isotonic criterion, the upper bound may be (pessimisti-
cally) chosen as cup = maxθ∈Θφ(1,θ), since for every θ ∈ Θ φ(ξ?,θ)≤ φ(1,θ) and c?

is less than or equal to the α-right-quantile, hence it can be bounded from above by
maximal possible value maxθ∈Θφ(1,θ). Supposing that ξ(0) ∈ Rcard(X ′) and c(0) ∈ R
are starting points, then one may choose clow as wα

(
ξ(0), c(0)

)
since wα

(
ξ(0), c(0)

)
≤

wα (ξ?, c?)≤ c? (the last inequality follows from the definition of wα (ξ,c) in Eq. (3.8)),
where z? = (ξ?, c?)> is an optimal solution of the problem (3.22). So, finally, one can
approach the solution of the problem (3.20) via the method of cutting planes (1.12),
i.e. by solving a sequence of linear programming problems:
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max
(
0>,0,1

)
ξ(i+1)

c(i+1)

t(i+1)

 (3.24)

s.t. ξ(i+1) ≥ 0, c(i+1) ∈ [clow, cup] (3.25)

(
1>,0,0

)
ξ(i+1)

c(i+1)

t(i+1)

= 1 (3.26)


∇>ϕ

(
z(0)

)
−1

... ...
∇>ϕ

(
z(i)

)
−1


z(i+1)

t(i+1)

≥

∇>ϕ

(
z(0)

)
z(0)−ϕ

(
z(0)

)
...

∇>ϕ
(
z(i)

)
z(i)−ϕ

(
z(i)

)
 (3.27)

(with z(h) =
(
ξ(h)> , c(h)

)>
, h= 1, . . . , i+1) until t(i+1)−maxj∈{0,...,i+1}ϕ

(
z(j)

)
< ε.

Note that omitting the constraints in (3.25) may cause that the LP problem (3.24)–
(3.27) is not bounded.

3.5.2 The algorithm

After evaluating the required subgradients, we are able to formulate the algorithm
which leads to ε-optimal designs ξ?ε maximizing the criterion Φα (ξ). As a by-product
of the algorithm we obtain the value c?ε which maximizes the function wα,φ(ξ?ε ,θ) (c) =
c+ 1

αE [min{0,φ(ξ?ε ,θ)− c}] and, according to Theorem 3.10, c?ε is from the interval[
qφ(ξ?ε ,θ),Rqφ(ξ?ε ,θ)

]
.

Algorithm 3.22.

0. i Denote X ′ the discretization of the design space X .

ii Choose the starting design ξ(0) ∈ Rcard(X ′), s.t. ξ(0) (x) ≥ 0 ∀x ∈ X ′ and
1>ξ(0) = 1.

iii Choose clow ≤ cup, the bounds on c.

iv Set z(0) =
(
ξ(0)>, c(0)

)>
, where c(0) ∈ [clow, cup].

v Take ε greater than 0 but small.

vi Set i= 0.

1. Solve the LP problem (3.24–3.27).

2. i Set z′ =
(
ξ′
>
, c′
)>

= argmaxz∈{z(0),z(1),...,z(i+1)}ϕ(z).
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ii If t(i+1)−ϕ(z′)< ε, stop and return ξ?ε = ξ′ as ε-optimal design and c?ε = c′

as ε-optimal value which maximizes the function wα,φ(ξ?ε ,θ) (c).

iii Else set i← i+ 1 and continue from the Step 1.

The discretization of the design space in Step 0.i of Algorithm 3.22 may influence
the results. Hence, we may run Algorithm 3.22 several times, and every time enrich the
discretized design space X ′ with some additional design points adjacent to the support
points obtained from previous runs of Algorithm 3.22, similarly as in Example 3 of
Pázman and Pronzato (2014), see also Example 3.24. Notice that as the cardinality of
X ′ increases the computational time is larger.

The stopping rule (Step 2.ii) follows from the subgradient inequality (1.13). Denote
z? the true solution of the optimization problem (1.11), and, according to (1.13),

max
j∈{0,1,...,i+1}

ϕ
(
z(j)

)
≤ ϕ(z?)

≤ min
j∈{0,...,i}

ϕ
(
z(j)

)
+∇>ϕ

(
z(j)

)(
z?−z(j)

)
≤maxz min

j∈{0,...,i}
ϕ
(
z(j)

)
+∇>ϕ

(
z(j)

)(
z−z(j)

)
= t(i+1).

When the expectations in ϕ(z) and ∇ϕ(z) are computed exactly, then the stopping
rule ensures that

Φα (ξ?)−Φα (ξ?ε )< ε, (3.28)

and hence the choice of ε in Step 0.v directly influences the accuracy of Algorithm 3.22
and the efficiency of design ξ?ε . We require from the efficiency that Φα(ξ?ε )

Φα(ξ?) > eff , where eff
is e.g. 0.999. Usually, the value Φα (ξ?) is not known, so, after running Algorithm 3.22,
one may at least check whether ε

Φα(ξ?ε ) < 1−eff, since 1− Φα(ξ?ε )
Φα(ξ?) = Φα(ξ?)−Φα(ξ?ε )

Φα(ξ?) < ε
Φα(ξ?ε ) .

In the case when the exact expressions for the expectations in ϕ(z) and ∇ϕ(z)
(Eqs. (3.21) and (3.23)) are not easily computed, but we are able to generate the
random realizations from the prior distribution π (θ), we may use Monte Carlo meth-
ods to obtain estimates of required expected values (similarly as in Valenzuela et al.,
2015, Rockafellar and Uryasev, 2000, or Atkinson et al., 2007, Sect. 18.5), see also
Example 3.24. However, Monte Carlo simulation does not ensure the validity of (3.28).

3.6 Examples

The examples in this section were carried out in R computing environment (R Core
Team, 2016), the LP problems were solved with linear and integer programming solver
lp_solve (Berkelaar et al., 2004) via R package lpSolveAPI (lp_solve and Konis.,
2016). The solver uses revised simplex method for LP problems. The main purpose
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of this section is to point out that by applying Algorithm 3.22 we may obtain nearly
CVaR-optimal designs. The obtained results are compared with the known AVE,
maximin and local optimal designs (see their relations in Theorem 3.19).

Example 3.23. Consider the nonlinear regression model η (x,θ) = e−xθ. The unknown
parameter θ has discrete distribution: π (θ) = 0.2 for any θ ∈Θ =

{
1/7,1/

√
7,1,
√

7,7
}
,

as in Example 18.2 of Atkinson et al. (2007). We take the discretization X ′ =
{0,0.001, . . . ,6.999,7} and the starting design ξ(0) as the uniform measure on X ′. We
set c(0) = 2 and ε = 10−6. In this case, the required expectations can be quite sim-
ply computed analytically and hence we do not need to use Monte Carlo methods.
The goal is to approach Φα-optimal design for φD (ξ,θ) = det1/m [M (ξ,θ)] via Algo-
rithm 3.22. For nonsingular information matrixM

(
ξ̃,θ

)
one obtains

{
∇ξφD

(
ξ̃,θ

)}
i
=

det1/m
[
M
(
ξ̃,θ
)]

m
∂η(x,θ)
∂θ>

∣∣∣
x=xi

M−1
(
ξ̃,θ

)
∂η>(x,θ)

∂θ

∣∣∣
x=xi

, the i-th component of gradient of
φD (ξ,θ) at ξ̃ (see e.g. Pronzato and Pázman, 2013, Example 9.17).

The results of Algorithm 3.22 for different levels α are summarized in Table 3.1.

α ξ?ε Φα (ξ?ε ) c?ε iter. time

1

6.522
1

 1.3813 27728.31 2 5.36 s

0.5

0.847
1

 0.0296 0.1318 4 5.43 s

0.3

0.320
1

 0.0071 0.0188 5 5.85 s

0.22

0.179
1

 0.0035 0.0124 5 5.74 s

0.2

0.143
1

 0.0028 0.0096 5 6.04 s

0.0001

0.143
1

 0.0028 0.0028 5 5.69 s

Table 3.1: The numerical results of Example 3.23. All the computed ε-optimal designs
are single point designs and hence ξ?ε is a Dirac measure putting unit mass to the optimal
design point (second column). In the last two columns is the number of iterations and the
computational time (both required until Algorithm 3.22 stopped) indicated.

The ε-optimal design which maximizes the criterion Φ1 (ξ) corresponds to the AVE-
optimal design, see Table 18.4 in Atkinson et al. (2007). The value indicated as c?ε =
27728.31 equals here cup = maxθ∈ΘφD (1, θ).
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According to the theoretical results on maximin design for this nonlinear regression
model (see e.g. Example 3.18 or Pronzato and Pázman, 2013, Example 8.5), the
optimal maximin design puts unit mass to the point 1

maxθ∈Θ θ
, which is for our Θ equal

to 1/7 ≈ 0.1428 and corresponds to the ε-optimal design which maximizes Φ0.0001 (ξ).
Since the distribution of φD (ξ,θ) is uniform on a finite set with cardinality five, the
values of Φα (ξ) are equal to minθ∈ΘφD (ξ,θ) for any α ∈ (0,0.2]. For α ∈ (0.2,0.4) the
criteria Φα (ξ) do not attain the same value (although the maximum in (3.7) is reached
for the same c= qφ(ξ,θ) (α) =Rqφ(ξ,θ) (α)) because the expectation in (3.7) is multiplied
by 1

α . 4

Example 3.24. We consider the nonlinear regression model of Atkinson et al. (1993)
with η (x,θ) = θ3

(
e−θ1x− e−θ2x

)
, θ = (θ1, θ2, θ3) ∈ Θ =

[
θ0

1−0.01, θ0
1 + 0.01

]
×

×
[
θ0

2−1, θ0
2 + 1

]
×θ0

3, where θ0 =
(
θ0

1, θ
0
2, θ

0
3
)>

= (0.05884,4.298,21.8)>. The prior dis-
tribution πΘ is uniform over Θ. The aim of this example is to find Φα-optimal designs
on the design space X = [0,∞) via the cutting plane method. If the accurate results are
known from Tables 1–2 of Atkinson et al. (1993), we evaluate the efficiencies of designs
computed by Algorithm 3.22 with respect to the true optimal designs of Atkinson et al.
(1993) (see Table 3.2).

As we know, the criterion Φα (ξ) is not invariant to nonlinear rescaling, and, to
be consistent with Atkinson et al. (1993), in this example we use the criterion of
D-optimality in the form φD∗ (ξ,θ) = lndet [M (ξ,θ)]. The i-th component of re-
quired gradient of φD∗ (ξ,θ) at ξ̃ is, when M

(
ξ̃,θ

)
is nonsingular,

{
∇ξφD∗

(
ξ̃,θ

)}
i
=

∂η(x,θ)
∂θ>

∣∣∣
x=xi

M−1
(
ξ̃,θ

)
∂η>(x,θ)

∂θ

∣∣∣
x=xi

(see Pronzato and Pázman, 2013, Example 9.17).
The first encountered problem is that the expectations in (3.21) and (3.23) are not

easily expressed. Fortunately, we can effectively generate random variables from the
prior distribution πΘ and hence the Monte Carlo method is applicable. Let θ1, . . .θR be
a random sample from πΘ generated during the Step 0 of Algorithm 3.22, i.e. the same
sample is used for all iterations and for evaluating cup = maxh∈{1,...,R}φD∗

(
1,θh

)
. In

Algorithm 3.22 we will use the expression c+ 1
Rα

∑R
h=1 min

{
0,φ

(
ξ,θh

)
− c

}
to approach

ϕ in (3.21) and instead of ∇ϕ in (3.23) we will have

0
1

+ 1
Rα

R∑
h=1





0

0

 if φ
(
ξ̃,θh

)
> c̃,

∇ξφ
(
ξ̃,θh

)
−1

 otherwise


.

The second problem is that we are not able to evaluate the gradient of φD∗ (ξ,θ)
when M (ξ,θ) does not have full rank. Hence at each iteration when computing
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M
(
ξ(j),θh

)
for j = 1, . . . , i, we perform the following regularization step for any θh,

h= 1, . . . ,R :

if det
[
M
(
ξ(j),θh

)]
< 10−8, then M

(
ξ(j),θh

)
←M

(
ξ(j),θh

)
+ 10−5Im.

We ran Algorithm 3.22 three times. In the first run the discretization of the
design space was X ′ = {0.2,0.3, . . . ,21.9,22}. Suppose that x?1, . . . ,x?S are the sup-
port points of the resulting design. In the second run we used the discretization
∪Sj=1

{
x?j −0.09,x?j −0.08, . . . ,x?j + 0.09

}
∪X ′, and similarly in the third run, where we

enriched the previous discretization with sets {x?−0.009,x?−0.008, . . . ,x?+ 0.009} for
every x?, the support point obtained after the second run. In all the runs the starting
design ξ(0) was chosen randomly (respecting its non-negativity and summation to one).
For each run we set c(0) = cup (cup here takes the value around 21 up to 25 depending
on the length of vector 1, i.e. on the cardinality of the discretized design space X ′, and
is computed as suggested in Sect. 3.5.1), ε= 10−4, and R = 100.

In Table 3.2 we present CVaR ε-optimal designs for different levels α obtained
as a result of three runs of Algorithm 3.22. Although the ε-optimal designs ξ?ε were
computed by means of Monte Carlo simulation with the sample size R = 100, the
criterion values Φα (ξ?ε ) and the efficiencies Φα (ξ?ε )/Φ?

α, where Φ?
α denotes the true

optimal value known from the literature (Atkinson et al., 1993, Tables 1–2), were
evaluated with different sample size R′ = 5×105. 4

In the next example we compare the CVaR- and quantile optimal designs. Since the
quantile criterion ΦQ

α is not concave, and hence its optimization is not straightforward,
we think that in applications we could use the CVaR-criterion Φα and CVaR-optimal
designs as approximations of quantile optimal designs.

Example 3.25. Consider the nonlinear regression model with expectation of observed
variable at x ∈ R+

0 equal to η (x,θ) = θ1e−θ2x, where θ = (θ1, θ2)> ∈ R+× [0.5;3.5].
The example is from Pázman and Pronzato (2007), where the authors considered the
D-efficiency criterion

φeffD (ξ,θ) =

√
detM (ξ,θ)

θ1
2eθ2

∈ [0,1] , (3.29)

(since maxξ∈Ξ
√

detM (ξ,θ) = θ1
2eθ2 , see Pázman and Pronzato, 2007).

The parameter θ2 has uniform prior on [0.5;3.5] and we set θ1 = 1 and X =
{0,0.1,0.2, . . . ,5} as the design space consisting of 51 points as in Pázman and Pronzato
(2007).

To compute the CVaR-optimal designs we apply Algorithm 3.22 similarly as in Ex-
ample 3.24, and we use the gradient of D-efficiency criterion ∇ξφeffD

(
ξ̃,θ

)
=
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prior α ξ?ε c?ε Φα (ξ?ε ) efficiency time

π
(
θ0
)

= 1

0.229 1.389 18.417
0.333 0.334 0.335

 7.3771 7.3887 0.9999 3.42 s

1

0.230 1.420 18.570
0.332 0.333 0.335

 8.1106 7.3758 0.9999 5.44 m

πΘ 0.5

0.214 1.320 17.230
0.331 0.334 0.334

 7.4185 7.1215 5.13 m

0.1

0.199 1.220 16.680
0.334 0.334 0.332

 7.0304 6.8604 4.30 m

Table 3.2: The numerical results of Example 3.24. The first row corresponds to the locally
optimal design with nominal parameter value θ0. The computing time (last column) was 3.42
seconds for all three runs of Algorithm 3.22 together. The computing times for the rest of the
table were higher, since at each iteration the estimates of the expectations in (3.21) and (3.23)
were calculated. The ε-optimal designs ξ?ε for different probability levels α and the optimal
c?ε were computed using Algorithm 3.22 with R = 100 randomly generated vectors from πΘ.
For α= 1 we computed Φ1 (ξ?ε ) as 1

R′
∑R′
h=1φD∗

(
ξ?ε ,θ

h
)
, with R′ = 5×105, and the efficiency

as Φ1(ξ?ε )
Φ?1

, where Φ?
1 is the optimal value from Table 2 in Atkinson et al. (1993). For α < 1

the value indicated is Φα (ξ?ε ) = c?ε + 1
αR′

∑R′
h=1

[
min

{
0,φD∗

(
ξ,θh

)
− c?ε

}]
, with R′ = 5×105.

2eθ2
θ1
∇ξφD

(
ξ̃,θ

)
(see Example 3.23 for ∇ξφD

(
ξ̃,θ

)
). Instead of generating R real-

izations from the prior distribution of θ2, we took only the sequence of R= 100 points
equally spaced in the interval [0.5;3.5], and the expectations in (3.21) and (3.23) were
approximated by arithmetic means based on these values. We set the accuracy in the
stopping rule as ε = 10−3 and the initial design ξ(0) is the uniform measure on the
design space X . Since the criterion in (3.29) takes the values from [0,1], we set clow = 0
and c(0) = cup = 1. The CVaR ε-optimal designs are for α = 0.1 and α = 0.5 given in
Table 3.3.

To compute the quantile optimal designs we proceed as in Pázman and Pronzato
(2007): we approximate the quantile criterion and its directional derivatives via kernel
smoothing and then we use vertex direction algorithm (see e.g. Pronzato and Pázman,
2013, Sect. 9.1.1) to approach the quantile optimal designs for α= 0.1 and for α= 0.5.
Denote by δx the design with the unit mass at the design point x and let F̃ΦQα

(ξ,ζ) be
the approximation of the directional derivative of ΦQ

α at the point ξ in the direction ζ.
The vertex direction algorithm, which we used, consisted of these steps:

Algorithm 3.26.

0. Choose the starting design ξ(0) and the accuracy ε > 0. Set i = 0. Find x(0) =
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α ξ?ε c?ε ΦQ10000
α (ξ?ε ) time

0.1

 0 0.3 0.4 1.6
0.452 0.148 0.210 0.191

 0.7803 0.7807 5.50 s

0.5

 0 0.5 1.1
0.501 0.478 0.020

 0.9246 0.9231 4.11 s

Table 3.3: The numerical results of Example 3.25. The CVaR ε-optimal designs ξ?ε for
the D-efficiency criterion (3.29) for probability level α and the optimal c?ε computed by
Algorithm 3.22 based on R = 100 equally spaced θ2 in the interval [0.5;3.5]. The value
ΦQ10000
α (ξ?ε ) is the direct approximation of corresponding quantile criterion value based on

10000 equally spaced θ2 in the interval [0.5;3.5]. The last column gives the running time of
Algorithm 3.22.

argmaxx∈X F̃ΦQα

(
ξ(0), δx

)
.

1. Set ξ(i+1) =
(
1− 1

2+i

)
ξ(i) + 1

2+iδx(i) .

2. Set i← i+ 1.

3. Find x(i) = argmaxx∈X F̃ΦQα

(
ξ(i), δx

)
.

4. If F̃ΦQα

(
ξ(i), δx(i)

)
> ε continue from Step 1, else take ξ(i) as ε-optimal design and

stop.

We would like to emphasize that the purpose of this example and of this thesis is
not to find the effective methodology for computing quantile optimal designs and there
may be other more effective procedures how to obtain the best solution. Nevertheless,
here we took ε= 0.01 and the kernel-approximation of the quantile criterion and of the
directional derivative as in Pázman and Pronzato (2007):

Φ̃Q
α (ξ) =

u : 1− 1
R

R∑
i=1

FN (0,1)

u−φeffD
(
ξ,θi

)
hR(ξ)

= 1−α

 ,

F̃ΦQα
(ξ,ζ) =

R∑
i=1
FφeffD(·,θi) (ξ,ζ)fN (0,1)

 Φ̃Qα (ξ)−φeffD(ξ,θi)
hR(ξ)


R∑
i=1

fN (0,1)

 Φ̃Qα (ξ)−φeffD(ξ,θi)
hR(ξ)

 ,

where θ1, . . . ,θR is a set of vector points with first coordinates equal to 1 (corresponding
to θ1) and with second coordinates given as a sequence of R equally spaced points in
[0.5;3.5]. In accordance with Pázman and Pronzato (2007), we used R = 100 and

we selected hR (ξ) = sR (ξ)R−1/5 with sR (ξ) =

√∑R
i=1

[
φeffD(ξ,θi)− 1

R

∑R
j=1φeffD(ξ,θj)

]2
R−1 ,
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the standard deviation of φeffD
(
ξ,θ1

)
, . . . ,φeffD

(
ξ,θR

)
. The functions FN (0,1) (·) and

fN (0,1) (·) denote the cdf and pdf of the standardized normal random variable N (0,1)
and FφeffD(·,θ) (ξ,ζ) = eθ2

θ1
det1/2 [M (ξ,θ)] tr

{
[M (ζ,θ)−M (ξ,θ)]M−1 (ξ,θ)

}
is the di-

rectional derivative of φeffD (·,θ) at ξ in the direction ζ.
As mentioned in Pázman and Pronzato (2007) (and as easily computed via Al-

gorithm 3.22 when putting Dirac measure concentrated at θ2 = 2 as prior for θ2),

ξloc =

 0 1/2
1/2 1/2

 is the locally D-optimal design for θ2 = 2.

As a starting design in Algorithm 3.26 we took the CVaR-optimal design for given
probability level α (see Table 3.3), the local optimal design ξloc for θ2 = 2 (as in-
dicated above) and the design which puts the same mass 1/card(X ) to each design
point x from X , respectively. The results are summarized in Table 3.4. Comparing
Tables 3.3 and 3.4 one sees that the CVaR and quantile optimal values do not dif-
fer significantly, which indicates the possibility of using the CVaR-criterion instead of
the non-concave quantile criterion. Indeed, the ΦQ

α -efficiency of CVaR-optimal design
equals 0.7807/0.7930=0.9845 for α = 0.1 and 0.9231/0.9495=0.9721 for α = 0.5.

