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Abstrakt

Táto práca sa zaoberá analýzou rôznych modelov voľby portfólia reálnych ak-
tív, s využitím konceptu podmienenej hodnoty rizika. Motiváciou je aplikácia
formulovaných modelov na problém optimálnej skladby investícií do nových
kapacít v oblasti energetiky pod vplyvom neistej ceny emisií. Navrhnuté
sú tri modely zohľadňujúce potrebné špecifiká uvažovaného problému. Dané
modely sú analyzované a vzájomne porovnané pre reálne vstupné dáta. Práca
sa takisto venuje všeobecnému porovnaniu klasickej Markowitzovej teórie
portfólia s jedným z navrhnutých modelov v prípade normálne rozdelených
výnosov reálnych aktív.

Kľúčové slová: podmienená hodnota rizika, teória portfólia, investície
pod vplyvom neistoty



Abstract

The focus of this thesis is on the application of conditional Value-at-Risk to
the optimal portfolio selection problem. In particular, portfolios of real assets
are analyzed, the motivation being the investment into new electricity gener-
ating capacities under climate policy uncertainty. Three different models are
formulated, accounting for the specifics of the underlying problem. For real
data, the results of the individual models are presented and compared. In
addition, the difference between the standard Markowitz portfolio framework
and portfolio optimization based on conditional Value-a-Risk is analyzed in
case of normally distributed assets profit.

Keywords: conditional Value-at-Risk, portfolio theory, investment under
uncertainty
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Preface

”The most fun and perhaps the greatest value of doing
something is in doing it. The results may well go up
in smoke, be wrong, become obsolete and forgotten, but
some new ideas may have emerged in pursuing them, and
some of them may somewhere, sometime, bear fruit.”

V. Klemeš

Currently, the discussion about whether climate policy should be imple-
mented has shifted towards a different focus, centering now around the type
and extent of policy instruments that should be implemented to achieve the
desired reduction in emissions. Still, there is no global agreement on the
needed legislative, which makes the future climate policy one of the increas-
ingly significant uncertainties connected with the investment into new power
generating capacities. However, considerable investment is due in the OECD
countries in the coming years, some of which will need to be carried out before
this uncertainty is resolved. As the investment in new electricity generating
capacities is long lived and is characterized by large up-front sunk costs, the
decisions are mostly irreversible and their effect will persist in the following
decades. The focus of this thesis in on the formulation of an optimization
framework that can be applied to analyze the effects of the climate policy
uncertainty on the optimal composition of investment into new electricity
generating capacities.

The way towards this thesis has been a long one, requiring a lot of patience
and perseverance, not only from my side but also from others. Therefore, I
would like to express my gratitude towards them. First of all, I would like to
thank my supervisor, Pavol Brunovský, who has probably suffered the most,
for his support, encouragement and understanding. Not the least, he is to a
large extent responsible for my collaboration with the International Institute
of Applied Systems Analysis (IIASA).

The motivation for the work presented in this thesis stems from my conge-
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nial experience at IIASA that was possible mainly thanks to Zuzana Chladná,
and Michael Obersteiner. I am indebted also to my colleagues, Sabine Fuss
and Nikolay Khabarov. Not only for the fruitful collaboration, results of
which are presented on the next pages, but also for their friendship and
support when I needed it most.

Last but not least I would like to thank my family and friends, first
and foremost my husband Michal Mikuš, for their continuing sympathy and
understanding. Thank you all.
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Introduction

The main motivation for the analysis presented in this thesis is the follow-
ing problem: "Assuming that the operations and investments at the plant
level are carried out optimally, what is the optimal energy mix in case of a
uncertain climate change policy?"

Structurally, the thesis is divided into two parts. Whereas the first part
provides a more detailed overview of the topic that is discussed, the second
part presents our original contribution.

The first part comprises the first three chapters, each addressing a differ-
ent aspect of the subject under consideration. In Chapter 1 the motivation
for the problems studied in this thesis is given, explaining the basic structure
and characteristics of the electricity sector. The aim and contribution of
the thesis are stated in Chapter 2, starting with an overview of the current
state-of-the-art, explaining the specifics that should be addressed by any new
modeling framework. It further presents a general idea and outline of the
approach suggested, providing also a brief overview of the structure of the
thesis, together with a description of the data and assumptions. The first
part concludes with a synopsis of the state-of-the-art with respect to the
chosen methodology (Chapter 3).

Chapters 4 to 7 comprise our contribution to the discussed topic. Chapter
4 is devoted to the optimization of the investor behavior on the plant level,
describing how these results can be used to derive input distributions used
by the portfolio models, which are formulated in Chapters 5 to 7. The
application of these models is presented with respect to investment in new
electricity generating capacities.

This thesis was motivated mainly by my experience at the International
Institute of Applied Analysis (IIASA) in Laxenburg. All models presented
in this thesis originated by collaboration with my colleagues at IIASA. They
were presented at several conferences and were used in applications either
published or submitted to various journals. In the following my contribution
is explained more in detail.

The Real Options model presented in Chapter 4 has been developed and



Introduction 9

implemented by me in MATLAB. It has been applied and extended primarily
with my colleague S. Fuss to analyze different aspects of uncertainty for
investment in the energy sector, e.g. [29, 68, 24, 26].

The original motivation of analyzing the effect of uncertainty on the in-
vestment in the energy sector has been proposed by M. Obersteiner, who also
suggested the direction of CVaR portfolio applications. The general concept
common to all models, i.e. the combination of optimization on the plant
level and on the aggregate level by two separate models, originated in the
cooperation with two co-authors - N. Khabarov and S. Fuss.

The first result along these lines was the combination of the Real Options
model with the basic CVaR portfolio model for discrete distributions for-
mulated by Uryasev in [59], presented in Chapter 5. The implementation in
GAMS and MATLAB was was done mainly by me with help of N. Khabarov.
Two applications of this model have been already published [27, 22]. The
numeric results presented in Chapter Section 5.3.3, however, are new and
independent of these publications. They are my own contribution, being mo-
tivated by the need to provide a benchmark for the results derived with the
extended models from Chapter 6.

The contribution of Chapter 5 lies not only in the numeric results, though.
It also provides a coherent comparison of the CVaR portfolio model to the
classic mean-variance framework for portfolios without short positions. First
the analytical results, for normally distributed assets profit (Section 5.2).
Second, the numerical results for the distributions stemming from the Real
Options model, using the analytical solution for the mean-variance framework
for three assets (Section 5.3.2, Appendix C). All these results and computa-
tions presented are my own work.

The idea of the robust portfolio model has originated in discussions with
S. Fuss and N. Khabarov. The formulation of the robust portfolio model
from Chapter 6 (Theorem 6.2.1) was performed by me, the model has been
implemented mainly thanks to Nikolay Khabarov. An application of this
approach has been already published [25]. An independent application has
been submitted to Energy Policy [28].

The first application of the robust portfolio model presented in Section
6.3 is similar in concept to the submission to Energy Policy. However, the
numeric results presented in this thesis are different, since the underlying data
and price parameters were chosen so that the assumptions and specifications
for applications presented in Sections 5.3.3, 6.3 and 6.4 are the same and
the results are mutually comparable. The concept of time structure, i.e.
the idea of the second application from Chapter 6 is originally mine as is
its implementation. The results presented in Section 6.4 are submitted to
Applied Energy [67].
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The main result of Chapter 6 is not in the separate applications, rather
it is the analysis of the differences between the results of these individual
models. This comparison constitutes my own and original contribution.

The dynamic portfolio model from Chapter 7 has been formulated by
me and implemented in cooperation with N. Khabarov. An illustrative ap-
plication of the model has been published in [65]. The analysis presented
in Chapter 7, however, is more thorough and is mainly my contribution,
accepted in the European transactions on Electrical Power [66].
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Chapter 1

The Electricity Sector

1.1 Electricity Sector and Climate Policy

1.1.1 Introduction

The latest IPCC report [35] has uttered concern and demanded stringent
policies concerning the accumulation of Greenhouse Gas (GHG) emissions
in the atmosphere. Whether we agree with the conclusions of IPCC or not,
the policy makers have become alert, as can be observed on the example
of the current EU 20–20 target. The target refers to a desired 20% cut in
GHG emissions and a minimum renewables share of 20% to be achieved by
the year 2020. The aim of such action is to limit global warming to 2◦C,
a critical threshold beyond which dangerous climatic consequences can be
expected (see e.g.[53] and [5]).Also, individual European countries have taken
measures to reduce their CO2 emissions. These range from feed-in tariffs to
obligations to produce a minimum amount of electricity from renewables.

The power generation is a significant contributor to the total CO2 emis-
sions (see Figure 1.1), having a share of over 40%. Therefore the success of
the policies depends to a large extent on their effect on the electricity sector.
Still, two thirds of the electricity generated nowadays comes from fossil fueled
capacities. The existing power plant stock in OECD countries is ageing and
will need substantial replacement over the next 10 – 20 years [37]. As the
investment in new electricity generating capacities is long lived and is charac-
terized by large up-front sunk costs, the decisions are mostly irreversible and
their effect will persist in the following decades. Moreover, because of the
liberalization of the electricity sector the investment into power generation
is connected with an increased level of uncertainty. Therefore, analyzing the
effect of a climate policy on the resulting energy mix is not only a crucial
question, but also calls for an appropriate accounting of the uncertainties
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involved.

Figure 1.1: World CO2 emissions by sector, 2007, Source: IEA, 2009

The purpose of this chapter is to provide a brief overview of the electricity
sector, concentrating on the part that is relevant for the scope of this thesis.
First we will provide a short description of the sector itself focusing on power
generation, its characteristics and uncertainties connected with investment
into new capacities. In the next sections we will introduce the climate policy
aspect and present the characteristics of electricity generating technologies
that are considered in this thesis.

1.1.2 Electricity Sector overview

A liberalized electricity sector is a complex and integrated system, usually
including a large array of stakeholders that provide services through elec-
tricity generation, transmission, distribution and marketing for industrial,
commercial, public and residential customers.

The electrical power industry is commonly split up into four processes
(see Figure 1.2). These are electricity generation, electric power transmission,
electricity distribution and electricity retailing. In many countries, electric
power companies own the whole infrastructure from generating stations to
transmission and distribution infrastructure. For this reason, electric power is
viewed as a natural monopoly. Especially in the past, the power industry has
been generally heavily regulated, often with price controls and is frequently
government-owned and operated.

The electricity sector has experienced huge changes [34]. The market for
electricity is being liberalized, greenhouse gases need to be reduced; therefore,
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Figure 1.2: Electrical power industry structure, Source: Canadian Clean
Power Coalition, 2004.

the increasing role of electricity makes even more necessary the need for
precise and reliable data on production, generating capacity as well as on
consumption of electricity in order to manage future development and ensure
security of supply in the most efficient way.

Prior to the liberalization of energy markets, energy firms were able to
operate as integrated monopolies. They were able to pass on all costs of
investments to energy consumers. For example, in the electric power sec-
tor, utilities could expect the cost of their prudently incurred investments in
power generation, including an adequate rate of return, to be recovered from
consumers. Many firms were state-owned and could borrow money backed
implicitly or explicitly by the government’s guarantee. In view of that guar-
anteed rate of return, utilities could finance their investment with a low share
of equity and borrow at interest rates close to government debt yields. There
was no market risk. The main risk was the risk of unfavorable regulatory
decisions and cost overruns due to bad project management.

In such an environment, most of the risks associated with such invest-
ments were not directly a concern of the energy company. Increased costs,
if demonstrated to be prudently incurred, could be passed on as increased
prices. In other words, it was not that risks did not exist in this situation, but
merely that risks were transferred from investors to consumers or taxpayers.
In this situation, there was little incentive for companies to take account of
such risks when making investment decisions. The introduction of liberaliza-
tion in energy markets is removing the regulatory risk shield. Investors now
have additional risks to consider and manage. For example, generators are
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no longer guaranteed the ability to recover all costs from power consumers.
Nor is the future power price level known. Investors now have to consider
not only the profits, but also the risks that are associated with them . The
natural question arising in these circumstances is how risks affect the choice
of generating technologies.

As the focus of this thesis is on the investment in power generation ca-
pacities, we will concentrate on the characteristics of this part of the power
industry. A detailed overview of other sectors is provided by [11]. Among
the major characteristics of investment into new power capacities are both
capital intensity and long economic lifetime of the investment. Therefore the
decisions are usually considered to a substantial degree as irreversible, which
will necessarily also influence the optimization problem. Investment in power
generation comprises a large and diverse set of risks. A good summary of op-
timization methods for electric utility resource planning has been performed
by [32]. According to [32] most utility planners use deterministic methods
(such as deterministic equivalents and scenario analysis) to assess different
expansion plans under uncertainty. More advanced methods for stochastic
optimization under uncertainty are rarely used, due to the complexity of the
problem and the computational requirement involved. Still, there are a few
suggestions how to better deal with uncertainty and flexibility for the regu-
lated industry (e.g. [50], [72]). The electricity supply system is complex and
so is the planning process. Due to computational reasons it is impossible
to solve the total power system planning problem in one large operation.
Some decomposition is therefore necessary and traditionally we distinguish
between different levels, stages and objectives. The decisions involved can
be categorized according to the time horizon involved into investment plan-
ning with a planning horizon of decades, and long- , medium- and short-term
scheduling with planning horizon ranging from 1-2 years to 1-2 weeks [73] .

For investment planning, the literature [10, 32] identifies three main cat-
egories of the underlying risk - market uncertainty concerning both demand
and input and output prices; capital cost uncertainty resulting from technical
change, relevant mainly for new technologies (e.g. wind, solar) and regulatory
uncertainty, i.e. carbon policy.

The most fundamental change affecting the electricity sector in liberal-
ized markets is the inherent uncertainty about the electricity price. However,
technologies producing the same level of power are by the electricity price
uncertainty affected equally. The power generators trade their power output
usually either through an organized power exchange or via bilateral contracts
[34]. The electricity price uncertainty can be hedged against for example by
entering into bilateral long-term contracts with distribution companies, or
trading futures instead of selling electricity on the spot market [11]. An-
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other important uncertainty is the electricity demand. Similar to the case
of electricity price uncertainty, this can be shifted to distribution companies
through the bilateral long-term contracts. In case the power producer is
selling electricity on the spot market, both the demand and electricity price
uncertainty fall within the problem of scheduling optimization.

Changes in fuel prices can influence the operating costs of a power gen-
eration capacity directly. The fuel uncertainty is relevant only for some
technologies, e.g. it is significant for gas-fired plants because of the extreme
volatility of gas prices, whereas for some renewables as wind it is not present
at al. Therefore fuel uncertainty can affect the decision about the technol-
ogy of a new power generating capacity. [4] provide an extensive empirical
literature overview of this topic, claiming that the losses resulting from fuel
volatility could be reduced by including renewables into the energy mix.

Investment costs are also to an extent uncertain. This is particularly the
case for emerging technologies such as solar panels, wind farms and other
renewable technologies where cost reductions are likely, but there is no cer-
tainty to the extent of such reductions.

According to [10], probably the greatest uncertainty for investors in new
power plants will be the regulatory controls on future carbon dioxide emis-
sions. Unknown value of carbon emissions permits and the mechanism chosen
to allocate permits will become a very large and potentially critical uncer-
tainty in power generation investment. This uncertainty will grow in the fu-
ture, particularly as future restrictions on levels of carbon dioxide emissions
beyond the first commitment period of the Kyoto Protocol are unknown. A
general overview of the climate policy uncertainty is presented in the next
section.

1.2 Climate Policy Overview

The long-term stated goal of Article 2 of the UNFCC is the “stabilization
of greenhouse gas concentrations in the atmosphere” at a level that would
“prevent dangerous anthropogenic interference with the climate system .” Ac-
cording to recent studies of long-term scenarios for stabilizing atmospheric
concentrations of greenhouse gases (GHG) , stabilizing atmospheric concen-
trations of carbon dioxide (CO2) at 450-650 parts per million (ppm) signif-
icantly reduces the expected change in global average surface temperature
and associated impacts relative to the baseline projections for the increased
GHG concentrations [52].

As more evidence about the contribution of anthropogenic GHG emissions
to the rate of global warming and the associated damages is brought forward,
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the debate of whether climate policy should be implemented has shifted to-
wards a different focus. More precisely, the debate now centers around the
type and extent of policy instruments that should be implemented to achieve
the desired reduction in emissions before irreversible damages accumulate.
Still, there is no global agreement on the needed legislative, which makes the
future climate policy one of the increasingly significant uncertainties con-
nected with the investment into new power generating capacities.

The tools and instruments currently under consideration can be distin-
guished by two features. Firstly, it is the target of the policy, i.e. the part
of the sector that is influenced by the policy. There are both instruments
punishing every technology for each ton of CO2 emitted, and ones that sup-
port the adoption and diffusion of specific renewable technologies directly,for
example by obligations or targeted subsidies. Secondly, the policy can be
based on either a government mechanism, such as a CO2 tax or a subsidy, or
a market system (such as current European cap and trade mechanism). The
cap and trade policy is a mechanism where a central authority sets a limit
on the amount of a CO2 that can be emitted. Companies or other groups
are issued emission permits and are required to hold an equivalent number
of allowances which represent the right to emit a specific amount. The total
amount of allowances and credits cannot exceed the cap, limiting total emis-
sions to that level. Companies that need to increase their emission allowance
must buy credits from those who pollute less. The transfer of allowances is
referred to as a trade. In effect, this mechanism results in a carbon market
where the buyer is paying a charge for polluting, while the seller is being
rewarded for having reduced emissions by more than was needed.

There are already such policies in force all across Europe. For instance,
UK applied a combination the so-called Climate Change Levy - a tax imposed
on the use of fossil fuels, with a renewable obligation - a regulation setting a
minimum share of electricity that has to be generated by renewable sources.
The European countries introduced the a cap and trade system - European
Trading Scheme (ETS). This mechanism is currently under consideration by
the US legislative - The American Clean Energy and Security Act, an energy
bill that would establish a variant of a cap-and-trade plan for greenhouse
gases, was approved by the House of Representatives in 2009 and is still in
consideration in the Senate.

Although one of the aims of this thesis is to account for the effect of
climate policy on investment decision in the electricity generating capacities,
the focus is not on the comparison of different policy instruments. For the
analysis in the thesis, we represent the climate policy by a CO2 price, i.e. a
stochastic carbon penalty for each ton of CO2 produced. This corresponds to
the mechanism of a carbon market, i.e. a cap and trade scheme. Although
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Figure 1.3: Electricity generation by fuel, 2009, Source: Key World Energy
Statistics, 2009 .

this assumption is a simplification, we believe it is justifiable, indeed, the
current situation suggests that this type of instrument will prevail in the
future, eventually resulting in a global carbon market. Concrete assumptions
on the future development of the carbon policy are presented in the next
section.

1.3 Electricity Generating Technologies

Major sources for electricity generation comprise nuclear, fossil fuels (e.g. gas,
oil, coal), and renewables (e.g. hydro, wind and biomass). The leaders are
currently (see Figure 1.3) coal, gas, nuclear and hydro, with biomass and wind
being recognized as the most promising technologies for the future (World
Energy Outlook 2007). The focus of this thesis will be on four technologies
only - coal, gas, wind and biomass. The reasoning behind this choice will
be explained in the next chapter. Here we present a brief description of
the characteristics of the chosen technologies, based on the reports from the
International Energy Agency [36] [37]. They provide both technical and
cost data based on surveys of existing power plants in various countries and
projections how they will develop in the future. Table 1.1 gives an overview
and explanation of common abbreviations and terminology used and can
serve as a glossary for the following chapters.

Currently, almost two-thirds of the world’s electricity is produced from
fossil fuels. For the future, the IEA predicts a great expansion of coal-fired
capacities in the developing countries in a case of no climate policy. Even in
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Term Unit Definition

Availability factor [%] Ratio of available time (when the power
plant is able to produce electricity) to the
calendar period. Availability characterizes
the reliability of a plant.