The histograms of φeffD (ξ,θ), where θ2 is distributed according to its prior distri-
bution (uniform on [0.5;3.5]), are for some designs ξ given in Figure 3.6. While the
quantile optimal design ensures the largeness of the α right-quantile (without taking
into account the smallness of values less than the right-quantile), the CVaR-criterion
maximizes the expectation of values less than the corresponding α right-quantile.

The performances of the quantile, AVE, maximin and CVaR-optimal designs are
illustrated in Figure 3.7, where the corresponding values of the D-efficiency criterion
φeffD are depicted as functions of θ2 (we obtained the AVE and maximin optimal
designs as Φα-optimal designs setting α = 1 resp. α = 0.0001, see Theorem 3.19 for a
justification). The totally robust design which does not depend on the true parameter
value θ2 would be in this figure represented by a horizontal line. For α = 0.1, the
AVE-optimal design gives larger values of φeffD than the quantile, maximin and CVaR
optimal designs for a wide range of possible values of θ2. On the other hand, it performs
very bad for θ2 near 0.5, where the best results are given by the maximin optimal design.
The quantile and CVaR-optimal designs behave similarly, as a compromise between the
AVE and maximin optimal design—the CVaR-criterion performs slightly better near
0.5, and the quantile criterion is better for the rest of the values. For α= 0.5, the CVaR
and quantile (median) optimal designs behave very similar to the AVE optimal design,
the quantile optimal design attains better values for larger θ2 and the CVaR-optimal
design for the smaller values of θ2, where the performance of the quantile optimal
design is very poor.
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Finally, a very interesting interpretation follows from the comparison of empirical
cdfs of φeffD(ξ,θ), where ξ is AVE, maximin, CVaR, or quantile optimal design. The
graphs of cdfs in (0,1) are displayed in Figure 3.8. The criterion φeffD(ξ,θ) always
attains values from the interval [0,1] and the “perfect design” would lead to the cdf
FφeffD(·,θ)(t) which equals zero for t < 1 and equals one for t≥ 1. Obviously, this is not
very realistic.

In Figure 3.8a is the situation for α= 0.1 depicted. One sees that for t= 0.775, the
probability Pr[φeffD(ξ?min,θ)≤ t] = 0.32, while Pr[φeffD(ξ?CVaR,θ)≤ t] = 0.04. Hence, by
considering the CVaR optimal design and “sacrificing” the values φeffD(ξ?CVaR,θ) which
are smaller than minθ∈ΘφeffD(ξ∗min,θ), we obtain significant improvement at t= 0.775
comparing to the maximin optimal design. The approach via AVE criterion is not
robust, and the AVE-optimal design leads with nonzero probability to criterion values
smaller than 0.6.

In Figure 3.8b is indicated how could we approach the cdf corresponding to 10%-
quantile optimal design by considering the cdfs of 20%- and 25%-CVaR optimal designs.
It would be very interesting if we had some theoretical results related to the possibilities
of approaching the quantile optimal design via optimizing the CVaR criterion.

Figure 3.8c displays the cdfs for α = 0.5. 4
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α ξ(0) ξ?ε ΦQkernel
α (ξ?ε ) ΦQ10000

α (ξ?ε ) time

CVaR

 0 0.3 0.4 0.6 1.2 1.3 1.4 1.6
0.459 0.253 0.097 0.007 0.048 0.129 0.007 0.001

 0.7851 0.7924 1320 s

0.1 local

 0 0.3 0.4 0.5 1.1 1.2 1.3 1.4
0.457 0.246 0.107 0.003 0.005 0.043 0.134 0.005

 0.7853 0.7930 1642 s

uniform

 0 0.3 0.4 0.5 0.9 1.2 1.3 1.4
0.459 0.248 0.096 0.009 0.005 0.018 0.156 0.005

 0.7839 0.7911 1910 s

CVaR

 0 0.4 0.5 1.1
0.500 0.429 0.068 0.003

 0.9305 0.9495 60.91 s

0.5 local

 0 0.4 0.5
0.500 0.400 0.100

 0.9315 0.9493 43.18 s

uniform

 0 0.4 0.5 0.6
0.495 0.457 0.029 0.010

 0.9251 0.9449 904 s

Table 3.4: The numerical results of Example 3.25. The ε-optimal designs ξ?ε for the quantile criterion ΦQ
α with probability level α computed via

the vertex direction algorithm 3.26 initialized at the design ξ(0). The value ΦQkernel
α (ξ?ε ) is the approximation of corresponding α-quantile criterion

computed using Kernel smoothing with R = 100 equally spaced θ2 in the interval [0.5;3.5] and the value ΦQ10000
α (ξ?ε ) is the direct approximation

of corresponding α-quantile criterion based on 10000 equally spaced θ2 in the interval [0.5;3.5]. The last column gives the running time of
Algorithm 3.26.
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Figure 3.6: Example 3.25: The histograms of φeffD (ξ,θ) based on 10000 equally spaced θ2

in the interval [0.5;3.5], where ξ is either ΦQ
α or Φα-optimal design for α = 0.1,0.5. In each

subfigure is the value ΦQ
α (ξ) depicted.
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Figure 3.7: Example 3.25: Criterion φeffD (ξ,θ) as a function of θ2 for quantile ΦQ
α , AVE Φ1,

maximin Φ0.0001 and CVaR Φα-optimal designs.
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Figure 3.8: Example 3.25: empirical cdfs of φeffD (ξ,θ) beased on 10000 equally spaced θ2

in the interval [0.5;3.5], where ξ is maximin Φ0.0001, AVE Φ1, CVaR, or quantile optimal
design.
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3.7 Conclusions to this chapter

The Conditional Value at Risk was used for the design purposes (input design problem)
in Valenzuela et al. (2015) for the first time. We think that the introduction of the
CVaR criterion in experimental design is very interesting, since it enlarges the pos-
sibilities of the popular AVE and maximin criteria—which are not quite satisfactory
from a certain point of view—and is related to the recently proposed quantile criterion
(Pázman and Pronzato, 2007), which is not concave.

In Sects. 3.2–3.3 we summarized and explained the properties of the CVaR-criterion.
We were inspired by results obtained in the risk theory (Pflug, 2000; Rockafellar and
Uryasev, 2000, 2002). The formula for the CVaR-criterion used in this thesis differs
from the formula introduced in Valenzuela et al. (2015). Its concavity is ensured (when
φ(ξ,θ) is a concave function of ξ) whether the random variable φ(ξ,θ) is continuous
or not. We think that the expansion to non-continuous random variables is important
because of the possibility of finiteness of the parametric space Θ, which necessary leads
to a discrete random variable φ(ξ,θ). This motivated our detailed investigations in
Sects. 3.2–3.3, since the case of non-continuous random variable φ(ξ,θ) turned out to
be more difficult than the continuous one.

We showed that the CVaR-criterion Φα (ξ) can be considered as a compromise
between AVE (α = 1) and maximin (α→ 0) criterion, see Sect. 3.4, which gave us
one possible interpretation of Φα (ξ). As mentioned in Pázman and Pronzato (2007),
the AVE-optimal design ξ?AVE does not exclude the situation that the probability
Pr [φ(ξ?AVE,θ)≤ t] is large for given small t. This drawback is partially treated by
CVaR-criterion, which is related to the expected value of the criterion φ(ξ,θ) under
the condition that φ(ξ,θ) is less than (or less than or equal to) the corresponding
α-right-quantile Rqφ(ξ,θ) (α), see Sect. 3.3. Pázman and Pronzato (2007) pointed out
that the maximin optimal design is often focused on θ at the boundary of the para-
metric space Θ, which is not the case of AVE, CVaR or quantile criteria as illustrated
in Example 3.18.

Under some assumptions, we were able to formulate the equivalence theorem for
the CVaR criterion, and we derived the subgradient and the directional derivative
of the function wα(ξ,c) related to the CVaR optimality criterion. We suggested a
methodology how to obtain CVaR-optimal designs when φ(ξ,θ) is concave in ξ via the
method of cutting planes in Sect. 3.5, which was illustrated on examples in Sect. 3.6.

In the future, we could investigate the proper choice for probability level α
1. to obtain design which is not focused only on some values θ like maximin optimal
design but which is still sufficiently robust or
2. to approximate the quantile optimal design as indicated at the end of Example 3.25.
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Finally, we would like to focus on application of Jeffrey’s non-informative prior when
there is no known prior on the parametric space Θ.
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Chapter 4

Extended optimality criteria for
avoiding false estimates in
generalized regression models

In this chapter we deal with possible instabilities related to the maximum likelihood
estimation in generalized regression models. The aim is to prevent the problems with
the uniqueness and identifiability of the maximum likelihood estimate at the design
stage of the experiment.

To achieve this goal, we follow Pázman and Pronzato (2014), who introduced the
extended criteria of E-, c-, and G-optimality to avoid these problems with least squares
estimation in classical nonlinear regression. For deeper analysis we also refer the reader
to Chap. 7 of the monograph Pronzato and Pázman (2013). We were able to extend
the results of Pázman and Pronzato (2014) to generalized regression models based on
exponential families of distributions, and, in addition, we also derive the extensions of
some other optimality criteria, e.g. the MV - and A-optimality criteria. Partial results
from this chapter were published in Burclová and Pázman (2016b).

The chapter requires a scrupulous introduction not only to exponential families
of distributions and generalized regression models based on them, but also to matrix
norms and pseudonorms. We provide such an introduction in Sect. 4.1. In Sect. 4.2
we show how to design experiments in generalized regression models (even by applying
the results of previous chapters of this thesis). In Sect. 4.3 we indicate the stability
problems related to the maximum likelihood estimation and we introduce the extended
optimality criterion based on the I-divergence. In Sects. 4.4–4.5 we define the exten-
sions for some classical optimality criteria. Section 4.6 summarizes some properties
of the extended optimality criteria and Sect. 4.7 shows a method based on Pázman
and Pronzato (2014) how to calculate the optimal designs for them. Finally, Sect. 4.8
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concludes.

4.1 Introduction

4.1.1 Matrix Norms and Pseudonorms

Definition 4.1. The matrix norm is a mapping ‖·‖ : Rm×k 7→ [0,∞), A→ ‖A‖ such
that ∀A,B ∈ Rm×k:

a) ‖A‖ ≥ 0 ∧ [‖A‖= 0⇔ A= 0] ,

b) ‖aA‖= |a|‖A‖ ∀a ∈ R,

c) ‖A+B‖ ≤ ‖A‖+‖B‖ .

See e.g. Golub and Van Loan (1996), Sect. 2.3.1. In the literature (e.g. Gentle,
2007, p. 128) is often the consistency property ‖AB‖ ≤ ‖A‖‖B‖ required, however,
this is not our case and the properties a)-c) are sufficient.

One sees that for k= 1 the mapping ‖·‖ introduced in Def. 4.1 reduces to a standard
vector norm on Rm.

In this thesis we pay attention especially to the vector `(p) norm and to the Schatten
p norm on square matrices in Rm×m:

∀ p≥ 1 ∀v = (v1, . . . ,vm) ∈ Rm ‖v‖`(p) =
(
m∑
i=1
|vi|p

)1/p
(`(p) norm),

∀ p≥ 1 ∀A ∈ Rm×m ‖A‖S(p) =
{

tr
[(
AA>

)p/2]}1/p
(Schatten p norm). (4.1)

The Schatten p norm is closely related to the `(p) norm since ‖A‖S(p) =∥∥∥(s1 (A) , . . . , sm (A))>
∥∥∥
`(p)

, where si (A) =
√
λi
(
A>A

)
(see e.g. Bhatia, 1997, Eq. IV.31).

Besides the well known Euclidean norm (`(2) norm), we will often use its general-
ization on matrix spaces—Frobenius norm (see e.g. Bhatia, 1997, p. 7, Gentle, 2007,
p. 132):

∀A ∈ Rm×k ‖A‖F =

√√√√√ k∑
j=1
‖A.j‖2`(2) =

√√√√√ m∑
i=1

k∑
j=1
{A}2ij , (4.2)

where A.1, . . . ,A.k ∈ Rm denote the columns of the matrix A ∈ Rm×k and {A}ij is the
element on i-th row and j-th column of A. The Frobenius norm on square matrices
coincides with the Schatten p= 2 norm.

In this thesis we do not restrict ourselves only to norms and hence the definition of
matrix pseudonorms is now in place.

67



Definition 4.2. The matrix pseudonorm is a mapping |||·|||P : Rm×k 7→ [0,∞), A→
|||A|||P such that ∀A,B ∈ Rm×k:

a) |||A|||P ≥ 0,

b) |||aA|||P = |a| |||A|||P ∀a ∈ R

c) |||A+B|||P ≤ |||A|||P + |||B|||P .

Obviously, the case k = 1 corresponds to a vector pseudonorm. The property b)
from Def. 4.2 implies that |||0|||P = 0. Notice that it follows from Def. 4.1 that every
norm fulfils also all properties of a pseudonorm.

The following lemma is a partial generalization of the statement about the equiv-
alence of norms (see e.g. Gentle, 2007, Eq. 3.236)—the well known property of norms
in finite-dimensional spaces.

Lemma 4.3. Let |||·|||P be a pseudonorm and ‖·‖F be the Frobenius norm in Rm×k.
Then there exists a real number a > 0 such that ∀A ∈ Rm×k : a|||A|||P ≤ ‖A‖F .

Proof. We postponed similarly as Morrow (2013) in his proof of equivalence of vector
norms.

The statement of the lemma holds trivially for any matrix A such that |||A|||P = 0
and in such case a > 0 can be chosen arbitrarily.

Now, let A∈Rm×k be a matrix with a positive pseudonorm, i.e. |||A|||P 6= 0. Denote
by Eij ∈ Rm×k the matrix with one unit entry in the i-th row and j-th column and
zeros elsewhere. Then A = ∑m

i=1
∑k
j=1 {A}ijEij , where {A}ij is the entry in i-th row

and j-th column of A and hence

0< |||A|||P ≤
m∑
i=1

k∑
j=1

∣∣∣{A}ij ∣∣∣ |||Eij |||P ≤
√√√√√ m∑
i=1

k∑
j=1

∣∣∣{A}ij ∣∣∣2
√√√√√ m∑
i=1

k∑
j=1
|||Eij |||2P

= ‖A‖F

√√√√√ m∑
i=1

k∑
j=1
|||Eij |||2P ,

where we used the properties b) and c) from Def. 4.2, Cauchy-Schwarz inequality and
the definition of the Frobenius norm (4.2). Emphasizing that

√∑m
i=1

∑k
j=1 |||Eij |||

2
P is

positive, we denote a= 1√∑m
i=1
∑k
j=1 |||Eij|||

2
P

and we have that a|||A|||P ≤ ‖A‖F .

Definition 4.4. The dual norm ‖·‖D of the norm ‖·‖ on Rm×k is for any A ∈ Rm×k

given as the mapping

A 7→ ‖A‖D = max
B∈Rm×k:‖B‖=1

∣∣∣tr(A>B)∣∣∣ .
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See e.g. Eq. IV.50 in Bhatia (1997). Note that the dual norm also satisfies the
properties from Def. 4.1, i.e. the dual norm is a norm.

Applying the well known Hölder’s inequality for vector variables one obtains that
the `(q) norm with q satisfying the equation 1 = 1/p+ 1/q is the dual of the `(p)
norm. Analogical outcome follows for the Schatten p-norm on square matrices (see e.g.
Bhatia, 1997, Proposition IV.2.11 and Exercise IV.2.12 (ii)):

∀A ∈ Rm×m : ‖A‖DS(p) = ‖A‖S(q) , where q = p

p−1 .

One sees that in the case of the `(p) and Schatten p norm the dual norm of the
dual norm is the initial norm, i.e. ‖v‖DD`(p) = ‖v‖`(p) and ‖A‖DDS(p) = ‖A‖S(p). Using this
and (1.2) one obtains for any symmetric positive definite matrix M that (Dette et al.,
1995, Lemma 2.2)

max
B∈Rm×m:‖B‖DS(p)=1

tr
[
B>M−1B

]
= max
B∈Rm×m:‖B‖DS(p)=1

max
A∈Rm×m:A6=0

tr2
(
A>B

)
tr
(
A>MA

)

= max
A∈Rm×m:A6=0

max
B∈Rm×m:‖B‖DS(p)=1 tr2

(
A>B

)
tr
(
A>MA

)
= max
A∈Rm×m:A6=0

‖A‖2S(p)

tr
(
A>MA

)
= 1

min
A∈Rm×m:‖A‖S(p)=1

tr
(
A>MA

) . (4.3)

Analogically,

max
u∈Rm:‖u‖D`(p)=1

u>M−1u = 1
min

u∈Rm:‖u‖`(p)=1
u>Mu

. (4.4)

4.1.2 Exponential families of distributions

Focusing on the purposes of the thesis, in this section we will mention the most impor-
tant properties of exponential families of distributions. For more results we refer the
reader to Barndorff-Nielsen (1978), Efron (1978), and Brown (1986).

Denote by Y ⊆ Rl a sample space of an experiment, i.e. the space of all possible
realizations of a random vector Y.

Definition 4.5. The distribution of the random vector Y is an exponential family if
its probability density function (pdf) or (for discrete random variables) its probability
mass function (pmf) f , with respect to the σ-finite measure τ , can be expressed as

f (y,γ) = exp
{
−ψ (y) + t> (y)γ−κ(γ)

}
, (4.5)
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where γ ∈ Γ⊆Rr is the canonical parameter, t : Y →Rr, ψ : Y →R, and κ : Γ→R are
known functions.

It follows that Y is a continuous random vector in the case of Lebesgue measure τ ,
and Y is a discrete random vector if τ is counting measure (τ ({y}) = 1).

Using that
∫
Y f (y,γ)dτ (y) = 1, one can equivalently write exp{κ(γ)} =∫

Y exp
{
−ψ (y) + t> (y)γ

}
dτ (y) . Later it will be appropriate to consider the extended

space Γmax:

Γmax =
{
γ ∈ Rr :

∫
Y

exp
{
−ψ (y) + t> (y)γ

}
dτ (y)<∞

}
⊇ Γ. (4.6)

Although the canonical parameter γ is very useful in the theoretical considerations,
it does not necessarily coincide with the usual parametrization of given distribution.
For instance, consider the binomial distribution Bin(n,p) parametrized by p ∈ (0,1)
with given n. To obtain the representation of pmf as in (4.5), one has to put γ = γ(p) =
ln
(

p
p−1

)
∈ Γ with Γ =

{
ln
(

p
p−1

)
,p ∈ (0,1)

}
, see Appendix B.1. It follows that γ can

be parametrized by some vector parameter ϑ, which may (and may not) correspond
to the usual parametrization of the given distribution. Then the density in (4.5) can
be equivalently rewritten in the form

f [y,γ(ϑ)] = exp
{
−ψ (y) + t> (y)γ(ϑ)−κ [γ(ϑ)]

}
. (4.7)

According to the factorization theorem (see e.g. Billingsley, 1995, Theorem 34.6),
t(Y) is a sufficient statistic. This allows us to observe t(Y) instead of Y without losing
any information on parameter γ (or ϑ), and, moreover, the family of distributions
induced by the random variable t(Y) is again an exponential family (Brown, 1986,
Proposition 1.5).

Moments in exponential families

Theorem 4.6 (Brown, 1986, Theorem 2.2). The function eκ(γ) is infinitely many times
differentiable with respect to γ at any γ ∈ int(Γmax). Moreover, for p = p1 + . . .+ pr,
pi ∈ N∪{0} ∀i= 1, . . . , r one has that

∂p

∂γp1
1 . . .∂γprr

exp{κ(γ)}=
∫
Y
tp1
1 (y) . . . tprr (y)exp

{
−ψ (y) + t> (y)γ

}
dτ (y) .

Using Theorem 4.6, we obtain the expected value µ(γ) and the covariance matrix
Σ(γ) of the sufficient statistic t(Y) for any given γ ∈ int(Γmax):

µ(γ)≡ Eγ [t(Y)] = ∂κ(γ)
∂γ

=


∂κ(γ)
∂γ1...
∂κ(γ)
∂γr

 , (4.8)
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Σ(γ)≡ Varγ [t(Y)] = ∂2κ(γ)
∂γ∂γ>

=


∂2κ(γ)
∂γ1∂γ1

. . . ∂2κ(γ)
∂γ1∂γr... . . . ...

∂2κ(γ)
∂γr∂γ1

. . . ∂2κ(γ)
∂γr∂γr

= ∂µ(γ)
∂γ>

(4.9)

(see e.g. Brown, 1986, Corollary 2.3 or Pázman, 1993, Chap. 9.1).
It can be proved that Σ(γ) is positive definite (and nonsingular) if t1 (y) , . . . , tr (y) ,1

are linearly independent functions, see e.g. Chap. 9.1 in Pázman (1993). (We say
that the functions ϕ1 (z) , . . . ,ϕn (z) are linearly dependent if there are such numbers
a1, . . . ,an, not all zeros, that ∑n

i=1ϕi (z)ai = 0 ∀z.) Any pdf (or pmf) from (4.7) can
be equivalently rewritten into such form that t1 (y) , . . . , tr (y) ,1 and, simultaneously,
γ1 (ϑ) , . . . ,γr (ϑ) ,1 are linearly independent (Brown, 1986, Theorem 1.9). Such a rep-
resentation will be called minimal, see Corollary 8.1 in Barndorff-Nielsen (1978) for
this term. Throughout this thesis we will always consider the minimal representation
of the exponential family.