Capital Costs [e /kWe] Construction costs per kilowatt electric
capacity

Capacity factor [%] Ratio of the electricity output of the power
plant to theoretically possible electricity
output in the period under report.

CCS Carbon Capture and Storage
Combustible renewables Examples include biomass, but also cer-

tain waste products
Efficiency [%] Ratio of the electricity output of the power

plant and the fuel input, in energy terms.
Fossil fuels Include (exhaustible reserves of) oil, coal

and gas. All of them emit GHG gases dur-
ing their combustion.

GHG Greenhouse gas emissions
Operating and Mainte-
nance cost (O&M)

[e /y] Yearly costs relating to the standard op-
erating, maintenance and administrative
activities of the utility.

Renewables Energy resources where energy is derived
from natural processes that are replen-
ished constantly. They include geother-
mal, solar, hydropower, wind, tide, wave,
biomass and biofuels.

Table 1.1: Basic terminology

a CO2 constrained world the coal and gas can continue to play an important
role (World Energy Outlook 2007). Moving on the pathway to clean and
effective use of fossil fuels, the CO2 capture and storage technologies (CCS)
are considered to be the most promising ones in the near future.

1.3.1 CCS

CO2 capture and storage (CCS) is one of the most promising options for
mitigating emissions from coal-fired power plants and other industrial facil-
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ities. CCS is a three-step process involving the capture of CO2 emitted by
large-scale stationary sources and the compression of the gas and its trans-
portation (usually via pipelines) to a storage site. CO2 may also be used
for enhanced oil or gas recovery. CCS processes can currently capture more
than 85% of CO2 that would otherwise be emitted by a power plant, but
they reduce the plant’s thermal efficiency by about 8 to 12 percentage points
and, thus, decrease the electricity output for a given fuel input.

This option can be applied to both coal and gas-fired power plants. In
combination with biomass, the use of CO2 capture and storage would go
even further and actually remove CO2 from the atmosphere, rather than just
avoiding its release from fossil fuels. The process of capturing CO2 generally
represents the largest component of CCS costs.

All the individual elements needed for CCS have been demonstrated, but
there is still an urgent need for an integrated full-scale demonstration plant.
At present there are four large-scale CCS projects in operation around the
world, each involving around 1 Mt of CO2 per year, two in Norway and the
others in Algeria and Canada. In addition to these projects in the oil and
gas sector, around 20 other major projects in the power sector have been
announced.

1.3.2 Renewables

There are various forms of renewable energy, deriving directly or indirectly
from the sun, or from heat generated deep within the earth. They include
energy generated from solar, wind, biomass, geothermal, hydropower and
ocean resources, solid biomass, biogas and liquid biofuels. The most common
source of renewable power generation is currently hydropower, leading the
market especially in Nordic countries.

Since 1990, renewable energy sources in the world have grown at an av-
erage annual rate of 1.7%. Growth has been especially high for “new” renew-
ables (wind, solar), which grew at an average annual rate of 19%, and the
bulk of the increase happened in OECD countries, with large wind energy
programmes in countries such as Denmark and Germany. The discussions on
climate change have undoubtedly stimulated the development of renewable
energy in order to reduce the emissions of greenhouse gases.

The IEA outlook predicts that it is biomass and wind that can start to
make a substantial contribution in the next decade, as many of the technol-
ogy options for these two renewable sources are already cost competitive in
many markets. Regarding renewable energy sources for electricity genera-
tion, the survey indicates, that in case of real investments the wind power
plants are the most often considered option, solar and combustible renewables
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remaining marginal.
Combustion of biomass for power generation is a well-proven technology.

It is commercially attractive where quality fuel is available and affordable.
Capital costs of biomass fred power plants are rather high when compared
to fossil fueled capacities, but their combination with CCS can make them
attractive in case of a rising CO2 policy.

Wind is currently next to hydro power the second eminent renewable
resource used power generation. The availability factor of the wind power
plants is relatively low, reported between 17% and 38% for onshore plants,
and between 40% and 45% for offshore plants. Economic lifetimes of the
wind power plants range between 20 and 40 years for all plants.

Most wind power plants are onshore but there are also some examples of
offshore wind power plants (for example in Denmark, Germany or Nether-
lands). Capacities of the individual wind units are usually small with plants
consisting of multiple units, generally comprising up to 100 for one plant.
Capital costs for the majority of wind power plants vary between 1000 and
2000e /kWe.

The costs of onshore and offshore wind have declined sharply in recent
years, mostly due to mass deployment, the use of larger blades and more so-
phisticated controls. The learning effect is expected to continue in the coming
years, potentially bringing additional cost reductions. The best onshore sites
are already competitive with other power sources. Offshore installations are
more costly, especially in deep water, but are expected to be commercial after
2030. However, because of its low availability factor, in situations where wind
will have a very high share of generation, it will need to be complemented
by sophisticated networks, back-up systems, or storage, to accommodate its
intermittency [10].

1.3.3 Fossil Fuels

Today natural gas is experiencing significant growth as a fuel for power gen-
eration. Gas offers many advantages in this sector compared to other fossil
fuels: high efficiency, relatively low capital costs, and cleanliness. Gas is the
cleanest fuel among fossil fuels and its demand will be favored for environ-
mental reasons. For gas-fired plants, most countries report shorter technical
lifetimes, between 20 and 30 years. In recent years, natural gas consumed
for electricity generation has accounted for almost 20% of global electricity
production (up from 13% in 1973), and accounts for approximately half of
the world production of heat generated in heat and combined heat and power
plants.

Over the last 30 years, the share of coal in global total primary energy
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supply has been stable at around 25%. Coal is now mainly used for electric-
ity production and to a lesser extent by industry. Coal-fired power plants
are more capital intensive than gas-fired ones. Combustion of pulverized or
powdered coal to raise steam in boilers has been the mainstay of coal-based
power generation worldwide for almost a hundred years. The efficiency of the
current generation of pulverized coal units has steadily improved and today
ranges between 30% and 45% (on a lower heating-value basis) depending on
the quality of coal used, ambient conditions and the back-end cooling em-
ployed. More efficient technologies for coal combustion are already available
or in an advanced stage of development. These include high-temperature pul-
verized coal and integrated coal-gasification combined-cycle (IGCC) plants.
Capital costs for coal are almost twice as high as the capital costs for gas
fired power plants, ranging between 1000 and 1500 e /kWe, with IGCC plants
lying even above the 1500 e /kWe limit.
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Chapter 2

Conceptual Overview

2.1 Portfolio Optimization into new power gen-

eration capacities

Portfolio theory is rooted in finance. Its systematic dates back to the pio-
neering work by Nobel laureate Harry Markowitz as early as 1952 ([45]). His
work was followed by a vast number of authors, notably Merton [47, 48, 49],
Samuelson [63] and Fama [20]. Economists soon realized that the method also
provided considerable insight into decision making concerning capital invest-
ment. Therefore, the applications of this theory to real investments followed
soon after. Still, in case of investment into power generating capacities, the
literature is not as numerous.

Even though the first attempts date back to the seventies [6], more pro-
nounced interest in the topic has arisen only lately [3, 2]. In general, these
models consider a mean-variance framework to test whether the portfolios
of electricity generating capacity used by certain regions or countries are ef-
ficient. [33] refine the approach of [6] by building a GARCH-type model,
which allows the covariance matrix of the underlying assets to be systemati-
cally updated in time. [62] apply a similar framework to UK diversification
in electricity sector investment, including also the carbon price risk. All
these studies apply the mean-variance framework in the style of Markowitz
[45, 46]. Recent research on different measures of risk (explained more in
detail in Chapter 3) has provided the portfolio theory with new insights
which led to the development of more advanced portfolio approaches. How-
ever, their application to the power generation portfolios is still missing. It
should be noted, that there are some examples of their applications in the
electricity sector [17, 21, 70, 64]. The authors are investigating the value
of flexibility of optimal electricity supply scheduling, applying the concept



2.1 Conceptual Overview 23

of conditional-value-at-risk, mostly in term of constraints entering the opti-
mization. However, the focus of these papers is quite different from the one
studied in this thesis.

Although the portfolio theory has been increasingly used to study invest-
ments in new power generation capacities, most analysis has been based on
the static mean-variance approach. Such an approach entails various short-
comings. It is important to understand these, both to comprehend the need
for a better framework and to identify the key points this new framework
should address. The shortcomings are caused mainly by the assumptions of
the mean-variance framework, which are in contradiction to the specifics of
the investment into real assets, in our case the power generation capacities.
The characteristics of investments into financial and real assets are distinct.
The differences lie mainly in following factors: irreversibility of investment
(usually represented by high sunk costs), demand constraints and longevity of
the investment. The shortcomings of the static mean-variance approach that
are implied by these differences can be divided into three main categories.

The first is concerned with properties of the profit distribution of the
assets, the second is centered around the assumed risk preference of the
investor. The last considers the static setup of the framework.

Returns of real assets are generally not normally distributed [18], with fat
tails and entail potentially high losses (due to the irreversibility of investment
and high sunk costs), however, the mean-variance framework considers the
return on the assets as normally distributed random variables.

Moreover, since in case of real assets the returns are characterized by
potentially high losses, the risk preference of the investor is very important
for the result of the optimization. Since capital is typically long lived in the
applications, and a part of the decisions is irreversible, the investor has to
be particularly sensitive to the downward tail risk. Therefore, the use of
variance as a proxy for risk is usually not appropriate.