It is easy to see that µ [γ(ϑ)] and Σ[γ(ϑ)] are expected value and covariance matrix
of the sufficient statistic for given ϑ.

Fisher information matrix in exponential families

For a more comprehensive explanation of the term Fisher information matrix we rec-
ommend Lehmann and Casella (1998).

Definition 4.7. Let f (·,γ) be the pdf (pmf) from (4.5), then

Mγ = Eγ

[
∂ lnf (y,γ)

∂γ

∂ lnf (y,γ)
∂γ>

]

is the Fisher information matrix for the canonical parameter γ.

Definition 4.8. Let f [·,γ(ϑ)] be the pdf (pmf) from (4.7), then

Mϑ = Eϑ

{
∂ lnf [y,γ(ϑ)]

∂ϑ

∂ lnf [y,γ(ϑ)]
∂ϑ>

}

is the Fisher information matrix for the parameter ϑ.

In the minimal representation of the exponential family and assuming that γ,γ(ϑ)∈
int(Γmax) and that the derivatives ∂γ(ϑ)

∂ϑ>
and ∂µ[γ(ϑ)]

∂ϑ>
exist, the direct calculations lead

to (see e.g. Pázman (1993), Eqs. 9.2.8–9.2.9)

Mγ = Eγ

[
−∂

2 lnf (y,γ)
∂γ∂γ>

]
= Varγ

[
∂ lnf (y,γ)

∂γ

]
= Σ(γ) = ∂2κ(γ)

∂γ∂γ>
,
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Mϑ = Eϑ

{
−∂

2 lnf [y,γ(ϑ)]
∂ϑ∂ϑ>

}

= ∂γ> (ϑ)
∂ϑ

∂µ [γ(ϑ)]
ϑ>

= ∂γ> (ϑ)
∂ϑ

Mγ

∣∣∣
γ=γ(ϑ)

∂γ(ϑ)
∂ϑ>

= ∂γ> (ϑ)
∂ϑ

Σ[γ(ϑ)] ∂γ(ϑ)
∂ϑ>

= ∂µ> [γ(ϑ)]
∂ϑ

{
Σ[γ(ϑ)]

}−1 ∂µ [γ(ϑ)]
∂ϑ>

.

(4.10)

It is obvious thatMϑ 6=Mγ

∣∣∣
γ=γ(ϑ)

and, unlike the expected value µ(·) or covariance
matrix Σ(·), the Fisher information matrix depends on the parametrization.

I-divergence in exponential families

The I-divergence (Information divergence or Kullback-Leibler divergence, see Kullback
and Leibler, 1951; Kullback, 1997) is often applied to measure the distance between
two distributions.

Definition 4.9. The I-divergence between two pdfs (or pmfs) f
(
·,γ0

)
and f (·,γ)

from the exponential family (4.5) is defined as

I
(
γ0,γ

)
= Eγ0

ln
f
(
y,γ0

)
f (y,γ)

=
∫
Y

ln
f

(
y,γ0

)
f (y,γ)

f (y,γ0
)
dτ (y) .

As follows from (4.5), provided γ0 ∈ int(Γmax), one can write in the exponential
family that (see e.g. Pázman, 1993, Eq. 9.2.3)

I
(
γ0,γ

)
= µ>

(
γ0
)(
γ0−γ

)
+κ(γ)−κ

(
γ0
)
. (4.11)

Notice that I
[
γ
(
ϑ0
)
,γ(ϑ)

]
, as a function of ϑ0 and ϑ, is the I-divergence between

f
[
·,γ

(
ϑ0
)]

and f [·,γ(ϑ)]. One can write for γ(ϑ0) ∈ int(Γmax) (see e.g. Pázman,
1993, Eq. 9.2.4)

I
[
γ
(
ϑ0
)
,γ(ϑ)

]
= µ>

[
γ
(
ϑ0
)][

γ
(
ϑ0
)
−γ(ϑ)

]
+κ [γ(ϑ)]−κ

[
γ
(
ϑ0
)]
.

The I-divergence I(γ0,γ) is nonnegative and equals zero if and only if f(y,γ0) =
f(y,γ), see Lemma 3.1 of Kullback and Leibler (1951).

4.1.3 Generalized regression models based on exponential fam-
ilies

The classical linear and nonlinear models (1.4) and (1.5) considered in previous chapters
do not include the case of a discrete observed variable y (x) or the case when also
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the variance component of y(x) depends on the design point x. Here are generalized
regression models applicable.

Very popular are generalized linear models, which are well elaborated in the lit-
erature, e.g. Nelder and Wedderburn (1972); McCullagh and Nelder (1989); Dobson
(1990). Although there are papers not restricted to linearity, e.g. Atkinson et al. (2014),
there is a lack of complex exposition of generalized regression models in the literature.
So in the thesis we rely on the above-mentioned literature, on the known properties of
distributions in the exponential family, which were presented in the previous section,
and on the lectures given by Pázman (Nonlinear statistical models, 2015).

In this chapter we consider the generalized regression models based on exponential
families of distributions. We suppose that the set of all possible design points X is
finite.

As before, let X = {x1, . . . ,xN} , xi ∈ X ∀i= 1, . . . ,N denote an exact experimental
design. We observe N independent random vectors y1, . . . ,yN associated with the
design X with the pdfs (or pmfs) of the form

f (yi,xi,θ) = exp
{
−ψ (yi) + t> (yi)g (xi,θ)−κ [g (xi,θ)]

}
, (4.12)

which is obviously an exponential family with the canonical parameter γi = g (xi,θ) ∈
Γmax, for any i = 1, . . . ,N . Here, θ ∈ Θ ⊆ Rm is the unknown model parameter and
g (xi,θ) = (g1 (xi,θ) , . . . , gr (xi,θ))> is the known regression function. Unless other-
wise stated, Θ is supposed to be compact set. We will assume that the function
g : X ×Θ 7→ Rr is three-times continuously differentiable on int(Θ) ∀x ∈ X and that
m < rN . Throughout this chapter we assume that (4.12) is expressed in its mini-
mal representation and that the set Γmax from (4.6) is open to ensure the existence
of moments, see Theorem 4.6. This means that we consider exclusively the regular
exponential families in the terminology of Barndorff-Nielsen (1978) and Brown (1986).

Not only the canonical parameter γ, but also the usual parameter in given family
or the expected value of the sufficient statistic can be parametrized by θ. These two al-
ternative parametrizations can be applied in the praxis thanks to their straightforward
interpretation. In the exponential families are the relations between the canonical
parameter γ, the usual parameter in given family, and the expected value of suffi-
cient statistic µ(γ) known (see Appendix B). This allows us to use only the canonical
parametrization in our theoretical considerations.

One obtains from (4.12) that the joint distribution of the mutually independent
random vectors y1, . . . ,yN

N∏
i=1

f (yi,xi,θ) = exp

−
N∑
i=1

ψ (yi) +
N∑
i=1

t> (yi)g (xi,θ)−
N∑
i=1

κ [g (xi,θ)]

 , (4.13)
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is obviously an exponential family.
The estimate θ̂N for the unknown parameter θ is then computed via maximum

likelihood method:

θ̂N = argmax
θ∈Θ

N∏
i=1

f (yi,xi,θ) . (4.14)

In exponential families of distributions and in the generalized regression models based
on them, the estimate can be calculated iteratively e.g. via the Fisher scoring method.
Numerical methods of calculations of θ̂N are beyond the scope of this thesis and are
elaborated e.g. in Nelder and Wedderburn (1972); Nelder (1975); Jørgensen (1984);
Green (1984); McCullagh and Nelder (1989); Dobson (1990).

Moments, Fisher information matrix, and I-divergence in generalized re-
gression models

When considering a generalized regression model based on exponential families, we set
the regression function g(x,θ) instead of the canonical parameter γ in (4.5) to obtain
the pdf (or pmf) of the measurement y observed at x ∈ X :

f (y,x,θ) = exp
{
−ψ (y) + t> (y)g (x,θ)−κ [g (x,θ)]

}
, (4.15)

which is assumed to be expressed in its minimal representation. Similarly as in linear
and nonlinear regression, throughout this chapter we always suppose that any two
observations y,y′ from different trials are independent. The moments for given x and
θ exist, since Γmax is open, see Theorem 4.6, and we can use all results derived for
(4.5), in particular, following from Eqs. (4.8)–(4.11), we can define

• the expected value of the sufficient statistic t(y) for given x and θ:

µ(x,θ) = µ [g (x,θ)] =
[
∂κ(γ)
∂γ

]
γ=g(x,θ)

, (4.16)

• the covariance matrix of the sufficient statistic t(y) for given x and θ:

Σ(x,θ) = Σ[g (x,θ)] =
[
∂2κ(γ)
∂γ∂γ>

]
γ=g(x,θ)

,

• the elementary I-divergence for given x:

Ix
(
θ0,θ

)
= Eθ0

ln
f
(
y,x,θ0

)
f (y,x,θ)

= I
[
g
(
x,θ0

)
,g (x,θ)

]
= µ>

(
x,θ0

)[
g
(
x,θ0

)
−g (x,θ)

]
+κ [g (x,θ)]−κ

[
g
(
x,θ0

)]
,

(4.17)
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• the I-divergence for the exact design X = {x1, . . . ,xN}:

IX
(
θ0,θ

)
= Eθ0

ln
∏N
i=1 f

(
yi,xi,θ0

)
∏N
i=1 f (yi,xi,θ)

=
N∑
i=1

Eθ0

ln
f
(
yi,xi,θ0

)
f (yi,xi,θ)


=

N∑
i=1

Ixi
(
θ0,θ

)
,

• the elementary Fisher information matrix for the parameter θ is defined as
M (x,θ)≡ Eθ

[
∂ lnf(y,x,θ)

∂θ
∂ lnf(y,x,θ)

∂θ>

]
. One has the following relations:

M (x,θ) = Eθ

[
−∂

2 lnf (y,x,θ)
∂θ∂θ>

]

= ∂g> (x,θ)
∂θ

∂µ(x,θ)
∂θ>

= ∂g> (x,θ)
∂θ

Mγ

∣∣∣
γ=g(x,θ)

∂g (x,θ)
∂θ>

= ∂g> (x,θ)
∂θ

Σ(x,θ) ∂g (x,θ)
∂θ>

= ∂µ> (x,θ)
∂θ

Σ−1 (x,θ) ∂µ(x,θ)
∂θ>

,

(4.18)

provided that µ(x,θ) is differentiable with respect to θ ∈ int(Θ),

• the Fisher information matrix associated with the exact design X = {x1, . . . ,xN}:

MX (θ) = Eθ

[
−∂

2 ln
∏N
i=1 f(yi,xi,θ)
∂θ∂θ>

]
=∑N

i=1Eθ

[
−∂

2 lnf(yi,xi,θ)
∂θ∂θ>

]
=∑N

i=1M (xi,θ).

If the random variable ε in the nonlinear regression model (1.5) or in the linear
regression model (1.4) is normally distributed with zero mean and unknown constant
variance σ2 > 0, then the models (1.5) and (1.4) will be called normal nonlinear model
and normal linear model, respectively.

Remark 4.10. The nonlinear regression model (1.5) with normally distributed ran-
dom errors with zero mean and unit variance (i.e. y (x) ∼ N (η (x,θ) ,1)) can be in-
terpreted as a generalized regression model. One can see in the Appendix B.8 that
the usual parameter, the canonical parameter and the expected value of the suffi-
cient statistic coincide and the corresponding regression function is given by the rela-
tion g (x,θ) = η (x,θ). One has Ix

(
θ0,θ

)
= 1/2

[
η
(
x,θ0

)
−η (x,θ)

]2
and M (x,θ) =

∂g>(x,θ)
∂θ Σ(x,θ) ∂g(x,θ)

∂θ>
= ∂η(x,θ)

∂θ
∂η(x,θ)
∂θ>

for the elementary I-divergence and elementary
information matrix, respectively. If, moreover, the relation between the regressors and
the parameters is linear, i.e. if η (x,θ) = f> (x)θ, we obtain a normal linear regres-
sion model as a special case of generalized regression models and M (x) = f (x) f> (x),
Ix
(
θ0,θ

)
= 1/2

(
θ0−θ

)>
M (x)

(
θ0−θ

)
.
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Asymptotic properties of maximum likelihood estimate in generalized re-
gression models

Consider an exact experimental design X = (x1, . . . ,xN ), where x1, . . . ,xN is a random
sample from the distribution given by the approximative design ξ. It can be shown
(see Sects. 4.2–4.3 of Pronzato and Pázman, 2013) that, under some assumptions, the
maximum likelihood estimate θ̂N from (4.14) is asymptotically (for large N) normally
distributed with mean equal to the true parameter value θ̄ and with covariance ma-
trix 1

N

[
M(ξ, θ̄)

]−1
, where M(ξ, θ̄) is assumed to be nonsingular information matrix

associated with design ξ defined as

M (ξ,θ) =
∑

x∈X
M (x,θ)ξ (x)

with M(x,θ) from (4.18).

4.2 Experimental design in generalized regression
models

The design issues in generalized regression models are studied e.g. in Atkinson et al.
(2014) and in generalized linear models e.g. in papers Atkinson and Woods (2015) or
Khuri et al. (2006).

In this chapter we consider two different approaches to optimal experimental design
in generalized regression models based on exponential families:

1. The approach which uses the asymptotic properties of maximum likelihood esti-
mate as in Atkinson et al. (2014) and

2. the approach similar to Pázman and Pronzato (2014), who introduced the ex-
tended optimality criteria which lead simultaneously to stable and precise esti-
mates in nonlinear regression models. Our extension of these results is described
in the next sections of this chapter.

We remind that throughout Chap. 4 we always assume that the design space X is
finite.

4.2.1 Designing experiments in generalized regression models
using the asymptotic properties of maximum likelihood
estimate

The main idea of this approach is to maximize the proper function of Fisher information
matrix M(ξ,θ) = ∑

x∈XM(x,θ)ξ(x) as in Atkinson et al. (2014). The asymptotic
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properties of maximum likelihood estimate indicated at the end of Sect. 4.1.3 are then
applied.

Unlike the classical nonlinear regression model (1.5), where the rank of elementary
information matrix equals one, in generalized regression models we have

M (x,θ) = F (x,θ)F> (x,θ) ,

where F (x,θ) = ∂g>(x,θ)
∂θ Σ1/2 (x,θ), see (4.18), is m× r matrix and its rank is not

necessarily equal to one (it equals one if the sufficient statistic t(y) is one-dimensional).
In generalized regression models we can also apply the results of Chap. 2 and

compute locally optimal designs via linear programming after the proper reformulation
of the optimality criterion into the form

∀ ξ ∈ Ξ∗ Φloc (ξ) = φ
(
ξ,θ0

)
= min
ζ∈Ξ∗

∑
x∈X

H
(
ζ,x,θ0

)
ξ (x) , (4.19)

where the function H (·, ·, ·) and the set Ξ∗ depend on the criterion which is reformu-
lated:

D-optimality criterion Ξ∗ = {ζ :M (ζ,θ) is nonsingular}

H (ζ,x,θ) = det1/m [M (ζ,θ)]
m

tr
[
F> (x,θ)M−1 (ζ,θ)F (x,θ)

]
,

A-optimality criterion Ξ∗ = {ζ :M (ζ,θ) is nonsingular}

H (ζ,x,θ) =
tr
[
F> (x,θ)M−2 (ζ,θ)F (x,θ)

]
tr2[M−1 (ζ,θ)]

,

Ek-optimality criterion Ξ∗ = Ξ

H (ζ,x,θ) = tr
[
F> (x,θ)P (k) (ζ,θ)F (x,θ)

]
,

where P (k) (ζ,θ) = ∑k
i=1 ui [M (ζ,θ)]u>i [M (ζ,θ)] is a k-dimensional orthogonal

projector and ui [M (ζ,θ)] i= 1, . . . ,k are the orthonormal eigenvectors of matrix
M (ζ,θ) corresponding to its k smallest eigenvalues.

The reformulation (4.19) can be justified in the same way as in Chap. 2. The
maximization of criterion Φloc then corresponds to an LP problem with infinitely many
linear constraints, which leads to the similar algorithm as introduced in Chap. 2.

To avoid the undesirable dependence of the information matrix on the unknown
parameter θ, one may also apply the maximin optimality criterion (1.9), AVE opti-
mality criterion (1.10), or criterion based on the conditional value at risk (CVaR) as a
compromise (see Chap. 3).
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4.3 The problem of stability and identifiability of
maximum likelihood estimate. The extended
optimality criteria.

For a detailed discussion on estimability and identifiability of parameters in classical
nonlinear regression we refer to Chap. 7 of Pronzato and Pázman (2013).

It turns out to be very important to describe and identify the possible instabil-
ities which may appear in maximum likelihood estimation in generalized regression
models. Especially for a normal nonlinear regression we observe the same instabilities
as described in Pázman and Pronzato (2014) or in Chap. 7 of Pronzato and Pázman
(2013), since in the case of normally distributed random errors, the maximum likelihood
method and the method of least squares lead to the same estimates.

Let θ̄ be the true and unknown parameter value and let θ̂N be its maximum like-
lihood estimate (4.14) based on N independent measurements in x1, . . . ,xN such that
the relative frequency of x within x1, . . . ,xN tends for N →∞ to ξ(x). Suppose that
the nominal parameter value θ0 is allocated in the neighbourhood of θ̄. Then the
variability of the estimator θ̂N near θ̄ is well expressed via the information matrix
M
(
ξ,θ0

)
, since M−1

(
ξ, θ̄

)
is proportional to the asymptotic covariance matrix of the

estimate θ̂N (see Sect. 4.1.3). The experimental design which maximizes the classical
local optimality criterion (1.8) ensures that the parameter θ is locally well identified
in the neighbourhood of θ0 (i.e. the covariance matrix of θ̂N is “small”).

We are interested in the global identifiability (or stability) of the parameter that is
related to points θ distant from θ̄. The problem appears when for such θ the likelihood
function L(θ) = ∏N

i=1 f (yi,xi,θ) is very close to L
(
θ̄
)

= ∏N
i=1 f

(
yi,xi, θ̄

)
, i.e. when

the difference
∣∣∣ln[L(θ̄)]− ln [L(θ)]

∣∣∣ is very small. In such cases, the maximum of
the likelihood function can be attained at θ, a point distant from the true parameter
value θ̄. It follows from (4.13) and (4.16) that this instability may appear when the
“canonical surface”

K =
{(
g> (x1,θ) , . . . ,g> (xN ,θ)

)>
,θ ∈Θ

}
or “expectation surface”

E =
{(
µ> (x1,θ) , . . . ,µ> (xN ,θ)

)>
,θ ∈Θ

}
are “nearly overlapping”, e.g. when they are shaped as in Figure 4.1 on page 97. The
importance of the canonical and expectation surface in curved exponential families was
emphasized by Efron (1978).
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The problem of both global and local identifiability can be well described via the
I-divergence. Directly from (4.17) we obtain the following remark.

Remark 4.11. Consider an exact experimental design X = {x1, . . . ,xN} and an ap-
proximative design ξ. In the generalized regression model with the density of measure-
ments (4.15) one has

Ix
(
θ0,θ

)
= Eθ0

[
lnf

(
y,x,θ0

)
− lnf (y,x,θ)

]
∀ x ∈ X ,

IX
(
θ0,θ

)
= Eθ0

ln
N∏
i=1

f
(
yi,xi,θ0

)
− ln

N∏
i=1

f (yi,xi,θ)
 ,

and, obviously,

∑
x∈X

Ix
(
θ0,θ

)
ξ(x) = Eθ0

∑
x∈X

[
lnf

(
y(x),x,θ0

)
− lnf (y(x),x,θ)

]
ξ(x)

 .
At the design stage of the experiment, neither the observed values y1, . . . ,yN nor the

difference ln
[∏N

i=1 f
(
yi,xi, θ̄

)]
− ln

[∏N
i=1 f (yi,xi,θ)

]
(which we prefer to be as large

as possible for θ distant from θ̄) are known. According to Remark 4.11 and under
the assumption that θ0 is in the neighbourhood of θ̄, one can use the I-divergence∑

x∈X Ix
(
θ0,θ

)
ξ(x) to express the global identifiability of the parameter at θ0 associ-

ated with the design ξ.
On the other hand, the I-divergence reflects also the variability of the estimate θ̂N

near θ0 as a consequence of the following lemma.

Lemma 4.12. Let the third order derivatives ∂3Ix(θ0,θ)
∂θh∂θi∂θj

be bounded for any x ∈ X and
any θ ∈ int(Θ) ∀h,i, j ∈ {1, . . . ,m}. Then, in the generalized regression model with the
density of measurements (4.15),

Ix
(
θ0,θ

)
= 1

2
(
θ0−θ

)>
M
(
x,θ0

)(
θ0−θ

)
+O

(∥∥∥θ0−θ
∥∥∥3
`(2)

)
.

The big O notation O (·) here describes the behaviour of a given function when∥∥∥θ0−θ
∥∥∥
`(2)
→ 0.

Remark 4.13. One writes that ϕ(z) =O [%(z)] for z→ 0 for some functions %(z) and
ϕ(z) if and only if ∃∆ > 0,Q > 0 such that |ϕ(z)| ≤ Q |%(z)| for |z| < ∆. This also
implies that if for some n ∈N∪{0} ϕn (z) is O (zn) and ϕn+1 (z) is O

(
zn+1

)
for z→ 0,

then ϕn (z) +ϕn+1 (z) =O (zn), ϕn (z)ϕn+1 (z) =O
(
z2n+1

)
for z→ 0.