The last major drawback is the fact that the static framework fails to ac-
count for the effects irreversibility has on optimal dynamic behavior. [49] has
developed an inter-temporal version of the portfolio approach, however, due
to its complexity the applications were not numerous and it did not really
displace the Markowitz framework at that time [23]. Only recent advances
[12] enabled it to be applied, e.g. in pension fund management [43]. How-
ever, when considering a portfolio of long-lived real assets, static Markowitz
portfolio can not be extended to a dynamic setting the way it has been done
for financial assets. The reason for this is the special feature of irreversibility
- once resources have been committed (for example to install a new power
plant), this asset can hardly be removed from the generating portfolio at
zero transaction cost. Rebalancing of the portfolio in the classic sense is
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not feasible in case of real asset investment. However, the dynamic feature
of the decision should not be unaccounted for, as the effect can be signifi-
cant. Since the investor usually faces demand constraints, and also needs to
replace the capacity at restricted time instants known ahead, he will make
decisions at several time points. These decision can hardly be assumed to be
independent.

In this thesis these general issues of portfolio optimization for real assets
are studied in the particular case of investment into new power generation
capacities under climate policy uncertainty. Considering the climate policy
as the major source of uncertainty raises another issue that has not been
covered in any of the previous literature on energy planning. Whereas most
input/output prices can be modeled as fluctuating processes, uncertainty
about climate change is still qualitatively different. It has been currently
agreed that there are two main factors determining the climate policy in
the future - the required level of stabilization of GHG concentration and the
future socio-economic conditions. However, there is not enough information
to determine either of them. Therefore, different scenarios of climate policy
have been developed for different scenarios of the underlying factors. The
resulting policies depend significantly on the scenarios. As some investment
will need to carried out before this uncertainty is resolved, the investors will
naturally prefer decision that will behave well under each of the possible
scenarios, trying to find a robust strategy. This constitutes the last concern
we try to address in our approach.

The issue of robustness with connection to portfolio theory has been stud-
ied more closely only recently. In the mean-variance framework, this topic
has been investigated for example by [14] and [30]. Assuming different types
of uncertainties in the mean or covariance matrix, they transformed the to
semidefinite, or second-order cone programming problems, which can be ef-
ficiently solved by interior-point algorithms developed in recent years. [15]
use a minimax approach to analyze an optimal mean-variance portfolio se-
lection problem, where the expected return of each underlying asset varies in
an estimated interval while the covariance between any two asset returns is
given and fixed.

2.2 Contribution of this Thesis

Chapter 1 has outlined the importance of the decisions about the new elec-
tricity generating capacities with respect to the emerging climate policy. The
uncertainties entering into the investment problem have been also listed. This
motivation led us to ask the following question:
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Assuming that the operations and investments (e.g. retrofitting or refur-
bishments) at the plant level are carried out optimally, what is the optimal
energy mix in case of a uncertain climate change policy?.

In other words, if we analyze the situation from point of view of the gen-
erator, what is his best response to the CO2 policy? A considerable number
of power generators will favor some kind of generation portfolio with a mix
of different types of generation. These types of generators likely form the
core of generation capacity in most countries. Several companies interviewed
maintain guidelines for the overall portfolio mix that they wanted to achieve
[10]. It should be noted however, that these are usually used to indicate the
strategic direction rather than acting as “hard” targets. In this thesis we try
to find the optimal portfolio for a risk averse investor who is facing uncertain
fuel and CO2 prices.

While optimization of the investment and management of a power plant
(e.g. an incremental investment such as CCS) is performed by the individual
producer, large investors will typically want to invest in a technology port-
folio rather than concentrate on a single technology or chain (e.g.coal with a
possibility to add CCS). We propose an optimization framework that derives
the optimal behavior on both levels.

We do it by separating these decisions, forming two levels of decision
making. On the plant level the operation and management are chosen op-
timally to maximize the expected revenue. Assuming that the operations
and investments (e.g. retrofitting or refurbishments) at the plant level are
carried out optimally, the second level answers the question how the energy
mix should be composed. At the larger scale, the objective of the investor is
different. It has been explained that the impacts of the decisions about new
power generating capacities are long-lasting and the uncertainties present not
negligible. The resulting profit is therefore highly uncertain with potentially
high losses. On the larger scale the investor needs to base his decisions not
only on the expected profit, but also on the risks. This is reflected in the
portfolio framework suggested for the second level.

This thesis presents a optimization framework for the investment into
new power generation capacities. It suggests to use a combination of real
options and portfolio optimization. The real options model is used to derive
the optimal management strategy on the power plant level for each electricity
generating technology considered. Following this strategy implies a distribu-
tion of profit flows resulting from investment into a power plant of a given
technology. These profit distributions are used as an input for the portfolio
model.
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There are several portfolio models suggested. First is the basic version
that defines the optimal portfolio as such a combination of technologies that
maximizes the expected profit given a constraint on risk. For the measure
of risk the conditional Value-at-Risk was chosen, which in contrary the the
variance features several favorable characteristics. This portfolio leads to a
problem of linear programming. This model is further modified to account
for the specifics mentioned in the previous section which leads to the robust
and dynamic models which are suggested in the second half of the thesis.

The main contribution of the thesis can be seen in three key points.
First, it is proposed combined framework. Although both real options

and portfolio theory are established and commonly used for applications, the
suggested combined framework is original. It accounts for the possibility
to optimize the management also on the plant level, which is mostly disre-
garded. For the optimization on the larger scale, portfolio theory is applied.
Whereas due to its characteristics the classic mean-variance framework is
not appropriate, the conditional Value-at-Risk was adopted as the measure
of risk. Three different portfolio models are discussed. The basic portfo-
lio model from [60] is employed to provide a benchmark for the suggested
modification of the portfolio problem. The proposed modifications present
extensions of the basic portfolio model, both in the direction of robustness
and dynamics. They are shown to preserve the advantageous characteris-
tics of portfolio optimization using conditional value-at-risk, namely that it
leads to linear programming problems. The proposed framework is able to
formulate quite a complex modeling problem in an effective way, which is a
original contribution to the literature on portfolios of real assets.

Second, it is the applications of the proposed models to analyze problems
that are currently relevant in the energy sector. By testing the models with
real-world data, we can verify the validity of our conclusions for actual in-
vestments, even though the models remain still highly stylized. The results
should be therefore taken as an illustration rather than a precise numerical
prediction. Still, they enable us to study the relation between the investor’s
assumptions about future climate policy and the resulting optimal energy
mix. This can be used to derive policy implications and to identify the key
drivers for investment into low-carbon technologies. The results also suggest
an explanation of the observed behavior in power generation investment. Al-
though the applications are still only limited with the respect to the number
of technologies considered, they are still able to illustrate the importance of
choosing an appropriate framework for portfolio optimization.

Not the least, we provide a coherent comparison of the portfolio selection
problem for real assets when minimizing risk in terms of conditional Value
at risk to the classic Markowitz portfolio framework minimizing variance for
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the case of normally distributed assets profits.

2.3 Research Outline

A broad outline of the thesis with a short overview of the individual chapters
is given in Table 2.1.

The thesis is comprised of two parts. Up to now the first part provided the
motivation for the problems addressed (Chapter 1), explaining the specifics
that need to be addressed by the modeling framework (Chapter 2). The
aim and contribution of the thesis are stated this chapter. The first part
concludes with a synopsis of the state-of-the-art with respect to the chosen
methodology (Chapter 3).

The second part presents own results. It starts out by a description of
the real options framework (Chapter 4) that optimizes the behavior of the
investor on the plant level. These results are further used as an input into the
portfolio model. The formulation of the general basic CVaR portfolio model
is shown in Chapter 5. First, its results are put into perspective with re-
spect to the classic mean-variance framework in case of normally distributed
assets profit. Further we formulate the CVaR portfolio model in case the
assets profit distributions stem from the real options model. We analyze first
the difference between the proposed and the classic mean variance portfolio
model. We conclude with the sensitivity of the optimal portfolios with re-
spect to climate policy uncertainty, which constitutes also the motivation for
the next chapter.

In Chapter 6 we propose an extension of the basic CVaR model that is
able to identify a portfolio performing well across a set of scenarios.the basic
model is further. We present also two applications of the suggested model,
each addressing a different issue that was neglected in the analysis so far.
The first concentrates on the uncertainty in climate policy, trying to find an
optimal energy mix that is robust across different climate policy scenarios.
The second investigate decisions that would lead to profit flows which are
more stable over time.

The portfolio analysis remained inherently static insofar as the large in-
vestor considered only the current investment, ignoring possible future in-
vestments. The extension from Chapter 7 seeks to remedy this deficiency by
taking into account the possibility to diversify not only over assets, but also
over time. More specifically, we look at the dynamics of the optimal tech-
nology mix over a future time period conditional on the initial distribution
of technologies, such that given energy demand is met.

Chapter 8 provides a summary of the results of the previous chapters with



2.3 Conceptual Overview 28

Chapter Outline

1 The Electricity Sector Motivation. Overview of the Electricity
Sector, focus on power generation and
uncertainties connnected with investment
into new capacities.

2 Conceptual Overview Litearure review - Portfolio theory and its
applications in energy sector. Problem
definition. Main contribution. Research
Outline. Data description.

3 CVaR and Portfolio Theory overview - CVaR as a risk measure
optimization and its use in portfolio optimization.
4 Profit distributions Real options model for optimization on
analysis the plant level with stochastic CO2 and

fuel prices. Resulting profit distribution
analysis.

5 CVaR vs. M-V Comparison of portfolio optimization us-
ing MV and CVaR. Case of normally dis-
tributed assets profit. Basic framework :
combination of a CVaR portfolio model
with the real options model leading to a
linear programming (LP) problem. Effi-
cient frontier. Comparison with the clas-
sic mean-variance approach and climate
policy sensitivity.

6 Robust Portfolios Portfolio model deriving decisions robust
across a set of scenarios. Formulation as
a LP problem. Applications : Assessing
the impact of climate policy uncertainty,
Time structure of profit. Comparison to
the basic framework.

7 Dynamic Framework Formulation of a portfolio model allowing
for diversification across time. Analyzing
the impact of this extension on the result-
ing energy mix.

Table 2.1: Outline of the thesis.

respect to the evolution of results considering different portfolio models. It
also investigates the implications derived from the presented analysis for the
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climate change policy. It concludes with a synopsis of the contribution and
identifies areas for further research.

2.4 Assumptions

This thesis presents an integrated real options and CVaR portfolio model to
assess the impact of climate policy on the investment decisions in power gen-
eration. In the previous chapter the overview of the energy sector with con-
centration on the power generation was provided, analyzing the underlying
uncertainties and ivestment options. In this section, we list the assumptions
and simplifications considered in the modeling framework.

Technology options choice. For the analysis we consider only four
technologies - wind farms, coal-fired, gas-fired and biomass-fired power plants.
The choice of the technologies is based both on current composition of en-
ergy mix and on the projection for the future. As presented in the previous
chapter, coal and gas-fired power plants are the major representatives of fos-
sil fuel technology and form the core of electricity production, promising to
stay significant also in the next decades. Biomass technology has the unique
property that in combination with the CCS module it is actually able to
remove the CO2 from the atmosphere. Wind farms were chosen as a repre-
sentation of the "standard" renewables with zero carbon dioxide emissions.
Although it is not the most prominent electricity source from renewables,
with hydropower having a larger share in the current energy mix, it has
been chosen for two reasons. First, wind power is regarded as a promising
renewable technology for the future, with more scope for new installations,
as hydropower is already a well-established technology. Second, since both
technologies exhibit the same characteristics (no emissions, no fuel cost un-
certainty), there was no fundamental reason of introducing both technologies
into the analysis. Therefore, wind acts as a proxy for this type of renewables,
and could represent hydropower as well.

Uncertainties considered. We abstract from demand and electricity
uncertainty. Since in this analysis we use normalized data for electricity
generation, the fluctuations in electricity price have the same effect on all
technologies considered and don’t have any impact on the investor’s deci-
sions. Since the focus of this thesis is the analysis of the energy mix, this
ultimately means comparison of different electricity generating technologies.
Therefore the focus in the analysis should be on parameters where the indi-
vidual technologies differ, where the electricity price uncertainty is the least
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significant for our analysis. This assumption can be represented by a situa-
tion where the producer enters into a bilateral contract with the distribution
company. This contract binds him to fulfil a supply constraint ensuring a
fixed electricity price at the same price.

Scalability. We abstract from electricity supply scheduling and assume
that electricity generation does not feature significant economies of scale.
This is corroborated by [73]. That means that the size of the installed ca-
pacities is not important. The power plants considered are scaled to produce
the same amount of electricity per year, equal to the supply constraint. This
is probably the most significant simplification, influencing mainly the wind
technology. Wind is characterized by a low capacity factor, meaning the
power plant can not operate all the time through the year. Assuming it is
sufficient that the yearly output is met overestimates the profitability of this
technology. This effect is limited in the analysis by the introduction of con-
straints on the wind share in the energy mix.

Separation We assume the decisions on the plant level are independent
of the investments on the aggregate level.

Profit and risk aversion. For the decisions on the aggregate level, we
assume the investor risk averse, i.e. he is also concerned about the risk as-
sociated with the investments. This is not the case on the plant level, where
the decisions are driven only by expected profit maximization. In addition,
except for the dynamic portfolio model, we assume the profitability of invest-
ment on the aggregate level is measure by profit, not return on investment.
This can be justified in case of a utility with contracted supply, where the
investor has to deliver the contracted amount and is concerned with the net
profit he can gain. This is in contrary to the investments in financial assets,
where the return per unit of investment is usually the measure of profitability.

Data assumptions. These are explained in detail in the next section.

2.5 Data

2.5.1 Power Generation Technology Parameters

For each technology, i.e. coal, gas, biomass and wind, Table 2.2 summarizes
the data needed for the analysis performed in this thesis. The data needed
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Parameters Efficiency Capacity CO2 O&M Capital
factor emissions costs costs

[%] [%] [kg/kWh] [e /kW/y] [e /kW]

Coal 46 89 0.74 68.297 1,182
Coal+CCS 36 85 0.111 101.465 1,525
Gas 58 89 0.348 15.281 500
Gas+CCS 49 85 0.052 34.042 843
Biomass 35 89 0 43.269 1,537.19
Biomass+CCS 27 85 -1.41 64.282 1,880.19
Wind na 40 0 76 1,800

Table 2.2: Power Plant Data (Source: derived from van den Broek et al.
(2008), biomass-fired technology parameters stem from International Energy
Agency, (2005).

in the analysis for each technology considered are: construction (i.e. capital)
costs, operating and maintenance costs, fuel costs and CO2 costs. The table
presents the capital costs and O&M cost per 1 kW of installed capacity.
Individual power plants have been scaled so that the yearly electricity output
is the same, equal to the output of a coal fired power plant of 1kW installed
capacity. Fuel costs depend on fuel efficiency and price scenario considered.
The precise information on price assumptions is provided in the next section.

All technologies except wind are considered capture-ready, i.e. the CCS
module can be added to the power plants during their lifetime. The capital
costs of this upgrade are given by the difference between the capital costs
of the power plant with and without the CCS module. It should be noted
that investment into such a module is connected not only with significant
reductions in CO2 emissions, but also with large capital investment, higher
O&M costs and efficiency loss. The efficiency loss comes from the need of
electricity to operate the module. Since we consider the electricity output as
fixed, this electricity needs to be imported and is accounted for in the O&M
costs.

The lifetime of all of the considered options is assumed to be equal to
thirty years. This assumption on equal lifetimes simplifies the analysis and
is in line with the ranges for economic lifetimes reported by the IEA [36]. It is
a simplification, however, since chosen lifetime constitutes the upper bound
for both wind and gas-fired power plants, whereas it is the lower bound for
the coal technology.

Several differences between the technologies can be deduced from the
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Scenario ‘A2r’ ‘B1’ ‘B2’

Population size High Medium Low
Income Low Medium High
Resource-use efficiency Low Medium High
Technology dynamics, fossil Medium Medium Low
Technology dynamics, non-fossil Low Medium High
Required emission reduction High Medium Low

Table 2.3: Assumptions of the individual socio-economic scenarios on the key
drivers, measured relative to each other Source: GGI database, 2009

presented table. The gas-fired plant is a more clean and less capital intensive
alternative, but suffers from large and volatile fuel costs. Coal, on the other
hand, is more costly (both in capital and in O&M costs), but the resulting
fuel costs are relatively low and stable. The biomass technology features
lower efficiency and is even more capital intensive than coal. On the other
hand, it offers the largest potential in case of a strict climate policy. A wind
farm is an example of a technology with the highest capital, but stable and
relatively low operating costs. It is the only technology that is indifferent to
the fluctuations both in CO2 and fuel prices. We also see that biomass has
a special position, since its emissions when equipped with the CCS module
are negative [69].

2.5.2 Price Parameters

The climate policy and fuel costs data used in this thesis are provided by the
GGI (Greenhouse Gas Initiative) Scenario Database generated by the MES-
SAGE model developed at IIASA. The MESSAGE model is a large-scale
bottom-up, cost-minimizing energy systems model, for more detail about
the model, the reader is referred to [57]. The GGI scenario database doc-
uments the results of a set of greenhouse gas emission scenarios that were
created using the IIASA Integrated Assessment Modeling Framework. Beside
its principal results that comprise the estimation of technologically specific
multi-sector response strategies it also reports the projections of future car-
bon prices for a range of alternative climate stabilization targets for each of
three scenarios considered.

The three scenarios - labeled ‘A2r’,‘B1’ and ‘B2’ - are distinguished by
different assumptions on socio-economic development of the world. The sce-
narios are derived from (and also use the naming conventions of) the scenarios
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Figure 2.1: Schematic illustration of SRES scenarios. Source: IPCC Special
Report on Emissions Scenarios, 2000.

presented in the IPCC Special Report on Emissions Scenarios (SRES) [51],
see Figure 2.11. However, the original scenarios presented in SRES have been
revised to incorporate the results of new scenario analyzes with the aim to
improve scenario consistency. The scenario ’A1’ has been omitted and the
scenario ‘A2r’, while maintaining its main structural and qualitative charac-
teristics, has been markedly revised to that reflects the most recent long-term
demographic outlook.

The assumptions of each scenario can be summarized as follows, a brief
characterization of the assumption on the key-drivers is given also in table
2.3.

The ‘A2r’ storyline and scenario family describes a very heterogeneous
world. The underlying theme is self-reliance and preservation of local iden-
tities. Fertility patterns across regions converge very slowly, which results
in high population growth. Economic development is primarily regionally
oriented and per capita economic growth and technological change are more
fragmented and slower than in other storylines. Therefore, stabilization is not
achieved easily and GHG shadow prices for more ambitious target increase
tremendously over the course of the projection period.

The ‘B1’ storyline and scenario family describes a convergent world with a

1The main differences in the scenarios lies in two dimensions. First is the global vs.
regional scenario orientation, the second the development and environmental orientation.
In reality, the four scenarios share a space of a much higher dimensionality given the
numerous driving forces and other assumptions needed to define any given scenario in a
particular modeling approach.
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Figure 2.2: CO2 shadow price projections from the GGI Scenario Database
Source: GGI Database.

low population growth and with rapid changes in economic structures toward
a service and information economy, with reductions in material intensity, and
the introduction of clean and resource-efficient technologies. The emphasis
is on global solutions to economic, social, and environmental sustainability,
including improved equity, but without additional climate initiatives. GHG
(shadow) prices actually even decrease towards the end of the projection
period, but this long-term view does not fall in the range of the planning
period of the is thesis.

The ‘B2’ storyline and scenario family describes a world in which the em-
phasis is on local solutions to economic, social, and environmental sustain-
ability. It is a world with moderate population growth, intermediate levels of
economic development, and less rapid and more diverse technological change
than in the B1 and A1 storylines. While the scenario is also oriented toward
environmental protection and social equity, it focuses on local and regional
levels.

In other words, the different socio-economic scenarios capture the fact
that the the future CO2 emissions depend also on population growth, the
transition of new technologies to the developing countries, etc. Therefore to
decrease the emissions in a world with a growing population is more costly
than in the world where the population stabilizes and the transition of the
less emission intensive technologies to the developing countries is prompt.