Proof of Lemma 4.12. Equations (4.16)–(4.18) imply that

Ix
(
θ0,θ0

)
= 0,

∂Ix
(
θ0,θ

)
∂θ


θ=θ0

= 0,

∂2Ix
(
θ0,θ

)
∂θ∂θ>


θ=θ0

=M
(
x,θ0

)
.
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Then by using the Taylor expansion of Ix
(
θ0,θ

)
at θ0 (see e.g. Trench, 2003, Theo-

rem 5.4.8) can the lemma be proved.
Notice that in the Taylor expansion we used the Lagrange reminder (Abramowitz

and Stegun, 1972, p. 880):

1
3!
∑
h,i,j

(
θh− θ0

h

)(
θi− θ0

i

)(
θj− θ0

j

)∂3Ix
(
θ0,θ

)
∂θh∂θi∂θj


θ=θ?

,

for some θ? on the line segment connecting θ0 and θ. The boundedness of the deriva-
tives ensures the existence of such Q0 that∣∣∣∣∣∣

∂3Ix
(
θ0,θ

)
∂θh∂θi∂θj


θ=θ?

∣∣∣∣∣∣≤Q0

for any h,i, j ∈ {1, . . . ,m}. It follows that there is Q> 0 such that
∣∣∣∣∣∣ 1
3!
∑
h,i,j

(
θh− θ0

h

)(
θi− θ0

i

)(
θj− θ0

j

)∂3Ix
(
θ0,θ

)
∂θh∂θi∂θj


θ=θ?

∣∣∣∣∣∣≤
≤ Q0

3!
∑
h,i,j

∥∥∥θ−θ0
∥∥∥3
`(2)
≤Q

∥∥∥θ−θ0
∥∥∥3
`(2)

,

which justifies that the last addend in the Taylor expansion is O
(∥∥∥θ−θ0

∥∥∥3
`(2)

)
.

Lemma 4.12 implies for the information matrix M
(
ξ,θ0

)
= ∑

x∈XM
(
x,θ0

)
ξ (x)

that
∑

x∈X
Ix
(
θ0,θ

)
ξ (x) = 1

2
(
θ0−θ

)>
M
(
ξ,θ0

)(
θ0−θ

)
+O

(∥∥∥θ0−θ
∥∥∥3
`(2)

)
. (4.20)

4.3.1 The general definition of extended optimality criteria

Let us introduce a very general definition of extended optimality criterion which is
intended to be maximized with respect to ξ ∈ Ξ.

Definition 4.14. Let k ∈ N be a given number and K ≥ 0 be a tuning constant. The
extended optimality criterion for a given nominal parameter value θ0 is defined as:

φextρ

(
ξ,θ0

)
≡ inf

(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

 , (4.21)

where ρ : Rm×(k+1) → R,
(
θ0,θ1, . . . ,θk

)
7→ ρ

(
θ0;θ1, . . . ,θk

)
is a distance between a

k-tuple of points θ1, . . . ,θk and the nominal value θ0 in the parametric space Θ.
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The choice of the distance ρ and of the number k ∈ N directly determines the
extension of which criterion is dealt with, as we will see in Chaps. 4.4 and 4.5.

The term extended optimality criteria is from Pázman and Pronzato (2014), who
introduced the extended criteria of E-, c-, and G-optimality in classical the nonlinear
regression models (1.5). They considered the case k = 1 and instead of the double
I-divergence in the numerator, they put

[
η
(
x,θ0

)
−η (x,θ)

]2
. They also justified the

relation of the extended criteria to the classical criteria of E-, c-, and G-optimality.
In the thesis we always denote the extended optimality criteria by ext in the super-

script to avoid possible confusions with the classical (not extended) optimality criteria.
The extended criteria (4.21) are based on properly “standardized” I-divergences.

Notice that the I-divergence has already been used in the optimal experimental design
by López-Fidalgo et al. (2007), who introduced the criterion of KL-optimality for
(different) purposes of model discrimination.

For K = 0 (see Sect. 4.6.1 for more properties of the tuning parameter) is the
interpretation of the criterion in (4.21) as follows: the aim of the experimental de-
sign is to find ξ? which maximizes the minimal ratio of the summary I-divergence∑

x∈X
∑k
i=1 2Ix

(
θ0,θi

)
ξ (x) to the distance ρ

(
θ0;θ1, . . . ,θk

)
. The ratio is minimized

over the set of all possible ordered k-tuples of vectors θ1, . . . ,θk, hence, the optimal
design ξ? prevent such situation when the summary I-divergence is small for θ1, . . . ,θk

very distant from θ0, and, subsequently, the probability of false maximum likelihood
estimate is minimized (see Remark 4.11). Pázman and Pronzato (2014) considered
only the case k = 1 when one searches for one “bad” θ minimizing the above men-
tioned ratio. If k > 1, we can consider more than one “bad” θ, and hence the resulting
criterion is more “robust” in this sense.

Nevertheless, the interpretation is clearer for k = 1 and we also have to mention the
computational complexity increasing with k.

4.4 The extension of pseudonorm optimality crite-
ria

Consider the class of (local) pseudonorm criteria

φ|||·|||P (ξ,θ) = inf
A∈Rm×k:|||A|||P=1

tr
[
A>M (ξ,θ)A

]
, (4.22)

where m is equal to the dimension of the unknown parameter θ, k ∈ N is a given
number and |||·|||P is an arbitrary pseudonorm on Rm×k not identically equal to zero.
The criterion φ|||·|||P is concave and positively homogeneous in ξ, since it is defined as
infimum of functions linear in ξ.
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When |||·|||P corresponds to an arbitrary norm ‖·‖ on Rm×k, then the infimum
in (4.22) is reached, because the set

{
A ∈ Rm×k : ‖A‖= 1

}
is compact and the mapping

A 7→ tr
[
A>M (ξ,θ)A

]
is a continuous function in A on Rm×k. Moreover, in this case,

the criterion (4.22) is equal to the information function of Dette et al. (1995), who
worked with the corresponding convex class of criteria, also called minimax criteria.
Here we use the term pseudonorm criteria for φ|||·|||P from (4.22) to distinguish between
the maximin criterion Φmin defined in (1.9).

Lemma 4.15. Suppose that |||·|||P is a norm ‖·‖ on Rm×k. When the matrix M (ξ,θ)
is singular, then the criterion φ‖·‖ (ξ,θ) equals 0.

Proof. When M (ξ,θ) is singular, then there is a vector a 6= 0 ∈ Rm such that
M (ξ,θ)a = 0 and we set A = (a, . . . ,a) ∈ Rm×k, obviously ‖A‖ 6= 0 due to Def. 4.1.
One sees that 0 = tr[A>M(ξ,θ)A]

‖A‖2
= infA∈Rm×k:‖A‖=1 tr

[
A>M (ξ,θ)A

]
= φ‖·‖.

If the distance ρ in (4.21) is given through a pseudonorm |||·|||P so that
ρ
(
θ0;θ1, . . . ,θk

)
=
∣∣∣∣∣∣∣∣∣(θ0−θ1, . . . ,θ0−θk

)∣∣∣∣∣∣∣∣∣
P
, we deal with the extended pseudo-

norm criteria

φext|||·|||P

(
ξ,θ0

)
= inf

(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1∣∣∣∣∣∣∣∣∣(θ0−θ1, . . . ,θ0−θk
)∣∣∣∣∣∣∣∣∣2

P

+K

 ,
(4.23)

and their relation to the classical pseudonorm criteria (4.22) is indicated in Theo-
rems 4.16, 4.17, and 4.18. Analogical statements about the extended criteria of E-,
c-, and G-optimality in classical nonlinear regression were pointed out in Pázman and
Pronzato (2014) and in Chap. 7 of Pronzato and Pázman (2013).

Theorem 4.16. Let Θ = Rm and ρ
(
θ0;θ1, . . . ,θk

)
= |||T0−T|||P , where

T =
(
θ1, . . . ,θk

)
∈ Rm×k, T0 =

(
θ0, . . . ,θ0

)
∈ Rm×k, with a given nominal parame-

ter value θ0 and an arbitrary pseudonorm |||·|||P on Rm×k not identically equal to zero.
In the normal linear regression model (1.4) with Var [y (x)] = 1 ∀x ∈ X and with an
information matrix M (ξ) = ∑

x∈X f (x) f (x)ξ (x), the following equality holds for any
K ≥ 0

inf
(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

=

= inf
A∈Rm×k:|||A|||P=1

tr
[
A>M (ξ)A

]
.
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Proof. Using Remark 4.10 one obtains

inf
(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K


= inf

T=(θ1,...,θk)∈Rm×k
∑

x∈X

k∑
i=1

(
θ0−θi

)>
M (x)

(
θ0−θi

)
ξ (x)

[
1

|||T0−T|||2P
+K

]

= inf
T=(θ1,...,θk)∈Rm×k

k∑
i=1

(
θ0−θi

)>
M (ξ)

(
θ0−θi

)[ 1
|||T0−T|||2P

+K

]

= inf
T=(θ1,...,θk)∈Rm×k

tr
[(

T0−T
)>
M (ξ)

(
T0−T

)][ 1
|||T0−T|||2P

+K

]

= inf
δ>0

inf
A∈Rm×k:|||A|||P=δ

tr
[
A>

δ
M (ξ)A

δ

][
Kδ2 + 1

]
= inf
δ>0

inf
A∈Rm×k:|||A|||P=1

tr
[
A>M (ξ)A

][
Kδ2 + 1

]
= inf
A∈Rm×k:|||A|||P=1

tr
[
A>M (ξ)A

]
.

Theorem 4.17. Suppose that the assumptions of Lemma 4.12 hold. Denote by
B
(
θ0, r

)
an m-dimensional ball centred at θ0 with a diameter r > 0, i.e. B

(
θ0, r

)
={

θ :
∥∥∥θ−θ0

∥∥∥
`(2)
≤ r

}
. Let M

(
ξ,θ0

)
= ∑

x∈XM
(
x,θ0

)
ξ (x) be nonsingular, and

ρ
(
θ0;θ1, . . . ,θk

)
= |||T0−T|||P , where T =

(
θ1, . . . ,θk

)
∈ Rm×k, T0 =

(
θ0, . . . ,θ0

)
∈

Rm×k and where |||·|||P is an arbitrary pseudonorm on Rm×k. Moreover, suppose
that there is a matrix AP ∈ Rm×k such that |||AP |||P = 1 and tr

[
A>PM

(
ξ,θ0

)
AP

]
=

φ|||·|||P

(
ξ,θ0

)
. Then for any K ≥ 0

lim
r→0

inf
(θ1,...,θk)∈Bk(θ0,r)

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

= φ|||·|||P

(
ξ,θ0

)
.

For the existence of the matrix AP in the assumptions of Theorem 4.17 it suffices
that Theorem A1 from Appendix can be applied to the pseudonorm criterion or that
|||·|||P is a norm (since then the infimum in (4.22) is always attained). In the thesis we
consider only such pseudonorm criteria for which the matrix AP does exist. Namely, the
criteria of E-, MV -, c-, and G-optimality in Sect. 4.4.1, the criterion of A-optimality
in Sect. 4.4.2 and the criterion of L-optimality in Sect. 4.4.3.
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Proof. Using (4.20) one obtains for T =
(
θ1, . . . ,θk

)
that

0≤
∑

x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K



=
k∑
i=1


(
θ0−θi

)>
M
(
ξ,θ0

)(
θ0−θi

)
|||T0−T|||2P

+
O
(∥∥∥θ0−θi

∥∥∥3
`(2)

)
|||T0−T|||2P

[1 + |||T0−T|||2PK
]

=
tr

[
(T0−T)>M

(
ξ,θ0

)
(T0−T)

]
|||T0−T|||2P

+
O
(
‖T0−T‖3F

)
|||T0−T|||2P

[1 + |||T0−T|||2PK
]
,

(4.24)
where (as a direct consequence of Lemma 4.12) one has that O

(∥∥∥θ0−θi
∥∥∥3
`(2)

)
is big

O notation for
∥∥∥θ0−θi

∥∥∥
`(2)
→ 0, i.e. ∃∆i > 0,Qi > 0 such that if

∥∥∥θ0−θi
∥∥∥
`(2)

< ∆i,

then
∣∣∣∣O(∥∥∥θ0−θi

∥∥∥3
`(2)

)∣∣∣∣≤Qi ∥∥∥θ0−θi
∥∥∥3
`(2)

.

Moreover, there is ∆ = min{∆1, . . . ,∆k} and Q=∑k
i=1Qi such that if ‖T0−T‖F ≤

∆, then we have
∥∥∥θ0−θi

∥∥∥
`(2)
≤‖T0−T‖F ≤∆≤∆i for any i= 1, . . . ,k, where we used

the definition of the Frobenius norm (4.2). Hence one obtains∣∣∣∣∣∣
k∑
i=1

O
(∥∥∥θ0−θi

∥∥∥3
`(2)

)∣∣∣∣∣∣≤
k∑
i=1

Qi
∥∥∥θ0−θi

∥∥∥3
`(2)
≤Q‖T0−T‖3F

and ∑k
i=1O

(∥∥∥θ0−θi
∥∥∥3
`(2)

)
is O

(
‖T0−T‖3F

)
for ‖T0−T‖F → 0, which justifies the

usage of O
(
‖T0−T‖3F

)
in (4.24).

Denote Ar =
{
A : ‖A·i‖`(2) ≤ r ∀i= 1, . . . ,k

}
. Using the definition of the Frobenius

norm (4.2) one sees that ‖A‖F =
√
‖A.1‖2`(2) + . . .+‖A.k‖2`(2) ≤

√
kr for any A ∈ Ar,

and hence O (‖A‖F ) = O (r) for r→ 0 and for A ∈ Ar. In addition, it follows from
Lemma 4.3 that for some a > 0

|||A|||P ≤ ‖A‖F /a≤
√
kr/a

for any A ∈Ar and hence |||A|||2P is O
(
r2
)
for r→ 0 and A ∈Ar. Denote Ar = r AP

‖AP ‖F
.
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Obviously Ar ∈ Ar, |||Ar|||P = r
‖AP ‖F

> 0 and this together with (4.24) leads to

0≤ lim
r→0

inf
T=(θ1,...,θk)∈Bk(θ0,r)

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

[
1

|||T0−T|||2P
+K

]

= lim
r→0

inf
A∈Ar

∣∣∣∣∣∣
tr
[
A>M

(
ξ,θ0

)
A
]
+O

(
‖A‖3F

)
|||A|||2P

∣∣∣∣∣∣
[
1 + |||A|||2PK

]

≤ lim
r→0

∣∣∣∣∣∣
tr
[
A>r M

(
ξ,θ0

)
Ar
]
+O

(
‖Ar‖3F

)
|||Ar|||2P

∣∣∣∣∣∣
[
1 + |||Ar|||2PK

]

= lim
r→0

∣∣∣∣∣∣
tr
[
A>r M

(
ξ,θ0

)
Ar
]

|||Ar|||2P
+
O
(
r3
)

|||Ar|||2P

∣∣∣∣∣∣
[
1 +O

(
r2
)
K
]

= tr
[
A>PM

(
ξ,θ0

)
AP

]
= φ|||·|||P

(
ξ,θ0

)
,

since O(r3)
|||Ar|||2P

is O(r) for r→ 0. On the other hand, one sees:

lim
r→0

inf
T=(θ1,...,θk)∈Bk(θ0,r)

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

[
1

|||T0−T|||2P
+K

]

= lim
r→0

inf
A∈Ar

∣∣∣∣∣∣
tr
[
A>M

(
ξ,θ0

)
A
]
+O

(
‖A‖3F

)
|||A|||2P

∣∣∣∣∣∣
[
1 + |||A|||2PK

]

= lim
r→0

inf
A∈Ar

∣∣∣∣∣∣∣∣∣∣
tr
[(

A
‖A‖F

)>
M
(
ξ,θ0

)(
A
‖A‖F

)]
+O (r)∣∣∣∣∣∣∣∣∣∣∣∣( A

‖A‖F

)∣∣∣∣∣∣∣∣∣∣∣∣2
P

∣∣∣∣∣∣∣∣∣∣
[
1 + |||A|||2PK

]

≥ lim
r→0

inf
A∈Ar

tr
[(

A
‖A‖F

)>
M
(
ξ,θ0

)(
A
‖A‖F

)]
−Qr∣∣∣∣∣∣∣∣∣∣∣∣( A

‖A‖F

)∣∣∣∣∣∣∣∣∣∣∣∣2
P

≥ lim
r→0

inf
A∈Rm×k

tr
[(

A
‖A‖F

)>
M
(
ξ,θ0

)(
A
‖A‖F

)]
−Qr∣∣∣∣∣∣∣∣∣∣∣∣( A

‖A‖F

)∣∣∣∣∣∣∣∣∣∣∣∣2
P

= lim
r→0

inf
A:‖A‖F=1

tr
[
A>M

(
ξ,θ0

)
A
]
−Qr

|||A|||2P

= lim
r→0

inf
A:‖A‖F=1

1− Qr
tr[A>M(ξ,θ0)A]
|||A|||2P

tr[A>M(ξ,θ0)A]

≥ lim
r→0

inf
A:‖A‖F=1

1− Qr
λ

|||A|||2P
tr[A>M(ξ,θ0)A]

= lim
r→0

(
1− Qr

λ

)
inf

A:‖A‖F=1

1
|||A|||2P

tr[A>M(ξ,θ0)A]
= φ|||·|||P

(
ξ,θ0

)
,
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where we used the notation λ= 1
kλmin

[
M
(
ξ,θ0

)]
> 0 and that each matrix A : ‖A‖F =

1 includes at least one column a such that 1≥ ‖a‖`(2) ≥ 1/
√
k and hence using (1.3)

tr
[
A>M

(
ξ,θ0

)
A
]
≥ a>M

(
ξ,θ0

)
a = ‖a‖2`(2)

a>M
(
ξ,θ0

)
a

a>a
≥ 1
k
λmin

[
M
(
ξ,θ0

)]
= λ.

Moreover, there always exists such r > 0 that the expression
(
1− Qr

λ

)
is positive.

Theorem 4.18. Suppose that the assumptions of Lemma 4.12 hold. Let M
(
ξ,θ0

)
=∑

x∈XM
(
x,θ0

)
ξ (x) be nonsingular, and ρ

(
θ0;θ1, . . . ,θk

)
= |||T0−T|||P , where T =(

θ1, . . . ,θk
)
∈ Rm×k, T0 =

(
θ0, . . . ,θ0

)
∈ Rm×k and |||·|||P is an arbitrary pseudonorm

on Rm×k. Moreover, suppose that there is a matrix AP ∈ Rm×k such that |||AP |||P = 1
and tr

[
A>PM

(
ξ,θ0

)
AP

]
= φ|||·|||P

(
ξ,θ0

)
<∞. Assume that there is δ > 0 such that

B
(
θ0, δ

)
⊆Θ, where B

(
θ0, δ

)
=
{
θ :
∥∥∥θ−θ0

∥∥∥
`(2)
≤ δ

}
and Θ denotes the parametric

space. Suppose that there is no overlapping in θ0 under the design ξ, i.e. ∀r > 0∃cr >
0∀ θ ∈Θ :

∥∥∥θ−θ0
∥∥∥
`(2)
≥ r :∑x∈X Ix

(
θ0,θ

)
ξ(x)≥ cr, then

lim
K→∞

inf
(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

= φ|||·|||P

(
ξ,θ0

)
.

Proof. According to Theorem 4.17 one has for any K ≥ 0

inf
(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

≤ φ|||·|||P (ξ,θ0
)
.

Moreover, the function

inf
(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K


is evidently non-decreasing in K, hence there is the limit for K →∞ and is less than
or equal to φ|||·|||P

(
ξ,θ0

)
.

Now we prove the opposite inequality. Since there is no overlapping, for every r > 0

inf
(θ1,...,θk)∈Θk

‖θi−θ0‖
`(2)>r∀i=1,...k

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K



≥ inf
(θ1,...,θk)∈Θk

‖θi−θ0‖
`(2)>r∀i=1,...k

k∑
i=1

2cr

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K



≥ 2kcrK −−−−→
K→∞

∞.

(4.25)
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Hence for any 0< r < δ,

lim
K→∞

inf
(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K


= lim
K→∞

inf
(θ1,...,θk)∈Bk(θ0,r)

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

 ,
(4.26)

since, as follows from (4.25), there is K0 such that the infimum over the set
[
Bk(θ0, r)

]c
=
{(
θ1, . . . ,θk

)
∈Θk :

∥∥∥θi−θ0
∥∥∥
`(2)

> r∀i= 1, . . .k
}

would be greater than φ|||·|||P
(
ξ,θ0

)
for any K >K0, while the infimum in (4.26) is less

than or equal to φ|||·|||P
(
ξ,θ0

)
for any K.

Finally, it follows from Theorem 4.17, that ∀ε > 0∃r0∀r < r0

inf
(θ1,...,θk)∈Bk(θ0,r)

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

≥ φ|||·|||P (ξ,θ0
)
− ε.

Hence, for every ∀ε > 0∃r0∀r < r0

lim
K→∞

inf
(θ1,...,θk)∈Bk(θ0,r)

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K


≥ φ|||·|||P

(
ξ,θ0

)
− ε,

which together with (4.26) proves the theorem.

So, to summarize, the extended pseudonorm criterion φext|||·|||P
(
ξ,θ0

)
coincides with

the classical pseudonorm criterion φ|||·|||P
(
ξ,θ0

)
if the model is normal linear regression

model (Theorem 4.16). It approximately coincides with φ|||·|||P
(
ξ,θ0

)
if the parametric

space is a ball centred at θ0 with a very small diameter (Theorem 4.17) or if the
tuning constant K is very large (Theorem 4.18). These theorems affirm that the
criterion φext|||·|||P

is an extension of the classical pseudonorm criterion φ|||·|||P .