However, there is still uncertainty about the actual CO2 concentration
target which should be achieved. Therefore, for each scenario the database
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provides predictions for both fuel and CO2 prices for different stabilization
targets. In this thesis we will analyze three of them, ranging between 480 and
590 ppm, which results in nine different alternatives for the price predictions.
These alternatives are defined by a scenario-target combination. A stricter
target, i.e. the need to stabilize at a lower concentration implies a higher
CO2 price, and vice-versa. The discount rate is considered the same in all
scenarios, equal to 5%.

Figure 2.2 shows the developments of CO2 prices for each scenario and
target combination considered in this thesis. The database predicts an expo-
nential rise for the CO2 price, where the trend and starting values differ across
the scenarios and stabilization targets. This result justifies our assumption
to model the CO2 price as a geometric Brownian motion CO2, where the
data for trend and starting value of these processes have been supplied by
the GGI database. The yearly carbon price volatility is assumed to be 5%.

Parameters for the fuel price are derived similarly. Fuel prices are mod-
eled as a geometric Brownian motion, where the trend and starting value
for each scenario and stabilization target are given by the GGI database.
The volatilities of the fuel prices are taken from [55], where yearly volatili-
ties of both gas and coal prices are estimated from historical data based on
the assumption of the prices following a geometric Brownian motion. Their
results show the gas as the fuel with highest volatility and coal the lowest
one. Biomass price volatility is assumed to be slightly higher than that of
coal, but significantly lower than that of gas [71]. Data for the electricity
price used to calculate the technology returns for the model from Chapter
7 stem also from the GGI database. The table presenting the overall set of
electricity, fuel and CO2 price parameters for each scenario and stabilization
target is presented in Appendix A.
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Chapter 3

Conditional Value-at-Risk

3.1 Introduction

One of the principal components of computational finance is portfolio opti-
mization. Historically, this problem has been approached in two ways. The
earlier, expected utility maximization, is nowadays being employed mainly in
theoretical studies. The more recent is the concept of the trade-off between
risk and return. It is currently widely being used both in theory and practice.
It is based on the assumption that investors are as a rule risk-averse. That
is, they refrain to a certain extent to buy assets that exhibit a large variance
in their returns. Typically, a risk averse investor would therefore compose
his portfolio of a combination of assets. It would consist of both assets with
lower but relatively certain expected rates of return and assets with a high
expected but less certain rate of return. It is the trade-off that matters. The
classical framework for this idea is the mean-variance approach introduced by
Markowitz [45] minimizing portfolio variance subject to a given lower bound
on expected return (or, vice versa, maximum return subject to a constraint
on variance). In this case risk is represented by variance. Even though the
mean-variance approach is capable of explaining diversification and the risk-
return trade-off in a very straightforward manner, it exhibits a number of
shortcomings. Attempts to remedy them lead to numerous alterations and
extensions of the basic model over the last decades.

One of the criticized assumptions concerns measuring risk preference by
quadratic utility. This assumption implies that the investor is indifferent to
other properties of the return distribution (such as higher order moments,
e.g. skewness and kurtosis). For this thesis, the assumption of joint normal
distribution of the asset returns is unacceptable as well. It is frequently ob-
served that returns in equity and other markets are not normally distributed,
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the same holds also for the distributions derived in the applications in the
following chapters.

For the above reason, alternative risk measures have been introduced.
Since the mid nineties, risk management in financial institutions has been
employing another (downside) measure of risk - VaR. Unlike variance, value-
at-risk (VaR) captures extreme - and thus potentially dangerous - events
by providing information on the tail of the distribution. VaR has been rec-
ognized by international regulatory bodies: the requirements of the Basel
committee on Banking Supervision ([7, 8]) are geared towards the use of
VaR. Although a step in the right direction, VaR still suffers from several
defects. First, VaR as a risk measure lacks several properties desirable for
applications in portfolio optimization. In case of general distributions (es-
pecially discrete) it is not subadditive and, consequently, it is not coherent
in the sense of [1]. Moreover, when applied to portfolio optimization, it can
exhibit multiple local extrema for discrete distributions, leading to problems
of non-convex optimization. Another shortcoming concerns the economic in-
terpretation of VaR. Being defined as a percentile of the distribution it does
not contain any information about the losses beyond that threshold. There-
fore it does not capture the downside risk in the worst cases, which may be
pertinent for many investors.

Beginning later nineties, conditional value-at-risk (CVaR) has been stud-
ied as an alternative measure of risk. Its application to financial optimization
has been first developed in [60]. CVaR, which is essentially the mean of the
tail of the distribution exceeding VaR has been proved not to suffer from the
above-mentioned caveats. It has been shown to have better properties than
VaR (see [1], [19]). [54] has proved that CVaR is a coherent risk measure with
additional desirable properties (e.g. positive homogeneity, convexity). In ad-
dition, the powerful results in [60, 59], made computational optimization on
CVaR readily accessible: they proved, that as a rule, CVaR minimization
leads to convex, or even linear optimization problems. Due to the mentioned
properties CVaR became attractive not only as a subject of research but also
for applications in practice. Let us note, though, that similar concepts have
been used in the stochastic programming literature before, albeit not in the
context of financial mathematics. The conditional expectation constraints
and integrated chance constraints (see [56]) may serve the same purpose as
CVaR.

In the following chapter we define CVaR as a risk measure and summarize
its fundamental properties. We focus on the properties that are essential for
the applications presented in next chapters, and the implications for losses
with discrete distributions in particular. Later we introduce a portfolio ap-
proach using CVaR (either in the objective or in the form of underlying
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constraints). The approach provides an optimization shortcut making (by
linear programming techniques) otherwise infeasible large-scale calculations
possible. For a more comprehensive and integrated treatment on CVaR with
complete proofs see [60, 59].

3.2 Conditional value-at-risk

3.2.1 Definition and basic properties

In decision making under uncertainty, in particular when dealing with po-
tential losses, measures of risk play an important part. The potential loss
is usually considered in a form of z = f(x, y), where x ∈ X ⊂ R

n is the
decision vector and the random vector y ∈ Y ⊂ R

m represents the uncertain
factor. Assuming the probability distribution of y is known, z is a random
variable with its distribution dependent on decision x. Assuming the decision
maker is concerned not only about the expectation of z, but also about the
risk associated with decision x, the choice of the risk measure can crucially
influence the character of the problem. The conditional Value-at-Risk is ad-
vantageous not only because its use leads to convex optimization problem,
but also because of the straightforward economic interpretation.

Let us consider a random vector y defined by a probability measure P on
a measure space Y . By f(x, y) we denote a loss function associated with the
event y, depending on a parameter x ∈ X ⊂ R

n. We assume f continuous in
x and measurable in y and such that E[|f(x, y)|] < ∞ for each x ∈ X. Let
Ψ(x, ·) denote the resulting distribution function of the loss, i.e.

Ψ(x, ξ) = P{y|f(x, y) ≤ ξ}. (3.2.1)

Let us consider a confidence level α ∈ (0, 1) (in applications usually chosen
at the levels 0.95, 0.99). The Value-at-Risk (VaR) is at this level defined as
follows.

Definition 3.2.1. The α-VaR of the loss associated with a decision x is the
value

ξα(x) = min{ξ|Ψ(x, ξ) ≥ α}. (3.2.2)

It should be noted that the minimum is attained since Φ(x, ξ) is nonde-
creasing and right-continuous in ξ. The CVaR can then be defined as

Definition 3.2.2. The α-CVaR of the loss associated with a decision x is
the value φα(x) equal to the mean of the α-tail distribution of z = f(x, y),
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where the distribution in question is the one with the distribution function
Ψα(x, ·), defined by

Ψα(x, ξ) =

{

0 for ξ < ξα(x)
[Ψ(x, ξ) − α]/[1 − α] for ξ ≥ ξα(x)

(3.2.3)

Please note that since Ψα(x, ·) is nondecreasing, right-continuous and
Ψα(x, ξ) → 1 for ξ → ∞, it is a distribution function. Thus, the α-tail
distribution is well defined.

The subtlety of the previous definition lies in the fact that it defines
CVaR well also in case of non-continuous loss distributions. It can be easily
noted, that from the definition α-CVaR dominates α-VaR in the sense that
φα(x) ≥ ξα(x).

Intuitively, CVaR can be described as the expected value of losses exceed-
ing the α−VaR, which is effectively the αth percentile of the loss distribution
(see Figure 3.1). Although correct and consistent for continuous distribu-
tions, this definition was shown to be cumbersome and ambiguous for general
distributions (especially discrete distributions). This is the reason why the
definition of CVaR is not as straightforward, although in most case it yields
the same results.

VaRα

CVaRα
α

Figure 3.1: VaR and CVaR of a loss distribution

In case the loss distribution is discrete (e.g. it is empirical, derived numer-
ically) the definition of CVaR can be further simplified. Let us suppose the
probability measure P is supported by finitely many points yk, k = 1, . . . , N
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of Y , so that for each x ∈ X the distribution of the loss z = f(x, y) is likewise
concentrated in N finitely many points, and Ψ(x, ·) is a step function with
jumps at those points.

Lemma 3.2.1. Fixing x, let those corresponding loss points be ordered as
z1 < z2 < · · · < zN , with the probability of zk being pk > 0. Let kα be the
unique index such that

kα
∑

k=1

pk ≥ α >
kα−1
∑

k=1

pk. (3.2.4)

The α-VaR of the loss is given then by

ξα(x) = zkα
, (3.2.5)

whereas the α-CVaR is given by

φα(x) =
1

1 − α
[(

kα
∑

k=1

pk − α)zkα
+

N
∑

k=kα+1

pkzk]. (3.2.6)

One of the most important findings of [59], derived for general loss distri-
butions, including the discrete ones, is the way how the α-VaR and α-CVaR
of the loss z associated with a choice of x can be calculated simultaneously by
solving an elementary optimization problem of convex type in one dimension.
Let us denote

Fα(x, ξ) = ξ +
1

1 − α
E[(f(x, y) − ξ)+], (3.2.7)

where x+ = max{0, x}. Then following holds

Theorem 3.2.1. As a function of ξ ∈ R, Fα(x, ξ) is finite and convex (hence
continuous), with

φα(x) = min
ξ
Fα(x, ξ) (3.2.8)

and moreover
ξα(x) = min{arg min

ξ
Fα(x, ξ)}, (3.2.9)

where arg min is the set of those ξ for which the minimum is attained. In
this case it is a nonempty, closed, bounded interval (possibly reducing to a
single point).