4.4.1 The case when k = 1

Let us summarize some well-known optimality criteria which are special cases
of pseudonorm criteria. We will also formulate their extensions to the generalized re-
gression models based on exponential families of distributions. First, we will consider
the case k = 1.
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The E-optimality criterion and its extension

One obtains the extended E-optimality criterion by taking the Euclidean norm ‖·‖`(2)
as |||·|||P , since as follows from (1.3) and Def. 1.2 that φ‖·‖`(2)

(
ξ,θ0

)
=

min
u∈Rm:‖u‖`(2)=1

u>M
(
ξ,θ0

)
u = λmin

[
M
(
ξ,θ0

)]
= φE

(
ξ,θ0

)
, hence

φextE

(
ξ,θ0

)
= φext‖·‖`(2)

(
ξ,θ0

)
= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)

 1∥∥∥θ0−θ
∥∥∥2
`(2)

+K

 . (4.27)

The MV -optimality criterion and its extension

The convexMV -optimality criterion is defined as the maximal diagonal element of the
matrixM−1

(
ξ,θ0

)
, which can be equivalently written as max

u∈Rm:‖u‖`(1)=1
u>M−1

(
ξ,θ0

)
u

(see López-Fidalgo et al., 1998) and is supposed to be minimized with respect to ξ.
Using (4.4) and the fact that the `(∞) norm, ‖u‖`(∞) = maxi=1,...,m |ui|, is dual to
the `(1) norm we can define the concave MV -criterion

φMV

(
ξ,θ0

)
= φ‖·‖`(∞)

(
ξ,θ0

)
= min

u∈Rm:‖u‖`(∞)=1
u>M

(
ξ,θ0

)
u,

which is supposed to be maximized with respect to ξ. Its extension is then given as

φextMV

(
ξ,θ0

)
= φext‖·‖`(∞)

(
ξ,θ0

)

= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)

 1∥∥∥θ0−θ
∥∥∥2
`(∞)

+K



= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)

 1

max
i=1,...,m

(
θ0
i − θi

)2 +K

 .

The c-optimality criterion and its extension

Define the vector pseudonorm

|||·|||Pc : Rm 7→ [0,∞) , u→ |||u|||Pc =
∣∣∣u>c

∣∣∣ . (4.28)

Lemma 5.6 from Pronzato and Pázman (2013) (or Theorem A1 in Appendix for L= c)
implies that

φ|||·|||Pc

(
ξ,θ0

)
= inf

u∈Rm:|||u|||Pc=1
u>M

(
ξ,θ0

)
u = inf

u∈Rm:|u>c|=1
u>M

(
ξ,θ0

)
u

=


1

c>M−(ξ,θ0)c if c ∈ C
[
M
(
ξ,θ0

)]
0 otherwise

=φc
(
ξ,θ0

)
,
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see Def. 1.2. The extension is then

φext|||·|||Pc

(
ξ,θ0

)
= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)

 1∣∣∣∣∣∣∣∣∣θ0−θ
∣∣∣∣∣∣∣∣∣2
Pc

+K



= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)


1[(

θ0−θ
)>

c
]2 +K

 .
We refer the reader also to a more general definition of the extended c-optimality
criterion in Sect. 4.5.

The G-optimality criterion and its extension

Define the vector pseudonorm

|||·|||PG : Rm 7→ [0,∞) : u→ |||u|||PG = max
x∈X

∣∣∣u>f (x)
∣∣∣ . (4.29)

Under the assumption that ∀x ∈X f (x) 6= 0, the application of Lemma 5.6 from Pron-
zato and Pázman (2013) (one may also use Theorem A1 for L= f (x)) gives

min
x∈X

inf
u:|u>f(x)|=1

u>M
(
ξ,θ0

)
u =

=


0 if ∃x ∈ X : f (x) /∈ C

[
M
(
ξ,θ0

)]
,

minx∈X
1

f>(x)M−(ξ,θ0)f(x) otherwise,

where the left hand side equals

min
x∈X

inf
u∈Rm:u>f(x) 6=0

u>M
(
ξ,θ0

)
u[

u>f (x)
]2 = inf

u∈Rm:u>f(x) 6=0

u>M
(
ξ,θ0

)
u[

maxx∈X
∣∣∣u>f (x)

∣∣∣]2 =

= inf
u∈Rm:|||u|||PG=1

u>M
(
ξ,θ0

)
u = φ|||·|||PG

(
ξ,θ0

)
.

It is easy to verify that |||·|||PG is a norm if the set {f (x) ,x ∈ X} includes m linearly
independent vectors. Then, using Lemma 4.15, we have (see Def. 1.2)

φ|||·|||PG

(
ξ,θ0

)
=


minx∈X

1
f>(x)M−1(ξ,θ0)f(x) if M(ξ,θ0) is nonsingular

0 otherwise
= φG

(
ξ,θ0

)
.

Moreover, even if |||·|||PG is not norm, φ|||·|||PG(ξ,θ0) =φG(ξ,θ0) forM(ξ,θ0) nonsingular.
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The extended φ|||·|||PG optimality criterion is defined as

φext|||·|||PG

(
ξ,θ0

)
= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)

 1∣∣∣∣∣∣∣∣∣θ0−θ
∣∣∣∣∣∣∣∣∣2
PG

+K



= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)


1

maxx∈X

[(
θ0−θ

)>
f (x)

]2 +K

 .
Notice that the above mentioned criteria of c-, and G-optimality can be further

generalized, see Sect. 4.5.

4.4.2 The case when k=m and the distance ρ(·; ·, · · · , ·) is given
through Schatten p norm

One obtains different extended optimality criteria applying the Schatten p norm (4.1)
as the distance ρ:

inf
(θ1,...,θm)∈Θm

∑
x∈X

m∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1∥∥∥(θ0−θ1, . . . ,θ0−θm
)∥∥∥2

S(p)

+K

 . (4.30)

Lemma 4.19. Let U ∈ Rm×m be an orthogonal matrix and let A ∈ Rm×m. Then
‖AU‖S(p) = ‖A‖S(p), where ‖·‖S(p) is the Schatten p-norm.

Proof. ‖AU‖S(p) =
{

tr
[(
AUU>A>

)p/2]}1/p
=
{

tr
[(
AA>

)p/2]}1/p
= ‖A‖S(p) .

Consequence 4.20. The Schatten norm of a matrix T is invariant to rearrangements
of the columns of the matrix T =

(
θ1, . . . ,θm

)
→TP = (θp1 , . . . ,θpm), where P is some

permutation matrix and p1, . . . ,pm is the corresponding permutation of the numbers
1, . . . ,m. Indeed, ‖TP‖S(p) = ‖T‖S(p) since every permutation matrix is orthogonal
(see e.g. Harville, 2008, Sect. 8.4c). Moreover, summation is a commutative operation
and therefore in (4.30) we are searching for an m-tuple of vectors from Θ and the order
of those vectors is not important.

The Lp-optimality criteria and their extension

We consider the class of concave Lp-criteria (see e.g. Kiefer, 1974, Eq. 4.11 or Kiefer,
1975, Eq. 2.1 for convex Lp-criteria or Pronzato and Pázman, 2013, Eq. 5.15 for their
concave versions), but we restrict ourselves to p≥ 1,

φLp (ξ,θ) =


1

(tr{[M−1(ξ,θ)]p})1/p = 1
‖M−1(ξ,θ)‖S(p)

if M (ξ,θ) is nonsingular,

0 otherwise.
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For instance, one obtains the A-optimality criterion if p = 1 (directly from Def. 1.2)
and the E-optimality criterion if p→∞ (see Kiefer, 1975, Eq. 2.1).

Lemma 4.21. (Dette et al., 1995, p. 36) Let q = 2p/(p+ 1) , p≥ 1. Then φLp (ξ,θ) =
φ‖·‖S(q)

(ξ,θ).

Proof. We follow the proof given in Dette et al. (1995) on p. 36. We will use the
notation M =M (ξ,θ) since the statement of the lemma does depend on M (ξ,θ), not
on ξ and θ separately. The case when M is singular is proved in Lemma 4.15, hence
we proceed by nonsingular M .

According to (4.3), it suffices to prove that

max
A∈Rm×m:‖A‖DS(q)=1

tr
[
A>M−1A

]
=
∥∥∥M−1

∥∥∥
S(p)

.

Since ‖·‖
S
(

q
q−1

) is the dual norm to ‖·‖S(q), we obtain

max
A∈Rm×m:‖A‖DS(q)=1

tr
[
A>M−1A

]
= max
A∈Rm×m:‖A‖S( q

q−1)=1
tr
[
A>M−1A

]

= max
A∈Rm×m:‖A‖

S( 2p
p−1)=1

tr
[
A>M−1A

]

= max
A∈Rm×m:‖AA>‖S( p

p−1)=1
tr
[
M−1AA>

]

= max
F∈Rm×m:‖F‖S( p

p−1)=1

F is positive semidefinite

tr
[
M−1F

]
,

where we used for r = 2p
p−1 ≥ 2 that if ‖A‖S(r) = 1, then

1 = ‖A‖2S(r) =
{

tr
[(
AA>

)r/2]}2/r
=
{

tr
[(
AA>AA>

)r/4]}2/r
=
∥∥∥AA>∥∥∥

S( r2) .

Then, using Def. 4.4, we have

max
F∈Rm×m:‖F‖S( p

p−1)=1

F is positive semidefinite

tr
[
M−1F

]
≤

≤ max
F∈Rm×m
‖F‖S( p

p−1)=1

∣∣∣tr[M−1F
]∣∣∣= ∥∥∥M−1

∥∥∥D
S
(

p
p−1

) =
∥∥∥M−1

∥∥∥
S(p)

.

Now, to prove the opposite inequality, we set

A′ = M−(p−1)/2∥∥∥M−(p−1)/2
∥∥∥

S
(

2p
p−1

) = M−(p−1)/2

{tr [M−p]}(p−1)/2p .
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One sees ‖A′‖
S
(

2p
p−1

) = 1 and hence we obtain

max
A∈Rm×m:‖A‖DS(q)=1

tr
[
A>M−1A

]
= max
A∈Rm×m:‖A‖

S( 2p
p−1)=1

tr
[
A>M−1A

]

≥ tr
[
A′>M−1A′

]
=

tr
[
M−p

]
{tr [M−p]}(p−1)/p

=
[
tr
(
M−p

)]1−(p−1)/p
=
{

tr
[(
M−1M−1

)p/2]}1/p

=
∥∥∥M−1

∥∥∥
S(p)

.

As a consequence of Lemma 4.21, the Lp-criteria with 1 ≤ p = q
2−q , 1 ≤ q ≤ 2 are

only special cases of pseudonorm criteria based on the Schatten norm, and hence it is
easy to derive their extended versions, see (4.30). Particularly, when the distance ρ
from Def. 4.14 is chosen as ρ

(
θ0;θ1, . . . ,θm

)
=
∥∥∥(θ0−θ1, . . . ,θ0−θm

)∥∥∥
S(1)

, one obtains
the extension of A-optimality

φextA = inf
T=(θ1,...,θm)∈Θm

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
‖T0−T‖2S(1)

+K

 ,
and for ρ

(
θ0;θ1, . . . ,θm

)
=
∥∥∥(θ0−θ1, . . . ,θ0−θm

)∥∥∥
S(2)

=
∥∥∥(θ0−θ1, . . . ,θ0−θm

)∥∥∥
F

one has the extension of E-optimality criterion

φext
′

E = inf
T=(θ1,...,θm)∈Θm

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

[
1

‖T0−T‖2F
+K

]
,

where in both cases we used the notation T0 =
(
θ0, . . . ,θ0

)
.

In Sect. 4.4.1 we defined the extended E-optimality φextE via the Euclidean norm.
Theorems 4.17 and 4.16 indicate that the extensions φextE and φext

′
E approximately

coincide when the parametric space Θ is a ball in Rm centred at θ0 with a very small
diameter or they coincide if the model is linear. Generally, we managed to prove that
φextE ≥ φext

′
E ≥ 1

mφ
ext
E . We have from the definition of the Frobenius norm (4.2) that

φext
′

E

(
ξ,θ0

)
= inf

(θ1,...,θm)∈Θm

∑
x∈X

m∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1∥∥∥(θ0−θ1, . . . ,θ0−θm
)∥∥∥2
F

+K



= inf
(θ1,...,θm)∈Θm

m∑
i=1

∑
x∈X

2Ix
(
θ0,θi

)
ξ (x)

 1∑m
i=1

∥∥∥θ0−θi
∥∥∥2
`(2)

+K

 .
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It follows that

φext
′

E

(
ξ,θ0

)

≤ inf
(θ1,...,θm)∈Θ×{θ0}×...×{θ0}

m∑
i=1

∑
x∈X

2Ix
(
θ0,θi

)
ξ (x)

 1∑m
i=1

∥∥∥θ0−θi
∥∥∥2
`(2)

+K



= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ (x)

 1∥∥∥θ0−θ
∥∥∥2
`(2)

+K

= φextE

(
ξ,θ0

)
.

On the other hand, without loss of generality, one may assume that
∥∥∥θ0−θ1

∥∥∥ ≥∥∥∥θ0−θi
∥∥∥ ∀i= 1, . . . ,m (see Consequence 4.20) and hence

φext
′

E

(
ξ,θ0

)

≥ inf
(θ1,...,θm)∈Θm

m∑
i=1

∑
x∈X

2Ix
(
θ0,θi

)
ξ (x)

 1∑m
i=1

∥∥∥θ0−θ1
∥∥∥2
`(2)

+K



≥ inf
(θ1,...,θm)∈Θm

m∑
i=1

∑
x∈X

2Ix
(
θ0,θi

)
ξ (x)

 1

m
∥∥∥θ0−θ1

∥∥∥2
`(2)

+ K

m

= 1
m
φextE

(
ξ,θ0

)
.

4.4.3 The case when k <m and the distance ρ(·; ·, · · · , ·) is given
through a pseudonorm

The L-optimality criterion and its extension

Assume that L ∈ Rm×k k < m is a given nonzero matrix. The L-optimality criterion
is defined as

φL
(
ξ,θ0

)
=


1

tr(L>M−(ξ,θ0)L) if C (L)⊆ C
[
M
(
ξ,θ0

)]
,

0 otherwise,

where M−
(
ξ,θ0

)
is an arbitrary generalized inverse of M

(
ξ,θ0

)
(see e.g. Pronzato

and Pázman (2013) p. 116).
Define now the pseudonorm

|||·|||PL : Rm×k 7→ [0,∞) : A→ |||A|||PL =
∣∣∣tr(A>L)∣∣∣ . (4.31)

Then it follows from Theorem A1 that

φ|||·|||PL

(
ξ,θ0

)
= inf
A∈Rm×k:|||A|||PL=1

A>M
(
ξ,θ0

)
A= inf

A∈Rm×k:|tr(A>L)|=1
A>M

(
ξ,θ0

)
A

= φL
(
ξ,θ0

)
,
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and the extended L-optimality criterion is

φextL

(
ξ,θ0

)
= φext|||·|||PL = inf

T=(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

[
1

|||T−T0|||2PL
+K

]

= inf
T=(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
tr2
[
(T−T0)>L

] +K

 ,
where T0 =

(
θ0, . . . ,θ0

)
.

The members of the class of pseudonorm optimality criteria (4.22), which were
presented in Sects. 4.4.1–4.4.3, are summarized in Table 4.1. The required extended
optimality criterion (4.23) is then obtained directly by applying the corresponding
pseudonorm.

optimality criterion k corresponding pseudonorm

E 1 ‖·‖`(2)

MV 1 ‖·‖`(∞)

c 1 |||·|||Pc as defined in (4.28)
G 1 |||·|||PG as defined in (4.29)

Lp, p≥ 1 m ‖·‖S(q) with q = 2p/(p+ 1)
A m ‖·‖S(1)

L m> k > 1 |||·|||PL as defined in (4.31)

Table 4.1: Some well-known optimality criteria involved in the class of pseudonorm crite-
ria (4.22). The parameter k and the corresponding pseudonorm are also indicated.

4.5 Alternative extensions of c- and G-optimality
criteria in generalized regression models

Definition 4.22. Let K ≥ 0 be a tuning constant. In a generalized regression model
based on exponential families of distributions we define

the extended c-optimality criterion as

φextc
(
ξ,θ0

)
= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

) 1∣∣∣h(θ0
)
−h(θ)

∣∣∣2 +K

ξ (x) ,

where h : Θ→ R is a given function of parameters, and
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the extended G-optimality criterion as

φextG

(
ξ,θ0

)
= inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

) 1

maxx∈X
[
α
(
x,θ0

)
−α (x,θ)

]2 +K

ξ (x) ,

where x ∈ X → α (x,θ) is a given regression function (especially, one may take
α (x,θ) = g (x,θ) or α (x,θ) = µ(x,θ)).

The criteria from Def. 4.22 were together with the extended E-optimality criterion
(4.27) studied in our paper Burclová and Pázman (2016b). In the nonlinear regres-
sion model (1.5) with normally distributed random errors ε with zero mean and unit
variance, these criteria coincide with the extended criteria from Pázman and Pronzato
(2014), since then 2Ix(θ0,θ) =

[
η
(
x,θ0

)
−η(x,θ)

]2
, see Remark 4.10.

One sees that when h(θ) = θ>c for some c∈Rm\{0}, then the criterion φextc
(
ξ,θ0

)
coincides with the criterion φext|||·|||Pc

(
ξ,θ0

)
from Sect. 4.4.1 since

∣∣∣h(θ0
)
−h(θ)

∣∣∣2 =∣∣∣∣∣∣∣∣∣θ−θ0
∣∣∣∣∣∣∣∣∣2
Pc

.
Similarly, when α (x,θ) = θ>f (x) with f (x) ∈ Rm \ {0} ∀x ∈ X , then the crite-

rion φextG

(
ξ,θ0

)
corresponds to the extended pseudonorm criterion φext|||·|||PG

(
ξ,θ0

)
from

Sect. 4.4.1, since maxx∈X
[
α
(
x,θ0

)
−α (x,θ)

]2
=
∣∣∣∣∣∣∣∣∣θ−θ0

∣∣∣∣∣∣∣∣∣2
PG

.
Provided that the criteria φextc and φextG coincide with the corresponding extended

pseudonorm criteria (as indicated above), in the normal linear regression model (1.4)
with random errors of zero mean and unit variance, φextc

(
ξ,θ0

)
= φc

(
ξ,θ0

)
and

φextG

(
ξ,θ0

)
= φ|||·|||PG

(
ξ,θ0

)
∀θ0 ∈ Θ = Rm ∀ξ ∈ Ξ, where we directly applied Theo-

rem 4.16. Notice that the criterion φ|||·|||PG coincides with classical G-optimality if
|||·|||PG is norm or if M

(
ξ,θ0

)
is nonsingular, see Sect. 4.4.1.

4.6 Properties of extended optimality criteria de-
fined in (4.21)

One sees that the extended optimality criteria (4.21) are positively homogeneous and
concave in ξ, since they are defined as infimum of functions linear in ξ.

The concavity ensures the existence of the directional derivative. Pázman and Pron-
zato (2014) in Theorems 2 and 4 or Pronzato and Pázman (2013) in Theorems 7.16–7.17
derived the directional derivatives for the extended E- and c-optimality criteria in the
nonlinear regression model (1.5). See also Theorem 3 from Pázman and Pronzato
(2014) for the formulation of the equivalence theorem.

The extended optimality criteria (4.21) are local in the sense that the nominal
parameter value θ0 is required. On the other hand, they are global since they are
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taking into account the parameter values distant from θ0. The undesirable dependence
on θ0 can be avoided by considering minθ0∈Θφ

ext
ρ

(
ξ,θ0

)
, as suggested in Pázman and

Pronzato (2014).

4.6.1 Parameter K

The tuning parameter K in (4.21) plays very important role. By an adequate choice of
K we can express our preference for the precision or for the stability of the estimator.

For K = 0, the infimum in (4.21) may be reached simply because θ1, . . . ,θk are
very distant points from θ0 (i.e. ρ

(
θ0;θ1, . . . ,θk

)
is very large) even if the I-divergence∑

x∈X
∑k
i=1 Ix

(
θ0,θi

)
ξ (x) is not necessarily small, and hence there is no real instability

in the model.
On the other hand, as K→∞ we obtain the classical (not extended) pseudonorm

optimality criteria (see Theorem 4.18), and hence the extended criteria lose their global
properties for very large K.

4.7 Algorithm and examples

The design ξ? is φextρ

(
·,θ0

)
optimal if ξ? = argmaxξ∈Ξφ

ext
ρ

(
ξ,θ0

)
. We can use LP

methods to compute ξ?, since the extended criteria (4.21) are defined as infimum of
functions linear in ξ:

φextρ

(
ξ,θ0

)
= inf

(θ1,...,θk)∈Θk

∑
x∈X

Hk

(
x,θ0,θ1, . . . ,θk

)
ξ (x) ,

where

Hk

(
x,θ0,θ1, . . . ,θk

)
=

k∑
i=1

2Ix
(
θ0,θi

) 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

 . (4.32)

The following algorithm and examples were presented in Burclová and Pázman (2016b).