The proof of Theorem 3.2.1 for general loss distributions can be found in
[59]. The Theorem sheds light on the cardinal difference between CVaR and
VaR. It reveals the fundamental reason why CVaR is much easier to deal
with than VaR in applications to optimal portfolio choice: the minimal of φα
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as a function of parameters is much better behaved than the optimal solution
set arg min interval having ξα as its lower endpoint.

The minimization formula of Theorem 3.2.1 is particularly important in
the circumstance of Lemma 3.2.15. In this case Fα(x, ξ) is piecewise linear
with discontinuities at the loss values zk. Therefore, the arg min has to consist
either of a single point zkα

, or an interval [zkα
, zkα+1 ] between successive corner

points.
Furthermore, as proved in [59], CVaR has several favorable properties, we

summarize the ones that are relevant for the suggested portfolio applications.

Lemma 3.2.2. If f(x, y) is convex with respect to x, then φα(x) is con-
vex with respect to x as well. Indeed, in this case Fα(x, ξ) is jointly convex
in (x, ξ). Likewise, if f(x, y) is sublinear1 with respect to x, then φα(x) is
sublinear with respect to x and Fα(x, ξ) is jointly sublinear in (x, ξ).

3.2.2 CVaR portfolio model

The implications of Theorem 3.2.1 and Lemma 3.2.2 are of particular impor-
tance for portfolio optimization. Let us consider the case where f is given
by

f(x, y) = −(x1y1 + · · ·+ xnyn). (3.2.10)

Then f(x, y) represents a loss function equal to the negative portfolio profit,
where x are the shares invested into the assets with profit y. It should be
noted that since in this case f(x, y) is linear with respect to x, then f is
also sublinear and hence convex. Therefore, not only the α-CVaR connected
with the decision x can be derived by the minimization of Fα(x, ξ) according
to ξ (Theorem 3.2.1), but Lemma 3.2.2 ensures that the minimized function
is sublinear. Moreover, it also implies that the α-CVaR as a function of
x is sublinear, so that for X compact the problem of finding the decision
minimizing the risk in terms of CVaR is a convex optimization problem. The
implications of using CVaR in portfolio optimization are explained in more
detail in this section.

In the problems of optimization under uncertainty, there are two central
approaches how to use CVaR. Firstly, it can enter the objective, where the
optimization problem is to find a portfolio with a minimum CVaR (usually
with a given minimum constraint on expected profits). Alternatively, it can
be incorporated in the constraints. The optimization problem in the latter
case is to find the portfolio maximizing expected profits provided a constraint

1A function h(x) is sublinear if h(x+x′) ≤ h(x)+h(x′) and is positively homogeneous.
A function is positively homogeneous if h(λx) = λh(x) for λ > 0. Sublinearity is equivalent
to the combination of convexity with positive homogeneity; see [58].
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on the CVaR is satisfied. A considerable advantage of CVaR over VaR in that
context is the preservation of convexity as seen in Lemma 3.2.2. In numerical
applications, joint convexity of Fα(x, ξ) with respect to both x and ξ is even
more valuable than convexity of φα(x) in x. The reason can be seen in the
following results:

Theorem 3.2.2. Minimizing φα(x) with respect to x ∈ X is equivalent to
minimizing Fα(x, ξ) over all (x, ξ) ∈ X × R, in the sense that

min
x∈X

φα(x) = min
(x,ξ)∈X×R

Fα(x, ξ), (3.2.11)

where moreover

(x∗, ξ∗) ∈ arg min
(x,ξ)∈X×R

⇔ x∗ ∈ arg min
x∈X

φα(x), ξ
∗ ∈ arg min

ξ∈R

Fα(x
∗, ξ).

(3.2.12)

Corollary 3.2.1. If (x∗, ξ∗) minimizes Fα over X × R, then not only does
x∗ minimize φα over X, but also

ξα(x
∗) ≤ ξ∗. (3.2.13)

In fact, ξα(x
∗) = ξ∗ if arg minξ Fα(x

∗, ξ) reduces to a single point.

The fact that minimization of CVaR does not have to be carried out
numerically by repeated calculation of φα(x) for various decisions x means a
powerful attraction to work with CVaR.

In the case when arg minξ Fα(x
∗, ξ) does not consist of a single point

(which could easily happen in case of y being discretely distributed), the
joint minimization does not immediately yield the α-VaR associated with x∗.
It should be noted, though, that in those circumstances arg minξ Fα(x

∗, ξ) is
the interval between two consecutive points zk in the discrete distribution of
losses. In that case, therefore, ξα(x

∗) can easily be obtained from the joint
minimization as the highest zk ≤ ξ∗.

The following results allow for the use of linear programming techniques
for the double minimization in the case of portfolio optimization when y
has a discrete distribution. Let us consider a case where the decision vector
x = (x1, x2, . . . , xn) represents a portfolio of assets with xi, i.e. xi ≥ 0 for
i = 1, 2 . . . , n and

∑n

i=1 xi = 1. By y = (y1, y2, . . . , yn) we denote the random
vector of returns of the assets 1, 2 . . . , n. The profit of the portfolio is then
the sum of the profit of the individual assets multiplied by the proportions,
expressed in terms of losses as

f(x, y) = −[x1y1 + . . . xnyn] = −xT y. (3.2.14)
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Let us assume the y has a discrete probability space with elements yk (e.g. the
distribution is empirical, scenario based), k = 1, 2 . . . , N having probabilities
pk. Then the problem of minimizing CVaR is equivalent to minimizing

Fα(x, ξ) = ξ +
1

(1 − α)

N
∑

k=1

pk[−xT yk − ξ]+, (3.2.15)

over X × R. This means that the problem of finding the optimal portfolio
that minimizes the CVaR can be reduced to linear programming. In terms
of auxiliary variables uk for k = 1, . . . , N it is equivalent to minimizing

ξ +
1

(1 − α)

N
∑

k=1

pkuk (3.2.16)

subject to the linear constraints xi ≥ 0 for i = 1, 2, . . . , n,
∑n

i=1 xi = 1 where
uk ≥ 0 and

xT yk + ξ + uk ≥ 0 (3.2.17)

for k = 1, 2, . . . , N .
As already mentioned, CVaR can enter the optimal portfolio selection not

only in the objective. An alternative way is to introduce the CVaR in the
form of a constraint in the portfolio optimization.

Theorem 3.2.3. Let g : X 7→ R and let αi ∈ R, ωi ∈ R, i = 1, . . . , l.
The problem to minimize g(x) over x ∈ X subject to the constraints φαi

≤
ωi, for i = 1, 2, . . . , l is equivalent to the problem to minimize g(x) over
(x, ξ1, . . . , ξl) ∈ X × R

l satisfying Fαi
(x, ξi) ≤ ωi for i = 1, 2, . . . , l. In fact,

(x∗, ξ∗1 , . . . , ξ
∗

l ) solves the second problem if and only if x∗ solves the first
problem and the inequality Fαi

(x∗, ξ∗i ) ≤ ωi holds for i = 1, 2, . . . , l.
Moreover one has φαi

(x∗) ≤ ωi for every i and actually φαi
= ωi for each i

such that Fαi
(x∗, ξ∗i ) = ωi (i.e. such that the corresponding CVaR constraint

is active).

When X and g are convex, and f(x, y) is convex in x, we know that the
portfolio optimization is a problem of convex programming. In comparison,
analogous problems where risk is represented in terms of VaR instead of
CVaR could lead to non-convex optimization problems.

These results are relevant for portfolio application of CVaR, CVaR be-
ing defined for a loss distribution associated with a decision x. Sometimes,
however, it is also of interest to report the CVaR associated with a single dis-
tribution. We will do so especially when comparing profit of different assets,
reporting not only their mean and variance, but also the risk when measured
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by CVaR. Given a random variable y representing profit, this measure is
defined as the φα(1), where the loss function is f(x, y) = −y. Similarly the
VaR of a profit distribution is the α-th percentile of the distribution −y. In
cases when it is obvious we are interested in statistics of a single distribution,
let us refer to these values as CV aR(y), V aR(y).

Therefore, the –VaR associated with a profit distribution y represents the
profit that can be secured at the confidence level α and the –CVaR the mean
of the profits lower than –VaR. This explains why for profit distributions
we will report –VaR and –CVaR (and for cost distribution their VaR and
CVaR).

Another important feature of CVaR as a risk measure should be noted
here. Whereas the variance of a profit distribution is independent of its
mean, this is not the case of CVaR. In other words, let us consider a random
variable y representing profit. Then for any constant k ∈ R, the variance of
y + k is equal to the variance of y. However, since CVaR is in principle the
mean of the α-tail of −y, then CV aR(y + k) = CV aR(y) − k. (This also
follows from [61], where the CV aR(X−EX) was shown to be an example of
a general deviation measure of X). Therefore, risk when measured by CVaR
reflects also the mean of the underlying distribution, a higher expected profit
translating to a lower CVaR and vice-versa.
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Chapter 4

Profit distributions analysis

In the previous chapter the main short-comings of the standard mean-variance
portfolio framework have been described. We stated, that one of the major
weaknesses lies in the assumption of the assets’ returns being normally dis-
tributed. However, we did not provide any evidence to the contrary, i.e.
that the profits of individual electricity generating technologies exhibit a dis-
tribution other than a normal one. The goal of this chapter is twofold -
to describe the method for deriving the profit distributions and to inves-
tigate these profit distributions to provide a justification for the need of a
different portfolio framework. The method presented in this chapter will be
used to derive the distributions used in the portfolio models in this thesis.
Consequently, we analyze the properties of the derived distributions, trying
to show that these are not necessarily normal. This would corroborate the
need, in case of portfolios of electricity generating technologies, of a portfolio
framework possible to account also for non-normal distributions.