Example 4.23. The example illustrates the possible instabilities related to the maxi-
mum likelihood estimation of parameter θ in a generalized regression model. We were
inspired by the Example 1 in Pázman and Pronzato (2014). Consider now the binomial
model with the pmf

f (y,x, θ) =
(
n

y

)
p(x, θ)y [1−p(x, θ)]n−y , (4.33)

which can be rewritten in the exponential form (4.15):

f (y,x, θ) = exp
{

ln
(
n

y

)
+yg (x, θ)−n ln

[
1 + eg(x,θ)

]}
, (4.34)
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with g (x, θ) = ln{p(x, θ)/ [1−p(x, θ)]}, and with the mean of sufficient statistic t(y) =
y equal to µ(x, θ) = np(x, θ) = neg(x,θ)/

{
1 + eg(x,θ)

}
(the logistic function, see also Ap-

pendix B.1). We set n = 10 and apply the regression function (similar to that in the
Example 1 of Pázman and Pronzato, 2014)

g (x, θ) = 2cos(t−uθ) ; x = (t,u)> . (4.35)

The experiment consists of two trials, one in x1 = (0,u)> and the second in x2 =
(π/2,u)>. The design problem is to find the optimal value u∈

[
0, 11

6 π
]
for the maximum

likelihood estimation of the unknown parameter θ ∈ [0,1]. The information matrix
Mu (θ) ≡ M (x1, θ) +M (x2, θ) is obtained from (4.18). Suppose that the true and
nominal parameter values equal 0, i.e. θ̄= θ0 = 0. Hence, the classical design approach,
which maximizes the information matrix Mu

(
θ0
)

= nu2, leads to the locally optimal
design achieved at uloc = 11

6 π.
In Figure 4.1 are the circular canonical surface K =

{
(g (x1, θ) ,g (x2, θ))> ; θ ∈ [0,1]

}
and the expectation surface (which is not circular due to the nonlinearity of the logis-
tic function) E =

{
(µ(x1, θ) ,µ(x2, θ))> ; θ ∈ [0,1]

}
depicted for the design uloc. Since

the surfaces are nearly overlapping, the maximum likelihood estimate θ̂2 (see (4.14))
can be, with a large probability, in the neighbourhood of θ = 1, which indicates the
possibility of a false maximum likelihood estimate.

−2 −1 0 1 2

−
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−
1

0
1

2

g(x1,θ)

g(
x 2

,θ
)

θ0 = 0

θ = 1

●

●

(a) Canonical surface

2 4 6 8

2
4

6
8

µ(x1,θ)

µ(
x 2

,θ
)

●

●

θ0 = 0

θ = 1

(b) Expectation surface

Figure 4.1: Example 4.23: The canonical and expectation surface for locally optimal design
uloc = 11π

6 .

Now we can use the extended criterion in the following form

φext
(
u,θ0

)
= min
θ∈[0,1]

I
(
θ0, θ;u

)
/
(
θ− θ0

)2
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with the I-divergence I
(
θ0, θ;u

)
≡ Ix1

(
θ0, θ

)
+Ix2

(
θ0, θ

)
, where in the binomial model

one has

Ix
(
θ0, θ

)
= n

p(x, θ0
)

ln
p
(
x, θ0

)
p(x, θ) +

{
1−p

(
x, θ0

)}
ln

1−p
(
x, θ0

)
1−p(x, θ)


 (4.36)

(see Appendix B.1). The numerical optimization indicates that the criterion φext
(
u,θ0

)
is maximized approximately at uext = π, and for this value is the maximum likelihood
estimator more stable and the probability of a false θ̂2 is negligible. As seen even in
Figure 4.2, the points (g (x1, θ) ,g (x2, θ))> for θ = 0 and θ = 1 are now as distant as
possible. The same holds for (µ(x1, θ) ,µ(x2, θ))>.

We could also include the tuning parameter K and consider the extended criterion
in the form minθ∈[0,1] I

(
θ0, θ;u

)[
1

(θ−θ0) +K
]2
. The optimal u would be between π and

11
6 π for K positive.

The dependence of Hu

(
θ0, θ

)
= I

(
θ0, θ;u

)
/
(
θ− θ0

)2
on θ for different values of u

is displayed in Figure 4.3. One sees that uloc = 11π
6 maximizes Hu

(
θ0, θ

)
for θ near the

nominal value θ0, i.e. uloc is optimal in the local sense. On the other hand, minimum
of Hu

(
θ0, θ

)
over θ is maximized for uext = π, i.e. uext is optimal in the global sense.

Finally, u= π/4 is optimal neither from the global nor from the local point of view.
We performed a simulation where we 10000 times repeated the experiment (4.34)–

(4.35) consisting of two measurements x1 = (0,u)> and x2 = (π/2,u)> for uloc = 11π
6

and uext = π, respectively. The true parameter value θ̄ was equal to 0. In the case
of uloc, the simulated probability of a false maximum likelihood estimate, i.e. the
probability that θ̂2 > 0.5, was approximately 0.1981, for uext the same probability
was approximately equal to 0.0021, which is significantly smaller. In Figure 4.4 are
displayed some likelihoods L(θ) = f (y1,x1, θ)f (y2,x2, θ) as functions of θ. One sees
that for uext is the likelihood usually maximized near θ̄ = 0, which is not true for
uloc. 4

In more difficult situations than in Example 4.23, one may use iterative Algo-
rithm 4.24, which was suggested in Pázman and Pronzato (2014). Algorithm 4.24
optimizes the extended criterion (4.21) reformulated in (4.32), for k = 1, i.e. we will
consider H1

(
x,θ0,θ

)
= 2Ix

(
θ0,θ

)[
1

ρ2(θ0;θ) +K
]
. The modification for k > 1 would

be straightforward. We remind that in this chapter we suppose that X is finite and
hence the design ξ is a vector from Rcard(X ).

Algorithm 4.24.

0. i Choose the starting design ξ(0) ∈ Rcard(X ), s.t. ξ(0) (x) ≥ 0 ∀x ∈ X and∑
x∈X ξ

(0) (x) = 1.
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Figure 4.2: Example 4.23: The canonical and expectation surface for uext = π (black color,
gray color corresponds to uloc) which maximizes the criterion φext

(
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)
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Figure 4.3: Example 4.23: Hu(θ0,θ) as a function of θ for different u.

ii Take ε greater than 0 but small.

iii Set Θ(0) = ∅.

iv Construct a finite set G(0) in Θ.

v Set i= 0.

1. Compute θ(i+1) = argminθ∈Θ
∑

x∈X H1
(
x,θ0,θ

)
ξ(i) (x) as follows:

i Compute θ̃(i+1) = argminθ∈G(i)
∑

x∈X H1
(
x,θ0,θ

)
ξ(i) (x).
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(b) uext = π

Figure 4.4: Some likelihoods based on the simulation of the experiment in Example 4.23.

ii Perform a local minimization over Θ initialized at θ̃(i+1) and denote by
θ(i+1) the solution.

2. Set G(i+1) = G(i)∪
{
θ(i+1)

}
.

3. Set Θ(i+1) = Θ(i)∪
{
θ(i+1)

}
.

4. Use an LP solver to find
(
t(i+1), ξ(i+1)

)
which maximizes t(i+1) under the con-

straints:

• t(i+1) > 0,

• ξ(i+1) (x)≥ 0 ∀ x ∈ X ,

• ∑x∈X ξ
(i+1) (x) = 1,

• ∑x∈X H1
(
x,θ0,θ

)
ξ(i+1) (x)≥ t(i+1) ∀θ ∈Θ(i+1).

5. Set ∆(i+1) = t(i+1)−φextρ

(
ξ(i+1),θ0

)
.

6. If ∆(i+1) < ε, take ξ(i+1) as an ε-optimal design and stop, else set i← i+ 1 and
continue from Step 1.

Notice that when the parametric space Θ is finite, then we can obtain the optimal
ξ? after first iteration as a solution of the LP problem formulated in Step 4 (the
inequalities in the LP problem then have to be satisfied for any θ ∈Θ, not Θ(i+1)).
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The stopping rule in Step 5 follows from following inequalities:

φextρ

(
ξ(i+1),θ0

)
≤max

ξ∈Ξ
φextρ

(
ξ,θ0

)
= max

ξ∈Ξ
inf
θ∈Θ

∑
x∈X

2Ix
(
θ0,θ

)
ξ(x)

 1
ρ2
(
θ0;θ

) +K

≤
≤max

ξ∈Ξ
inf

θ∈Θ(i+1)

∑
x∈X

2Ix
(
θ0,θ

)
ξ(x)

 1
ρ2
(
θ0;θ

) +K

= t(i+1).

We can compute the criterion value φextρ

(
ξ(i+1),θ0

)
in Step 5 of the algorithm

similarly as the optimization in Step 1, i.e.

i Compute θ̃(i+2) = argminθ∈G(i+1)
∑

x∈X H1
(
x,θ0,θ

)
ξ(i+1) (x).

ii Perform a local minimization over Θ initialized at θ̃(i+2) and denote by θ(i+2)

the solution.

iii φextρ

(
ξ(i+1),θ0

)
=∑

x∈X H1
(
x,θ0,θ(i+2)

)
ξ(i+1)(x).

If the algorithm continues to the next iteration, we can skip Step 1 and directly use
the result θ(i+2) of the above procedure.

The computations in the next example were performed in Matlab computing envi-
ronment and we used the linprog function with the default interior point algorithm
to solve the LP problems.

Example 4.25. In this example we would like to present a numerical computation of
the extended E-optimum design (see Eq. (4.27)), using Algorithm 4.24. The mean of
the random variable y observed at the design point x = (x1,x2)> was chosen according
to Pázman and Pronzato (2014), Example 2:

µ(x,θ) = np(x,θ) = n

6
{

1 + θ1x1 + θ3
1 (1−x1) + θ2x2 + θ2

2 (1−x2)
}
, θ = (θ1, θ2)> .

(4.37)
Here we again consider a binomial model with y distributed according to (4.33), with
n= 10 and p(x,θ) given by (4.37).

We maximized the extended E-optimality criterion (4.27) with the binomial I-
divergence (4.36) and the nominal parameter value θ0 = (1/8,1/8)> from the paramet-
ric space Θ = [−1,1]× [0,2]. The design space X = {0,0.1, . . . ,0.9,1}2 was finite.

The set G(0) corresponded to a random Latin hypercube design with 10000 points
renormalized to Θ. The starting design ξ(0) was taken as uniform measure on X .

For the accuracy ε= 10−10, the algorithm stopped after 20 iterations for K = 0 and
after 47 iterations for K = 5. The results are given in Table 4.2. 4
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φextE

(
ξ?,θ0

)
φextE

(
ξ?,θ0

)
K ξ? for K = 0 for K = 5

0

(0,0)> (0,1)> (1,1)>

0.345 0.029 0.626

 0.0215 0.0249

5

(0,0)> (1,0)> (0,1)> (1,1)>

0.247 0.072 0.197 0.484

 0.0165 0.1972

Table 4.2: Example 4.25: φextE -optimal designs for K = 0 and K = 5 computed by Algo-
rithm 4.24 and corresponding values of φextE , see (4.27), for K = 0 and K = 5.

4.8 Conclusions of new results in this chapter

In Sect. 4.2 we summarized some ways of designing experiments in generalized regres-
sion models taking into account the results of previous chapters of this thesis.

The rest of the chapter was devoted to the extended optimality criteria, the main
purpose of which is to avoid the possible instabilities appearing when estimating pa-
rameters in regression models.

While Pázman and Pronzato (2014), who introduced the extended optimality cri-
teria, considered the instabilities related to the least squares estimation in classical
nonlinear regression (1.5), we considered the maximum likelihood estimation in gener-
alized regression models. The potential instabilities were described in Sect. 4.3.

The first and most important outcome of this chapter is that in Sects. 4.3, 4.4, and
4.5 we formulated the extended criteria related to the maximum likelihood estimation.
We restricted ourselves to the generalized regression models based on exponential fami-
lies of distributions. The reason of this restriction is that in the exponential family is the
I-divergence (see Def. 4.9) markedly simplified (the integral is removed, see Eq. (4.11))
and can be approximated by the Fisher information matrix, see Lemma 4.12. Hence
the extended criteria defined by us are based on the I-divergence, which is related to
the information obtained in the experiment and, simultaneously, helps to identify the
instabilities in the model.

The second important outcome is that we formulated the extended version of the
criterion of MV -optimality (Sect. 4.4.1), A-optimality (Sect. 4.4.2), and L-optimality
(Sect. 4.4.3). This is a new result also for classical nonlinear regression, since Pázman
and Pronzato (2014) defined only the extensions of E-, c-, and G-optimality criteria.
We remark that the extended A- and L-optimality require the minimization over a
k-tuple of points θ1, . . . ,θk, k > 1. The relations of all considered extended criteria (E,
c, G, MV , A, L) to their classical versions were presented in Theorems 4.16, 4.17, and
4.18.
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Section 4.6 provides some properties of extended optimality criteria and Sect. 4.7
consists of one illustrative example and of one example, where the optimal design was
computed iteratively via the Algorithm suggested in Pázman and Pronzato (2014).
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Conclusion

The thesis is focused on designing experiments in nonlinear models. The usual aim of
such experiments is to obtain an accurate estimate of the model parameter. However,
the presence of this unknown parameter in the information matrix and in the criterion
function makes the optimization of the experiments in nonlinear models more compli-
cated comparing to the same task in linear regression models. On the other hand, the
nonlinear models, and especially generalized regression models, become very popular
in many scientific and financial areas.

In the thesis we considered two different approaches to experimental design. The
first (and more usual) approach uses the asymptotic properties of parameter estimators
and focuses on maximizing the corresponding information matrix (or Fisher informa-
tion matrix in the case of generalized regression models) and is applied in Chaps. 2, 3
and in Sect. 4.2.1.

Chapter 2 uses an LP method for calculating the local and average D-, A-,
E-, and Ek-optimal designs following from proper reformulations of these criteria by
methods of linear algebra. As the main contribution of this chapter we consider the
method for computing the criterion robust design of Harman (2004), which is a quite
difficult nondifferentiable problem that cannot be handled by many standard algo-
rithms.

In Chap. 3 we follow the considerations of Pázman and Pronzato (2007) that the
local, AVE, and maximin criteria do not always satisfactory reflect the whole parametric
space. They suggested to use the quantile criterion as an alternative, but they admitted
that its concavity is not ensured. From this point of view, the application of the
CVaR criterion—used in Valenzuela et al. (2015) for the first time—seems to be more
attractive. We prove that the CVaR criterion is a compromise between the AVE
and maximin criterion, and after deriving the subgradient we apply the cutting plane
method to obtain CVaR optimal designs. We formulate the equivalence theorem and
some other relevant results based on the risk theory. We think that also the examples
in this chapter are interesting, especially the last one, where we are able to compare
AVE, maximin, CVaR, and quantile optimal designs. The question of approaching
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quantile optimal design by using CVaR criterion remains still open.
The asymptotic approach to optimal experimental design appears also in Sect. 4.2.1,

where the application of results of Chaps. 2 and 3 to generalized regression models is
indicated.

The remainder of Chap. 4 is based on the second (different) approach that pre-
vents unstable maximum likelihood estimates in generalized regression models. Hence,
instead of maximizing the information matrix, here we maximize the suitably stan-
dardized I-divergence and so we extend the results of Pázman and Pronzato (2014).
In particular, Pázman and Pronzato (2014) pointed out the problem of stability and
uniqueness of the estimator in classical nonlinear model and formulated the criteria
of extended E-, c-, and G-optimality. Here we reformulate those criteria for purposes
of maximum likelihood estimation in generalized regression models and, moreover, we
define the extended criteria of MV -, A- and L-optimality that can also be applied in
classical nonlinear regression. We prove that the extended optimality criteria coincide
with the classical optimality criteria if the model is linear with normally distributed
random errors or in the case of a suitably restricted parametric space. The danger
of possibly false maximum likelihood estimate is demonstrated on the illustrative ex-
ample and the numerical example applies the algorithm for maximizing the extended
optimality criteria as suggested in Pázman and Pronzato (2014).
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Resumé

Úvod

Dizertačná práca sa zaoberá optimalizovaním experimentov v nelineárnych regresných
modeloch, najmä novými kritériami optimality vhodnými pre nelineárne modely.

Experiment nazveme optimálnym pokiaľ prináša experimentátorovi najviac infor-
mácie o neznámom parametri. Štandardne sa maximalizuje tzv. informačná matica,
ktorá síce „meria“ veľkosť tejto informácie, ale len lokálne pretože závisí práve od
hodnoty neznámeho parametra. V práci sme sa venovali aj rozšíreniu alternatívneho
prístupu uvedeného v článku Pázman a Pronzato (2014), kde informačná matica ne-
zohráva tak kľúčovú úlohu.

Navrhovanie experimentov v nelineárnom regresnom modeli

Nech meranie y(x) spĺňa nelineárny regresný model, teda y(x) = η(x,θ) + ε, kde θ ∈
Θ⊆Rm je neznámy parameter a η :X ×Θ 7→R je spojité diferencovateľné zobrazenie na
kompaktnom parametrickom priestore Θ. Predpokladajme, že X je konečná množina
bodov x, v ktorých môžeme vykonať merania a že všetky merania v experimente sú
vykonávané nezávisle. Návrh experimentu ξ je potom ľubovoľné pravdepodobnostné
rozdelenie na X a Ξ je množina všetkých takých návrhov ξ. O náhodných chybách ε
predpokladáme, že majú nulovú strednú hodnotu a konštantnú (neznámu) varianciu.
Pre θ0 ∈ int(Θ) a návrh ξ ∈ Ξ má informačná matica tvar

M
(
ξ,θ0

)
=
∑

x∈X
M
(
x,θ0

)
ξ(x),

kde elementárna informačná matica je

M
(
x,θ0

)
= ∂η (x,θ)

∂θ

∣∣∣∣∣
θ=θ0

∂η (x,θ)
∂θ>

∣∣∣∣∣
θ=θ0

.

Cieľom štandardného prístupu k navrhovaniu experimentov je maximalizovať lokálne
kritérium optimality, teda zvolenú reálnu funkciu φ

(
ξ,θ0

)
, ktorá meria veľkosť infor-

mačnej matice M
(
ξ,θ0

)
(viď napr. monografie Pronzato a Pázman (2013), Fedorov a
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Leonov (2014)). V súčasnosti poznáme širokú škálu rôznych kritérií, medzi ktoré pa-
tria kritériá D-, A-, E-, c- a G-optimality (viď napr. Kap. 5.1.2 v Pronzato a Pázman
(2013)).

V nelineárnom modeli sa nevyhneme závislosti kriteriálnej funkcie na parametri
θ. Pri navrhovaní experimentu teda buď uvažujeme nominálnu hodnotu parametra θ0

nachádzajúcu sa v blízkosti skutočnej hodnoty (tzv. lokálne kritérium), alebo maxi-
malizujeme kritérium φ(ξ,θ) pri najhoršej možnej hodnote parametra (tzv. maximinné
kritérium) či uvažujeme nejaké apriórne rozdelenie π na parametrickom priestore Θ a
následne maximalizujeme strednú hodnotu φ(ξ,θ) vzhľadom na toto apriórne rozdele-
nie (tzv. priemerovacie kritérium).

Navrhovanie experimentov v zovšeobecnenom regresnom mod-
eli založenom na exponenciálnej triede rozdelení

V dizertačnej práci sme sa zamerali na zovšeobecnené regresné modely založené na
exponenciálnej triede hustôt, teda pri danom x ∈ X a neznámom parametri θ ∈ Θ
pozorujeme y ∈ Rl s hustotou

f(y,x,θ) = exp
{
−ψ(y) + t>(y)g(x,θ)−κ [g(x,θ)]

}
, (5.1)

kde ψ a κ sú známe funkcie, t(y) ∈ Rr je postačujúca štatistika pre parameter θ a
g(x,θ) zodpovedá tzv. kanonickému parametru. Modely založené na (5.1) zahŕňajú
aj klasickú nelineárnu regresiu s normálne rozdelenými chybami či logistickú regresiu.
Odhad parametra θ sa počíta metódou maximálnej vierohodnosti. Modely popísané
hustotou (5.1) boli uvažované napr. v Pázman (1993), ale v práci sme sa opierali o
vlastnosti exponenciálnych tried rozdelení rozoberaných v Brown (1986); Barndorff-
Nielsen (1978); Efron (1978). Z uvedenej literatúry vyplýva, že elementárna Fisherova
informačná matica pre meranie z (5.1) má tvar

M (x,θ) = ∂g> (x,θ)
∂θ

Σ(x,θ) ∂g (x,θ)
∂θ>

,

kde Σ(x,θ) je kovariančná matica postačujúcej štatistiky t(y) pri danom x a θ.
Klasický prístup navrhovania experimentov v zovšeobecnených regresných mode-

loch (nie nutne založených na exponenciálnych triedach rozdelení) bol popísaný napr.
v Atkinson et al. (2014) a opiera sa o maximalizáciu vhodných funkcií matice∑

x∈XM(x,θ)ξ(x) vzhľadom na ξ. Podobne ako v obyčajnej nelineárnej regresii je
možné použiť lokálne, maximinné a priemerovacie kritériá na odstránenie nežiaducej
závislosti od θ.
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V práci sme však za účelom navrhovania experimentov použili aj I-divergenciu
(Kullback-Leiblerovu I divergenciu, viď Kullback a Leibler (1951)), ktorá meria vzdia-
lenosť medzi dvomi rozdeleniami pravdepodobnosti a ukázali sme jej istý súvis s Fi-
sherovou iformačnou maticou. Pre naše potreby bolo nutné merať vzdialenosť dvoch
hustôt (5.1) pri hodnote parametra θ0 a θ. V modeloch založených na exponenciálnych
triedach má táto I-divergencia tvar

Ix
(
θ0,θ

)
= µ>

(
x,θ0

)[
g
(
x,θ0

)
−g (x,θ)

]
+κ [g (x,θ)]−κ

[
g
(
x,θ0

)]
,

kde µ
(
x,θ0

)
označuje strednú hodnotu t(y) pri x a θ0.

Ciele dizertačnej práce

Dizertačnú prácu a jej ciele možno rozdeliť do troch viac-menej nezávislých celkov:

1. Navrhovanie experimentov pomocou lineárneho programovania:

• prepísať kritériá D-, A- a Ek-optimality do takej formy, ktorá umožňuje
využitie lineárneho programovania pri optimalizácii experimentu a

• využiť tieto nové formulácie kritérií na riešenie zložitejších problémov ako je
hľadanie tzv. robustného návrhu vzhľadom na triedu ortogonálne invariant-
ných kritérií alebo optimalizovanie experimentu pri doplnkových lineárnych
ohraničeniach.

2. Navrhovanie experimentov pomocou kritérií inšpirovaných teóriou rizika:

• definovať kritérium založené na podmienenej hodnote v riziku ako konkávnu
funkciu návrhu ξ a uvažovať aj diskrétne apriórne rozdelenia (vychádzajúc z
Valenzuela et al. (2015), kde bolo toto kritérium použité za účelom navrho-
vania experimentu po prvýkrát),

• analyzovať a interpretovať toto kritérium,

• študovať vzťah tohto kritéria k priemerovaciemu, maximinnému, lokálnemu
a kvantilovému kritériu,

• odvodiť smerovú deriváciu a dokázať vetu o ekvivalencii pre toto kritérium
a

• ukázať možnosť výpočtu optimálnych návrhov pomocou lineárneho pro-
gramovania.

3. Formulácia rozšírených kritériií optimality za účelom obmedzenia mylných
odhadov v zovšeobecnených regresných modeloch:
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• predefinovať rozšírené kritériá E-, c- a G-optimality z Pázman a Pronzato
(2014) tak, aby boli aplikovateľné aj v zovšeobecnených regresných modeloch
založených na exponenciálnych triedach rozdelení,

• navrhnúť rozšírené verzie aj pre kritériá MV -, L- a A-optimality,

• dokázať, že tieto kritériá sú naozaj rozšírením klasických kritérií optimality
a

• aplikovať lineárne programovanie a kritérium založené na podmienenej hod-
note v riziku aj v zovšeobecnených regresných modeloch.

Výsledky práce

Navrhovanie experimentov pomocou lineárneho programovania

V Kap. 9.5.3 monografie Pronzato a Pázman (2013) bolo ukázané akým spôsobom
možno použiť metódy lineárneho programovania na optimalizáciu experimentov pomo-
cou kritérií E-, c- a G-optimality.

V článku Burclová a Pázman (2016a), na ktorom je založená táto časť, sa poda-
rilo pomocou maticovej algebry odvodiť ekvivalentné formulácie ďalších konkávnych
a pozitívne homogénnych kritérií optimality vhodných pre aplikáciu lineárneho pro-
gramovania, menovite:

kritérium D-optimality

∀ξ ∈ Ξ+ φD(ξ,θ0)≡
{

det
[
M(ξ,θ0)

]}1/m

= min
ζ∈Ξ+

∑
x∈X

det1/m
[
M
(
ζ,θ0

)]
m

f>
(
x,θ0

)
M−1

(
ζ,θ0

)
f
(
x,θ0

)
ξ(x),

kde Ξ+ =
{
ξ :M

(
ξ,θ0

)
je regulárna

}
a f

(
x,θ0

)
= ∂η(x,θ)

∂θ

∣∣∣
θ=θ0 ,

kritérium A-optimality

∀ξ ∈ Ξ+ φA(ξ,θ0)≡ 1

tr
{[
M
(
ξ,θ0

)]−1}

= min
ζ∈Ξ+

∑
x∈X

∥∥∥M−1
(
ζ,θ0

)
f
(
x,θ0

)∥∥∥2
`(2){

tr
[
M−1

(
ζ,θ0

)]}2 ξ(x),

kde ‖·‖`(2) označuje euklidovskú normu,
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kritérium Ek-optimality

∀ξ ∈ Ξ φEk(ξ,θ0)≡
k∑
i=1

λi
[
M
(
ξ,θ0

)]
= min

ζ∈Ξ

∑
x∈X

∥∥∥P (k)
(
ζ,θ0

)
f
(
x,θ0

)∥∥∥2
`(2)

ξ(x),

kde λ1
[
M
(
ξ,θ0

)]
≤ . . . ≤ λm

[
M
(
ξ,θ0

)]
sú usporiadané vlastné čísla matice

M
(
ξ,θ0

)
, u1

[
M
(
ζ,θ0

)]
, . . . ,um

[
M
(
ζ,θ0

)]
sú zodpovedajúce ortonormálne

vlastné vektory a P (k)
(
ζ,θ0

)
=∑k

i=1 ui
[
M
(
ζ,θ0

)]
u>i

[
M
(
ζ,θ0

)]
je ortogonálny

projektor.

Z uvedeného vyplýva, že tieto kritériá optimality sa dajú vyjadriť pomocou vhodne
zvolenej funkcie H

(
ζ,x,θ0

)
a množiny Ξ∗ ako

φ
(
ξ,θ0

)
= min
ζ∈Ξ∗

∑
x∈X

H
(
ζ,x,θ0

)
ξ(x).

Optimálny návrh experimentu ξ? maximalizujúci kritérium φ
(
ξ,θ0

)
je potom riešením

problému lineárneho programovania s nekonečne veľa lineárnymi ohraničeniami:

max
(
0>,1

)ξ
t


tak, že

∑
x∈X

H
(
ζ,x,θ0

)
ξ (x)≥ t pre každé ζ ∈ Ξ∗,

ξ (x)≥ 0 pre každé x ∈ X , a
∑

x∈X
ξ (x) = 1.

(5.2)

Tento problém sme riešili pomocou iteračného algoritmu navrhnutého v Shimizu a
Aiyoshi (1980). Neskôr sa ukázalo, že k rovnakému algoritmu a prepisu kritérií môžene
dospieť použitím subgradientov (viď napr. Kap. 3.1.5–3.1.6 z Nesterov (2004)) a
metódy cutting planes z článku Kelley (1960), viď. Kap. 9.5.3 z Pronzato a Pázman
(2013). Použitý algoritmus poskytuje pravidlo zastavenia, ktoré sa líši od bežných
pravidiel založených na vete o ekvivalencii.

Ďalej sme sa v práci venovali riešeniu komplexnejších problémov navrhovania ex-
perimentov, kde môžu byť uplatnené práve metódy lineárneho programovania. Jedným
z nich je problém hľadania návrhu experimentu robustného vzhľadom na triedu tzv.
ortogonálne invariantných kritérií. Harman (2004) dokázal, že takýto návrh je riešením
nasledovnej optimalizačnej úlohy

ξ?ef = argmax
ξ∈Ξ

min
1≤k≤m

 φEk

(
ξ,θ0

)
maxν∈ΞφEk

(
ν,θ0

)
 . (5.3)

Úlohu (5.3) je možné formulovať ako úlohu lineárneho programovania s nekonečne veľa
ohraničeniami a opäť aplikovať algoritmus z Shimizu and Aiyoshi (1980). Hlavnou
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myšlienkou je, že najprv vypočítame hodnotu menovateľa vo výraze v (5.3) pre každé
k (napríklad metódou lineárneho programovania) a označíme ju Ek

(
opt,θ0

)
. Problém

lineárneho programovania, ktorý rieši (5.3) potom pozostáva aj z týchto ohraničení:

∑
x∈X

HEk

(
ζ,x,θ0

)
Ek
(
opt,θ0

) ξ (x)≥ t pre každé ζ ∈ Ξ a pre každé k ∈ {1, . . . ,m} ,

kde HEk označuje funkciu H zodpovedajúcu kritériu φEk . Podotýkame, že v článku
Filová et al. (2012) bol problém (5.3) riešený metódami semidefinitného programovania.

Všimnime si, že medzi lineárne ohraničenia v (5.2) ľahko pridáme ďalšie — napríklad
lineárne ohraničenie na cenu experimentu. Dodaním ďalších lineárnych ohraničení, ako
sme ukázali v Burclová a Pázman (2016a), môžeme tiež optimalizovať jedno kritérium
pri súčasnom dolnom ohraničení na hodnotu iného kritéria.

Ďalej sme dokázali vetu, ktorá rozširuje naše úvahy z lokálnych na priemerovacie
kritériá v nelineárnych regresných modeloch.

Veta Nech π je apriórne rozdelenie na parametrickom priestore Θ. Označme ΞΘ =
{ξ :M (ξ,θ) je regulárna ∀θ ∈Θ}. Môžeme písať∫

Θ
φ(ξ,θ)dπ (θ) = min

ζ∈Ξ∗
∑

x∈X
HAVE (ζ,x)ξ (x) ,

pre každé ξ ∈Ξ∗, kde HAVE (ζ,x) =
∫
ΘH (ζ,x,θ)dπ (θ) a Ξ∗= ΞΘ pre D- a A-optimalitu

a Ξ∗ = Ξ pre kritériá Ek-optimality.

V dizertačnej práci sme sa venovali aj možnosti ako tieto výsledky rozšíriť pre
prípad navrhovania experimentov v zovšeobecnených regresných modeloch založených
na exponenciálnej triede rozdelení. Hlavný rozdiel pri odvodzovaní preformulovaných
kritérií D-, A- a Ek-optimality spočíva v použití matice F (x,θ) = ∂g>(x,θ)

∂θ Σ1/2(x,θ)
namiesto vektora f(x,θ).

Navrhovanie experimentov pomocou kritérií inšpirovaných
teóriou rizika

Pázman a Pronzato (2007) poukazujú vo svojej práci na niektoré nedostatky
priemerovacích a maximinných kritérií, ktoré sú bežne používané na odstránenie závis-
losti kritéria optimality od skutočnej (neznámej) hodnoty parametra. Ako alternatívu
navrhujú použiť kvantilové kritérium pri pevne zvolenej hladine α ∈ [0,1]

ΦQ
α (ξ) = max{t ∈ R : Pr [φ(ξ,θ)≥ t]≥ 1−α} .

Spomínané nedostatky sa síce kvantilovým kritériom odstránili, ale zároveň autori
pripúšťajú výraznú nevýhodu kvantilového kritéria, ktorou je jeho nekonkávnosť, resp.
nekonvexnosť, čo so sebou prináša isté obtiažnosti pri výpočte optimálnych návrhov.
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Na druhej strane Valenzuela et al. (2015) poprvýkrát navrhli použitie podmienenej
hodnoty v riziku (CVaR, z ang. Conditional Value at Risk) pri navrhovaní experi-
mentov a inšpirovali sa pri tom prácami z oblasti teórie rizika. Na základe prác Pflug
(2000), Rockafellar a Uryasev (2000), Rockafellar a Uryasev (2002) sa nám podarilo
previesť hlbšiu analýzu kritéria založeného na CVaR. Hlavnou výhodou tohto kritéria,
ktorá bola zmienená už v článku Valenzuela et al. (2015), je jeho konkávnosť (aby
sme boli úplne presní, práce Pflug (2000), Rockafellar a Uryasev (2000), Rockafellar a
Uryasev (2002), Valenzuela et al. (2015) uvažujú konvexnú verziu CVaR, čo je typické
pre teóriu rizika) a súčasne, že má veľmi podobné vlastnosti ako kvantilové kritérium.

Nami definované CVaR kritérium je pre α ∈ (0,1] dané nasledovným predpisom

Φα (ξ) = max
c∈R

{
c+ 1

α
E [min{0,φ(ξ,θ)− c}]

}
. (5.4)

Kritérium je konkávne v ξ, ak je aj pôvodné kritérium φ(ξ,θ) konkávne v ξ a jeho
formulácia v (5.4) sa najviac podobá na definíciu CVaR v článku Pflug (2000), ale
vychádza zo vzťahu prvotne odvodeného v Rockafellar a Uryasev (2000). Na základe
článku Rockafellar a Uryasev (2002) vieme, že jedným z bodov, ktoré pre dané ξ

riešia maximalizačný problém v (5.4) je bod c = ΦQ
α (ξ). Vychádzajúc z Rockafellar a

Uryasev (2002), kde je dokázané ekvivalentné tvrdenie, sme ukázali, že CVaR kritérium
sa nachádza vždy medzi dvomi podmienenými strednými hodnotami, konkrétne

E[φ(ξ,θ) | φ(ξ,θ)< ΦQ
α (ξ)]≤ Φα(ξ)≤ E[φ(ξ,θ) | φ(ξ,θ)≤ ΦQ

α (ξ)], (5.5)

čo nám pomohlo interpretovať CVaR kritérium (5.4). Uvedené výsledky platia pre
ľubovoľné apriórne rozdelenie π na parametrickom priestore Θ, a teda pre ľubovoľnú
náhodnú premennú φ(ξ,θ) (diskrétnu alebo spojitú). Ak je φ(ξ,θ) spojitá náhodná
premenná, tak (5.5) platí so znamienkom rovnosti a navyše

Φα (ξ) = 1
α

∫{
θ:φ(ξ,θ)≤ΦQα (ξ)

}φ(ξ,θ)dπ (θ) ,

čo je výraz analogický k definícii CVaR kritéria v článku Valenzuela et al. (2015).
V ďalšej časti sme sa viac zaoberali CVaR kritériom z pohľadu navrhovania ex-

perimentov. Podarilo sa nám ukázať, že pre α = 1 sa CVaR kritérium zhoduje s
priemerovacím kritériom a za určitých podmienok konverguje CVaR kritérium pre
α→ 0 k maximinnému kritériu. Kým priemerovacie kritérium môže viesť k veľmi zlým
hodnotám pre niektoré body parametrického priestoru, maximinné kritérium je zas
príliš orientované na okraje parametrického priestoru (viď Pázman a Pronzato (2007)).
Práve vhodnou voľbou parametra α by sme mohli dosiahnuť primeraný kompromis
medzi týmito dvomi kritériami, ktorý bude dostatočne robustný a súčasne nebude
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zameraný len na okrajové body. Hodnota α = 0.5 súvisí s mediánom a vedie k podo-
bným výsledkom ako priemerovacie kritérium, preto zrejme vhodná voľba parametra
α bude niekde z intervalu (0,0.5). Musíme podotknúť, že na rozdiel od kvantilového
kritéria, kritérium CVaR nie je invariantné vzhľadom na nelineárne škálovanie pôvod-
ného kritéria φ(ξ,θ).

Keďže CVaR kritérium je konkávne, má zmysel preňho sformulovať vetu o ekvi-
valencii, ktorá úzko súvisí so smerovou deriváciou. Podarilo sa nám ukázať, že ak je
kritérium φ(ξ,θ) konkávna a spojitá funkcia v ξ pre každé θ ∈Θ, tak návrh ξ? je CVaR
optimálny práve vtedy ak

sup
ν∈Ξ,b∈R

b− c+ 1
α
E




0 ak φ(ξ?,θ)> c

min{0,Fφ(·,θ)(ξ?,ν)− (b− c)} ak φ(ξ?,θ) = c

Fφ(·,θ)(ξ?,ν)− (b− c) ak φ(ξ?,θ)< c



= 0,

pričom Fφ(·,θ)(ξ,ν) označuje smerovú deriváciu kritéria φ(·,θ) v bode ξ a v smere ν.
Výrazné zjednodušenie nastane ak je φ(ξ,θ) spojitá náhodná premenná a kritérium
φ̄[M(ξ,θ)] = φ(ξ,θ) je diferencovateľné na množine informačných matíc. Označme
G(ξ,θ) ∈ Rm×m gradient φ̄ vzhľadom na M ∈ Rm×m v bode M(ξ,θ) a k(ξ,θ) =
tr [M(ξ,θ)G(ξ,θ)]. Potom návrh ξ? je CVaR-optimálny vtedy a len vtedy ak

0 = max
x∈X
b∈R

b−ΦQ
α (ξ?)+

+ 1
α
E




0 ak φ(ξ?,θ)> ΦQ
α (ξ?)

tr [M(x,θ)G(ξ?,θ)]−k(ξ?,θ)− (b−ΦQ
α (ξ?)) ak φ(ξ?,θ)< ΦQ

α (ξ?)


 .

Ďalej sme sa v práci venovali metodike výpočtu optimálnych návrhov. Podobne ako
v prácach Pflug (2000), Rockafellar a Uryasev (2000), Rockafellar a Uryasev (2002),
Valenzuela et al. (2015) sme riešili úlohu nájdenia takého návrhu ξ? a takého c?, že
(ξ?, c?) = argmaxξ∈Ξ,c∈Rwα(ξ,c), kde wα(ξ,c) = c+ 1

αE [min{0,φ(ξ,θ)− c}]. Na rieše-
nie tejto úlohy sme sa rozhodli použiť Kelleyho metódu cutting planes z článku Kelley
(1960). Najprv sme však museli vyjadriť subgradient funkcie wα v bode (ξ̃, c̃), pričom
sme dostali

∇wα
(
ξ̃, c̃
)

=
0

1

+ 1
α
E





0

0

 ak φ
(
ξ̃,θ

)
> c̃,

∇ξφ
(
ξ̃,θ

)
−1

 inak


,

kde ∇ξφ
(
ξ̃,θ

)
je subgradient kritéria φ(ξ,θ) vzhľadom na ξ v bode ξ̃. Pokiaľ bolo

zložité vyčísliť strednú hodnotu v subgradiente presne, použili sme jej aproximáciu na
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základe Monte Carlo simulácií, pričom sme generovali nezávislé realizácie z apriórneho
rozdelenia π (podobne postupovali aj Valenzuela et al. (2015) pri aproximácii strednej
hodnoty v (5.4)) . Algoritmus, ktorý opäť riešil problém lineárneho programovania
s nekonečne veľa ohraničeniami, sme potom otestovali na príkladoch, kde sme porov-
nali optimálne návrhy vzhľadom na priemerovacie, maximinné, kvantilové a CVaR
krietérium.

Formulácia rozšírených kritériií optimality za účelom obmedzenia
mylných odhadov v zovšeobecnených regresných modeloch

V článku Pázman a Pronzato (2014) a v Kap. 7 monografie Pronzato a Pázman (2013)
sa autori venujú problému stability a jednoznačnosti odhadu metódou najmenších
štvorcov v klasickej nelineárnej regresii. Tomuto problému môžeme predchádzať ešte
na úrovni návrhu experimentu použitím ich rozšírených kritérií optimality, ktoré na
jednej strane maximalizujú informáciu obsiahnutú v experimente, no na strane druhej
minimalizujú možnosť mylného odhadu parametrov. Menovite autori zaviedli rozšírené
kritériá E-, c- a G-optimality, ktoré sa pri klasickom lineárnom regresnom modeli a
v modeli s obmedzeným parametrickým priestorom správajú tak isto ako štandardné
kritériá E-, c- a G-optimality.

V práci sme rozšírili výsledky článku Pázman a Pronzato (2014) a Kap. 7 z Pron-
zato a Pázman (2013) pre účely stabilizovania odhadov metódou maximálnej viero-
hodnosti v zovšeobecnených regresných modeloch založených na exponenciálnej triede
rozdelení. Kľúčovú úlohu tu zohráva I-divergencia, ktorá nesie informáciu o variabilite
odhadu metódou maximálnej vierohodnosti ale súčasne odráža aj tzv. identifiko-
vateľnosť parametra, čo je pojem často spomínaný v Kap. 7 z Pronzato a Pázman
(2013). Niektoré výsledky sme publikovali v článku Burclová a Pázman (2016b).

Vo všeobecnosti sme v práci definovali (konkávne a pozitívne homogénne) rozšírené
kritériá optimality pre nominálnu hodnotu parametra θ0 nasledovne

φextρ

(
ξ,θ0

)
≡ inf

(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1
ρ2
(
θ0;θ1, . . . ,θk

) +K

 , (5.6)

kde k ∈N je dané číslo,K ≥ 0 je ladiaca konštanta a ρ :Rm×(k+1)→R,
(
θ0,θ1, . . . ,θk

)
7→

ρ
(
θ0;θ1, . . . ,θk

)
je vzdialenosť medzi k-ticou bodov θ1, . . . ,θk a nominálnou hodnotou

θ0 na parametrickom priestore Θ. Práve voľba vzdialenosti ρ, s čím súvisí aj voľba k,
určuje, o rozšírenie akého kritéria sa jedná.

V práci sme sa intenzívnejšie venovali aj kritériám, ktoré sme nazvali pseudonormné.
Pseudonorma |||·|||P je zobrazenie, ktoré spĺňa všetky vlastnosti normy ‖·‖ okrem nasle-
dovnej: ‖A‖= 0⇔ A= 0. Často sme pritom pracovali s normou resp. pseudonormou
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definovanou na priestore matíc Rm×k. Klasická (nerozšírená) verzia pseudonormných
kritérií je

φ|||·|||P (ξ,θ) = inf
A∈Rm×k:|||A|||P=1

tr
[
A>M (ξ,θ)A

]
. (5.7)

Dette et al. (1995) sa venujú konvexnej verzii týchto kritérií s normou a nazývajú
ich minimaxné kritériá (my sme použili názov pseudonormné kritériá na odlíšenie od
maximinných kritérií, ktoré tu značia niečo iné). Článok Dette et al. (1995) okrem
toho obsahuje dôležité tvrdenie o úlohe duálnej normy (viď napr. Bhatia (1997) pre
definíciu duálnej normy) pri prechode medzi konvexnými a konkávnymi kritériami a
ďalší relevantný výsledok sa týka faktu, že trieda Lp kritérií pre p≥ 1 patrí do triedy
(5.7) a dostaneme ju použitím Schattenovej normy ‖·‖S(q) (viď napr. Bhatia (1997)
pre definíciu Schattenovej normy) pri k = m a vhodne zvolenom q. Na základe Dette
et al. (1995) sme teda mohli vyjadriť A-optimalitu a kritérium MV -optimality (viď
napr. López-Fidalgo et al. (1998)) ako prvky triedy (5.7). Okrem toho sú prvkami
triedy (5.7) aj ďalšie kritériá, o ktorých je to však dobre známe (viď napr. Kap. 5.1.2
z Pronzato a Pázman (2013)). V nasledujúcej tabuľke sme zhrnuli niektoré kritéria
patriace do pseudonormnej triedy (5.7).

kritérium k pseudonorma

E 1 ‖u‖`(2) =
√

u>u
MV 1 ‖u‖`(∞) = maxi=1,...,m |ui|

c 1 |||u|||Pc =
∣∣∣u>c

∣∣∣
G 1 |||u|||PG = maxx∈X

∣∣∣u>f(x)
∣∣∣

A m ‖A‖S(1) = tr[(A>A)1/2]
L m> k > 1 |||A|||PL =

∣∣∣tr(A>L)
∣∣∣

Niektorí známi predstavitelia pseudonormnej triedy. Klasické definície jednotlivých kritérií
možno nájsť napríklad v Kap. 5.1.2 z Pronzato a Pázman (2013).

Keď vzdialenosť ρ(·) z (5.6) definujeme pomocou pseudonormy, dostaneme rozšírené
pseudonormné kritéria

φext|||·|||P

(
ξ,θ0

)
= inf

(θ1,...,θk)∈Θk

∑
x∈X

k∑
i=1

2Ix
(
θ0,θi

)
ξ (x)

 1∣∣∣∣∣∣∣∣∣(θ0−θ1, . . . ,θ0−θk
)∣∣∣∣∣∣∣∣∣2

P

+K

 .
(5.8)

Aplikovaním konkrétnych pseudonoriem z tabuľky vyššie dostávame rozšírenia známych
kritérií E-, c- a G-optimality, a tiež MV -, A- a L-optimality, ktoré v prvotnom článku
Pázman a Pronzato (2014) neboli uvažované.

To, že kritériá v (5.8) sú naozaj rozšírením kritérií (5.7), vyplýva z nasledovných
vlastností, ktoré boli pri splnení určitých podmienok v práci dokázané:
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• v prípade klasického lineárneho regresného modelu s normálne rozdelenými chy-
bami sa kritériá (5.8) zhodujú s tými v (5.7),

• ak parametrický priestor Θ je m-rozmerná guľa s polomerom r, tak kritériá v
(5.8) konvergujú pre r→ 0 ku kritériám (5.7),

• ak model neobsahuje žiadne prekrytia v θ0 pri danom návrhu ξ (teda∑
x∈X Ix

(
θ0,θ

)
ξ(x) konverguje k nule len pre θ→ θ0), tak kritériá v (5.8) kon-

vergujú pre K→∞ ku kritériám (5.7).

V dizertačnej práci sme rozobrali aj alternatívne všeobecnejšie definície rozšírených
kritérií c- a G-optimality, ktoré sme rozpracovali v článku Burclová a Pázman (2016b)
vychádzajúc z Pázman a Pronzato (2014).
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Appendix

A Reformulation of L-optimality criterion

Theorem A1. Let L 6= 0 be a matrix from Rm×k and let M ∈Rm×m be a symmetric,
positive semidefinite matrix. Then

inf
Z∈Rm×k:|tr(L>Z)|=1

tr
(
Z>MZ

)
=


1

tr(L>M−L) if C (L)⊆ C (M)

0 otherwise,

where M− denotes an arbitrary generalized inverse of M . Moreover, the infimum is
always attained on

{
Z ∈ Rm×k :

∣∣∣tr(L>Z)∣∣∣= 1
}
.

Proof. The theorem is an extension of known property of c-optimality criterion, see e.g.
Lemma 5.6 from Pronzato and Pázman (2013). In the proof we postponed similarly as
Pronzato and Pázman (2013).

We start the proof with the case C (L) ⊆ C (M), then tr
(
L>M−L

)
= 0 if and

only if L = 0. Indeed, there is a matrix F such that L = MF (see Harville, 2008,
Lemma 4.2.2) and hence tr

(
L>M−L

)
= 0⇔ tr

(
F>MM−MF

)
= 0⇔ tr

(
F>MF

)
=

0 ⇔
∥∥∥M1/2F

∥∥∥2
F

= 0 ⇔ M1/2F = 0 ⇒ L = 0 and straightforwardly L = 0 implies
tr
(
L>M−L

)
= 0. Moreover, one sees that the expression L>M−L is invariant to

the choice of generalized inverse (see also Harville, 2008, Theorem 9.4.1).
We set A> = L>M+M1/2, B = M1/2Z, where M+ is Moore-Penrose generalized

inverse of M and Z ∈Rm×k. According to Theorem 20.5.3(2) in Harville (2008) M+ is
symmetric matrix, and moreover, from Lemma 9.3.5 in Harville (2008), one has L> =
L>M+M . The Cauchy-Schwarz inequality (Theorem 1.1) for matrices A and B gives
tr2
(
L>M+MZ

)
= tr2

(
L>Z

)
≤ tr

(
L>M+L

)
tr
(
Z>MZ

)
for any matrix Z ∈ Rm×k,

which gives

inf
Z∈Rm×k:tr(L>Z)6=0

tr
(
Z>MZ

)
tr2
(
L>Z

) ≥ 1
tr
(
L>M+L

) = 1
tr
(
L>M−L

) , (A.1)

since the last expression does not depend on the choice of generalized inverse. Now set
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Z∗ =M+L. It follows that tr
(
L>Z∗

)
= tr

(
L>M+L

)
6= 0. We obtain

tr
(
Z∗>MZ∗

)
tr2
(
L>Z∗

) =
tr
(
L>M+MM+L

)
tr2
(
L>M+L

) = 1
tr
(
L>M+L

) = 1
tr
(
L>M−L

) . (A.2)

It follows from (A.1) and (A.2) that

inf
Z∈Rm×k:tr(L>Z)6=0

tr
(
Z>MZ

)
tr2
(
L>Z

) = inf
Z∈Rm×k:|tr(L>Z)|=1

tr
(
Z>MZ

)
= 1

tr
(
L>M−L

) .
Now suppose that C (L) * C (M). Then, according to Lemma 4.2.1 and The-

orem 12.1.3 in Harville (2008), there are two matrices L1 6= 0 and L2 such that
L = L1 +L2, C (L2) ⊆ C (M) and tr

(
L>1 G

)
= 0 for any matrix G ∈ Rm×k such that

C (G)⊆ C (M). One sees that tr
(
L>L1

)
= tr

(
L>1 L1 +L>2 L1

)
= tr

(
L>1 L1

)
= ‖L1‖2F > 0

since L1 6= 0. We set Z∗∗ = L1
tr(L>L1) . Then tr

(
L>Z∗∗

)
= 1 and

0≤ inf
Z∈Rm×k:|tr(L>Z)|=1

tr
(
Z>MZ

)
≤
(
Z∗∗>MZ∗∗

)
=

tr
(
L>1 ML1

)
tr2
(
L>L1

) = 0.
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B Some examples of distributions from the expo-
nential family

Here we provide an overview of some well known distributions from the exponential
family and we derive the corresponding Fisher information matrices and I-divergences.
Where possible, we check our results with Atkinson et al. (2014) (Fisher information
matrices in their Tables 2 and 4, and in Sect. 4.3) and Vajda and van der Meulen (1998)
(I-divergences). Here we will always use the notation ϑ for the usual parametrization
in the given exponential family.

B.1 Binomial distribution Bin(n,p)

n ∈ N is given, p ∈ (0,1), y ∈ {0,1, . . . ,n}

f (y,p) =
(
n

y

)
py (1−p)n−y

= exp
{

ln
(
n

y

)
+y ln

(
p

1−p

)
+n ln(1−p)

}

• ϑ= p

• t(y) = y

• γ (p) = ln
(

p
1−p

)
• ψ (y) =− ln

(
n
y

)
• κ(γ) = n ln(1 + eγ)

• µ(γ) = n eγ

1+eγ

• µ [γ (p)] = np

• Mϑ = n
p(1−p)

• I
[
γ
(
p0
)
,γ (p)

]
=

n
[
p0 ln

(
p0

p

)
+
(
1−p0

)
ln
(

1−p0

1−p

)]

• I
(
γ0,γ

)
= n

[(
γ0−γ

)
eγ

0

1+eγ0 + ln 1+eγ
1+eγ0

]
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B.2 Poisson distribution Po(λ)

λ > 0, y ∈ N∪{0}
f (y,λ) = e−λ

λy

y!
= exp{− ln(y!) +y ln(λ)−λ}

• ϑ= λ

• t(y) = y

• γ (λ) = ln(λ)

• ψ (y) = ln(y!)

• κ(γ) = eγ

• µ(γ) = eγ

• µ [γ (λ)] = λ

• Mϑ = 1/λ

• I
[
γ
(
λ0
)
,γ (λ)

]
=

λ0
[
λ
λ0 −1− ln

(
λ
λ0

)]
• I

(
γ0,γ

)
=
(
γ0−γ

)
eγ

0 + eγ− eγ0

B.3 Geometric distribution Ge(p)

p ∈ (0,1), y ∈ N∪{0}
f (y,p) = (1−p)py

= exp{y ln(p) + ln(1−p)}

• ϑ= p

• t(y) = y

• γ (p) = ln(p)

• ψ (y) = 0

• κ(γ) =− ln(1− eγ)

• µ(γ) = eγ

1−eγ

• µ [γ (p)] = p
1−p

• Mϑ = 1
p(1−p)2

• I
[
γ
(
p0
)
,γ (p)

]
=

1
1−p0

[
p0 ln

(
p0

p

)
+
(
1−p0

)
ln
(

1−p0

1−p

)]

• I
(
γ0,γ

)
=
(
γ0−γ

)
eγ

0

1−eγ0 + ln
(

1−eγ
0

1−eγ

)
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B.4 Negative binomial distribution NBin(r,p)

p ∈ (0,1), r ∈ N is given, y ∈ N∪{0}

f (y,p) =
(
y+ r−1

y

)
py (1−p)r

= exp
{

ln
(
y+ r−1

y

)
+y ln(p) + r ln(1−p)

}

• ϑ= p

• t(y) = y

• γ (p) = ln(p)

• ψ (y) =− ln
(
y+r−1
y

)
• κ(γ) =−r ln(1− eγ)

• µ(γ) = reγ

1−eγ

• µ [γ (p)] = rp
1−p

• Mϑ = r
p(1−p)2

• I
[
γ
(
p0
)
,γ (p)

]
=

r
1−p0

[
p0 ln

(
p0

p

)
+
(
1−p0

)
ln
(

1−p0

1−p

)]
• I

(
γ0,γ

)
=

r
[(
γ0−γ

)
eγ

0

1−eγ0 + ln
(

1−eγ
0

1−eγ

)]

B.5 Exponential distribution Exp(λ)

λ > 0, y ≥ 0
f (y,λ) = λe−λy

= exp{−λy+ lnλ}

• ϑ= λ

• t(y) =−y

• γ (λ) = λ

• ψ (y) = 0

• κ(γ) =− ln(γ)

• µ(γ) =−1/γ

• µ [γ (λ)] =−1/λ

• Mϑ = 1
λ2

• I
[
γ
(
λ0
)
,γ (λ)

]
=−1 + λ

λ0 − ln
(
λ
λ0

)
• I

(
γ0,γ

)
=−1 + γ

γ0 − ln
(
γ
γ0

)
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B.6 Weibull distribution W (λ,k)

λ > 0, k > 0 is given, y ≥ 0

f (y,λ) = k

λ

(
y

λ

)k−1
e−(y/λ)k

= exp
{

ln(k) + (k−1) ln(y)−ykλ−k−k lnλ
}

• ϑ= λ

• t(y) =−yk

• γ (λ) = λ−k

• ψ (y) =− ln(k)− (k−1) ln(y)

• κ(γ) =− ln(γ)

• µ(γ) =−1/γ

• µ [γ (λ)] =−λk

• Mϑ = k2

λ2

• I
[
γ
(
λ0
)
,γ (λ)

]
=−1+

(
λ0

λ

)k
−k ln

(
λ0

λ

)
• I

(
γ0,γ

)
=−1 + γ

γ0 − ln
(
γ
γ0

)

B.7 Pareto distribution Pa(α,σ)

α > 0, σ > 0 is given, y ≥ σ

f (y,α) = α

y

(
y

σ

)−α
= exp{−(α+ 1)ln(y) + lnα+α lnσ}

• ϑ= α

• t(y) =− ln(y)

• γ (α) = α+ 1

• ψ (y) = 0

• κ(γ) =− ln(γ−1)− (γ−1) lnσ

• µ(γ) =−1/(γ−1)− lnσ

• µ [γ (α)] =−1/α− lnσ

• Mϑ = 1/α2

• I
[
γ
(
α0
)
,γ (α)

]
= ln α0

α +(
− 1
α0 − lnσ

)(
α0−α

)
+
(
α0−α

)
lnσ

• I
(
γ0,γ

)
= ln γ0−1

γ−1 +(
− 1
γ0−1 − lnσ

)(
γ0−γ

)
+
(
γ0−γ

)
lnσ

122



B.8 Normal distribution N
(
ν,σ2) with σ2 given

ν ∈ R, σ2 > 0 is given, y ∈ R

f (y,ν) = 1√
2πσ

exp
{
− 1

2σ2 (y−ν)2
}

= exp
{
− ln

(√
2πσ

)
− y2

2σ2 + yν

σ2 −
ν2

2σ2

}

• ϑ= ν

• t(y) = y

• γ (ν) = ν
σ2

• ψ (y) = ln
(√

2πσ
)

+ y2

2σ2

• κ(γ) = σ2γ2

2

• µ(γ) = σ2γ

• µ [γ (ν)] = ν

• Mϑ = 1
σ2

• I
[
γ
(
ν0
)
,γ (ν)

]
= 1

2σ2

(
ν0−ν

)2

• I
(
γ0,γ

)
= σ2

2

(
γ0−γ

)2

B.9 Normal distribution N
(
ν,σ2)

ν ∈ R, σ2 > 0, y ∈ R

f
(
y,ν,σ2

)
= 1√

2πσ
exp

{
− 1

2σ2 (y−ν)2
}

= exp

− ln
(√

2π
)

+
(
y,−y2

) ν/σ2

1/2σ2

− lnσ− ν2

2σ2


• ϑ=

 ν

σ2



• t(y) =
 y

−y2



• γ
[(
ν,σ2

)>]
=
 ν/σ2

1/
(
2σ2

)


• ψ (y) = ln
(√

2π
)

• κ(γ) =−1
2 ln(2γ2) + γ2

1
4γ2

• µ(γ) =

 γ1
2γ2

− 1
2γ2
− γ2

1
4γ2

2



• µ
{
γ
[(
ν,σ2

)>]}
=
 ν

−σ2−ν2



• Mϑ = 1
σ2

1 0
0 1/

(
2σ2

)


• I
{
γ

[(
ν0,

(
σ0
)2)>]

,γ
[(
ν,σ2

)>]}
=

1
2

[
(ν−ν0)2

σ2 + (σ0)2

σ2 −1− ln
(

(σ0)2

σ2

)]

• I
(
γ0,γ

)
= γ0

1(γ0
1−γ1)

2γ0
2

+(
γ0

2 −γ2
)[
−
(
γ0

1
2γ0

2

)2
− 1

2γ0
2

]
+ 1

2 ln
(
γ0

2
γ2

)
+

(γ1)2

4γ2
− (γ0

1)2

4γ0
2
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B.10 Gamma distribution G(k,α)

k > 0, α > 0, y > 0

f (y,k,α) = yk−1e−αyαk

Γ(k)

= exp

(lny,−y)
k−1

α

+k ln(α)− ln [Γ(k)]


• ϑ=

k
α



• t(y) =
lny
−y



• γ
[
(k,α)>

]
=
k−1

α


• ψ (y) = 0

• κ(γ) =−(γ1 + 1)ln(γ2) + ln [Γ(γ1 + 1)]

• µ(γ) =
− ln(γ2) + Ψ(γ1 + 1)

−1+γ1
γ2



• µ
{
γ
[
(k,α)>

]}
=
− lnα+ Ψ(k)

− k
α



• Mϑ =
Ψ′ (k) − 1

α

− 1
α

k
α2


• I

{
γ
[(
k0,α0

)>]
,γ
[
(k,α)>

]}
=(

k0−k
)

Ψ
(
k0
)

+ k ln
(
α0
α

)
+ ln

[ Γ(k)
Γ(k0)

]
+

k0
(
α
α0 −1

)
• I

(
γ0,γ

)
=

(
γ0

1 −γ1
)

Ψ
(
γ0

1 + 1
)

+

(γ1 + 1)ln
(
γ0

2
γ2

)
+ ln

[
Γ(γ1+1)
Γ(γ0

1+1)

]
+(

1 +γ0
1
)(

γ2
γ0

2
−1

)
Γ(k) =

∫∞
0 zk−1e−zdz is the gamma function, Ψ(k) = ∂ lnΓ(k)

∂k is the digamma function
and Ψ′ (k) = ∂Ψ(k)

∂k = ∂2 lnΓ(k)
∂k2 is the trigamma function, see Abramowitz and Stegun

(1972) Sects. 6.3.1 and 6.4.1.
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B.11 Beta distribution Be(a,b)

a > 0, b > 0, y ∈ (0,1)

f (y,a,b) = 1
B (a,b)y

a−1 (1−y)b−1

= exp

(ln(y) , ln(1−y))
a−1
b−1

− lnB (a,b)


• ϑ=

a
b



• t(y) =
 ln(y)

ln(1−y)



• γ
[
(a,b)>

]
=
a−1
b−1


• ψ (y) = 0

• κ(γ) = ln [B (γ1 + 1,γ2 + 1)]

• µ(γ) =Ψ(γ1 + 1)−Ψ(γ1 +γ2 + 2)
Ψ(γ2 + 1)−Ψ(γ1 +γ2 + 2)



• µ
{
γ
[
(a,b)>

]}
=Ψ(a)−Ψ(a+ b)

Ψ(b)−Ψ(a+ b)


• Mϑ =Ψ′ (a)−Ψ′ (a+ b) −Ψ′ (a+ b)

−Ψ′ (a+ b) Ψ′ (b)−Ψ′ (a+ b)


• I

{
γ
[(
a0, b0

)>]
,γ
[
(a,b)>

]}
=

ln
[
B(a,b)
B(a0,b0)

]
+ Ψ

(
a0
)(
a0−a

)
+

Ψ
(
b0
)(
b0− b

)
−

Ψ
(
a0 + b0

)(
a0−a+ b0− b

)
• I

(
γ0,γ

)
= ln

[
B(γ1+1,γ2+1)
B(γ0

1+1,γ0
2+1)

]
+

Ψ
(
γ0

1 + 1
)(
γ0

1 −γ1
)

+
Ψ
(
γ0

2
)(
γ0

2 −γ2
)

−
Ψ
(
γ0

1 +γ0
2 + 2

)(
γ0

1 −γ1 +γ0
2 −γ2

)
B (a,b) =

∫ 1
0 z

a−1 (1− z)b−1 dz is the beta function, Ψ(k) = ∂ lnΓ(k)
∂k is the digamma

function and Ψ′ (k) = ∂Ψ(k)
∂k = ∂2 lnΓ(k)

∂k2 is the trigamma function, see Abramowitz and
Stegun (1972) Sects. 6.3.1 and 6.4.1.
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B.12 Multinomial distribution Mult(n,p1, . . . ,pl−1)

n ∈ N is given, pi > 0 for i = 1, . . . , l − 1 and ∑l−1
i=1 pi < 1, yi ∈ N ∪ {0} for

i= 1, . . . , l−1 and ∑l−1
i=1 yi ≤ n

f (y1, . . . ,yl−1,p1, . . . ,pl−1) = n!
y1! . . .yl−1!yl!

py1
1 . . .p

yl−1
l−1 p

yl
l

= exp

ln(n!)− ln [y1! . . .yl−1!yl!] + (y1, . . . ,yl−1)


ln
(
p1
pl

)
...

ln
(
pl−1
pl

)
+n ln(pl)

 ,
where pl = 1−∑l−1

i=1 pi and yl = n−∑l−1
i=1 yi.

• ϑ=


p1
...

pl−1



• t(y) =


y1
...

yl−1



• γ
[
(p1, . . . ,pl−1)>

]
=


ln
(
p1
pl

)
...

ln
(
pl−1
pl

)


• ψ (y) =− lnn! + ln(y1! . . .yl−1!yl!)

• κ(γ) =−n ln
(

1
1+
∑l−1
i=1 e

γi

)

• µ(γ) = n


eγ1

1+
∑l−1
i=1 e

γi

...
eγl−1

1+
∑l−1
i=1 e

γi



• µ
{
γ
[
(p1, . . . ,pl−1)>

]}
= n


p1
...

pl−1



• Mϑ= n
pl



p1+pl
p1

1 . . . 1
1 p2+pl

p2
. . . 1

... ... . . . ...
1 1 . . .

pl−1+pl
pl−1


• I

{
γ
[(
p0

1, . . . ,p
0
l−1
)>]

,γ
[
(p1, . . . ,pl−1)>

]}
= n

{∑l−1
i=1

[
p0
i ln

(
p0
i
pi

)]
+p0

l ln
(
p0
l
pl

)}
• I

(
γ0,γ

)
=

n

∑l−1
i=1

 (γ0
i −γi)eγ

0
i

1+
∑l−1
j=1 e

γ0
j

+ ln
[

1+
∑l−1
j=1 e

γj

1+
∑l−1
k=1 e

γ0
k

]
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