The framework described in the next section is primarily intended to
derive the profit distribution created by the investment into a power plant of
a specified technology.

Let us assume the investor decides to build a power plant of a given
technology with a given capacity. The resulting total cost of the whole in-
vestment through the lifetime of the power plant depend not only on several
uncertain factors, but also on the investor’s response to them. In most cases
the investor has some flexibility to optimize the operation of the power plant.
Therefore, the derived cost should reflect the cost of an individual technol-
ogy in case of optimal management under the underlying uncertainties. To
account for this fact, we propose to derive it as a solution to an optimal
investment and operation plan for a single representative cost-minimizing
electricity producer.
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4.1 Real Options model

4.1.1 Formulation

For the real options optimization we consider three technologies based on the
fuel used - gas, coal and biomass. As already mentioned, each technology
considered is analyzed separately.

We consider a producer who has to deliver a certain amount of electricity
over the course of the planning period and faces a stochastic carbon dioxide
price P . The technology used to produce electricity is fixed. The problem of
the investor is to optimize the operation of the given power plant. Indepen-
dent of the technology, the possible actions the producer can consider and
optimize are the same - the investment into and further operation (switching
on/off) of a CCS (carbon capture and sequestration) module. We assume the
decisions can be taken on a yearly basis. Although this is a simplification, in
case of real investments, as is the case of investment into a CCS module, this
is not a major distortion of reality. The investor’s problem can be formulated
as the following optimal control problem:

min
at

E[

T
∑

t=0

1

(1 + r)t
π(xt, at, Pt) + c(at)]

s. t. xt+1 = xt + at for t = 0, · · · , T
ln(Pt+1/Pt) ∼ N(µ − σ2

2
, σ2) for t = 0, · · · , T

x0 = 1
P c

0 = P 0

at ∈ A(xt) for t = 0, · · · , T,
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(4.1.1)

where xt is the state variable, at the control variable, π the yearly costs, c
the costs associated with the undertaken action, r the discount rate, µ the
drift and σ the volatility parameter of the CO2 price. The CO2 price is
assumed to follow a geometric Brownian motion. The control is considered
a Markov control in the form of a feedback sequence [31], i.e. in the form of
at = a0(t, xt, Pt) for some function a0 : R

3 → R. The possible values of the
control variable with the resulting costs are following:

at description c(at)
0 take no action zero costs
2 install the CCS module costs of the CCS module
1 switch the module on costs for switching

−1 switch the module off costs for switching

The specific values of the costs depend on the technology analyzed and are
specified in Section 2.2. The state variable describes whether the CCS module
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has been built and whether it is currently running, with A(xt) denoting the
set of feasible controls for the given state:

xt description A(xt)
0 the CCS module has not been installed yet {0, 2}
1 the CCS module has been installed but is not running {0, 1}
2 the CCS module has been installed and is running {−1, 0}

The yearly costs consists of the cost of fuel, CO2 expenses, operations and
maintenance (O&M) costs

π(x, a, P ) = qfP f + qc(x+ a)P +O&M(x+ a), (4.1.2)

where P f is the fuel price and qc, qf are the annual quantities of CO2 emitted
and fuel combusted, respectively. For all the technologies considered, we
assume the planning horizon T to be equal to thirty years, i.e. the the
lifetime of the plant (that means the power plant is new at the beginning).

4.1.2 Solution Methods

As formulated, the problem is a discrete stochastic optimal control problem
on a finite horizon. Because the performance criterion is bounded below and
the development of the stochastic variable is independent of the state and
control, the optimal control of the problem 4.1.1 exists and can be derived by
dynamic programming [9, Corrolary 3.5.1]. That means the optimal control
can be derived recursively by the Bellman equation

V (T, x, Pt) ≡ 0
V (t, x, Pt) = min

a∈A(x)
{π(x, a, Pt) + c(a)+

+ (1 + r)−1
Et[V (t+ 1, x+ a, P )|x+ a, Pt]}

(4.1.3)

as

a0(t, x, Pt) = argmin
a∈A(x)

{π(x, a, Pt) + c(a)+

+(1 + r)−1
Et[V (t+ 1, x+ a, P )|x+ a, Pt]}}.

(4.1.4)

The Bellman equation enables us to derive the value function backwards,
determining the optimal actions at the same time; the first part of the value
to be minimized are the immediate costs one would obtain upon undertaking
action a, while the second part of the sum is the so-called continuation value,
which represents the costs of the power plant from time t until the end of
the planning horizon, when it is managed optimally. There are several
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approaches how to calculate the continuation value in the Bellman equation
4.1.3. Since we assume the decisions can be done only at pre-specified points
in time, the state does not change between them. Also, the distribution
of the CO2price is independent of the state and action chosen. Therefore,
there is no problem with path-dependence and the continuation value can be
derived numerically by the discretization of carbon price and Monte Carlo
simulation.

An alternative approach is based on the financial option pricing the-
ory. We can use the fact, that the value function between the two consec-
utive decision nodes can be calculated as a solution to a partial differential
equation. The equation can be derived by applying the Ito Lemma to the
value function as a function of carbon price between two consecutive decision
nodes. Following [16] and [13], we can derive the partial differential equa-
tion, assuming there is no cashflow during the year except at the moment
of choosing an action. Since the decision can carried out only at the pre-
specified points in time, for a fixed state and action chosen at time t, the
value function V (t, xt+1, Pt) is on the interval (t, t + 1) a function of time
and carbon price only. Let us, for a fixed state x and τ ∈ (t, t + 1], denote
Wx(τ, P ) = V (τ, x, P ). The properties of Wx(τ, P ) between on [t,t+1] are
described by equation

rWx =
dWx

dτ
+ µP

dWx

dP
+

1

2
σ2P 2d

2Wx

dP 2
(4.1.5)

with initial condition

Wx(t+ 1, P ) = V (t+ 1, x, P ) (4.1.6)

and boundary condition

Wx(τ, 0) = (1 + r)τ−t−1V (t+ 1, x, 0) (4.1.7)

(4.1.8)

for τ ∈ [t, t+ 1).
The boundary condition can be explained in the following way. Because

the carbon price follows a GBM process, in case it is equal to zero, it is equal
to zero at any point in time. Therefore, the costs in each decision node are
deterministic and there is no effect of the carbon price on the value function.
Consequently, the value function in that case depends on time only through
discounting.

This means that starting with the terminal condition V (T, x, P ) = 0 the
optimal control can be computed recursively, where in each step (i.e. each
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decision node) the described partial differential equation has to be solved
numerically for each state and action feasible and the Bellman equation is
used to determine the value function in the previous decision node as

V (t, x, Pt) = min
a∈A(x)

{π(x, a, Pt) + c(a) +Wx+a(t, Pt)} (4.1.9)

and the resulting optimal actions as

a0(t, x, Pt) = argmin
a∈A(x)

{π(x, a, Pt) + c(a) +Wx+a(t, Pt)}. (4.1.10)

Both methods rely on numerical estimates of the continuation value. Both
methods were tested and they delivered the same results. Although the
method of using partial differential equations along with appropriate bound-
ary conditions is mathematically the most elegant way, this approach has
proven – once numerically implemented – computationally intensive and nu-
merically unstable for higher values of carbon price volatility. A relatively
fine price grid (for the discretization of the prices) is needed in order to ob-
tain precise results. Moreover, this approach is less flexible to variations and
extensions, indeed when using a different process for the prices a new dif-
ferential equation needs to be derived. The advantage of the Monte Carlo
approach is that it is relatively easy to alter and it can be used to look at less
standard processes. Also, it has proven to remain efficient in this framework
for a rather high degree of complexity and delivers the same results as the
partial differential equations approach.

4.1.3 Types of Results

The output of the recursive optimization part is the optimal “strategy”, i.e.
the optimal control in the form of feedback sequence defined by the derived
function a0(t, x, P ). It is a multidimensional table, which lists the optimal
action for each decision node„ for each possible state and for each possible
carbon price in that period.1 The output table can be regarded as a kind of
“recipe” for the producer, so that in each decision node he knows what to do
for each possible state occurring and for each possible realized price.

The optimal strategy does not show what properties do the realized de-
cision have. For the analysis of the final outcome, we can then simulate

1Note that the price will be discretized, so if we talk about possible instances of the
price, we mean each point in a grid between a pre-defined maximum and minimum price,
where the latter are set in such a way that they encompass 95% of all simulated price
paths.
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(10,000) possible CO2 price paths and extract the corresponding decisions
from the output matrix (or the “recipe”).

Eventually, we are interested in deriving the profit distribution (in terms
of negative costs) representing the profitability of the investment into a power
plant given that it is operated optimally in face of stochastic CO2 and fuel
prices. The real options model presented assumed only stochastic CO2 prices.
However, the fuel requirements of the power plant for a given technology
are the same both for the power plant with and without the CCS module.
Therefore, the costs for fuel are independent of the actions chosen. That
means that the derived results are optimal for the case of stochastic fuel prices
as well. This fact enables us to generate the cost distributions for an investor
facing both stochastic CO2 and fuel prices. We simulate 10,000 fuel price
paths (assuming they follow a geometric Brownian motion with parameters
specified in the previous section), which together with the optimal decisions
at are used to compute the total discounted cost for each simulation. The
profit of each simulation is thus calculated as the negative of the sum of these
costs and the capital cost needed for the installation of the power plant. The
profit distribution used as the input for the portfolio model is given by the
sample of profit for the 10,000 simulations.

In this way, the profit distributions for coal, gas and biomass technology
are derived (for given parameters on fuel and CO2 prices), the costs of the
wind plant are independent of both stochastic processes and therefore the
profit is deterministic, computed as the negative of the sum of capital cost
and discounted operations and maintenance costs.

These distributions are used as input to portfolio models presented in
Chapter 5 and Chapter 6, Section 6.3. For the models suggested in later
sections, the distributions had to be adjusted.

Distributions for the Robust portfolio model

For the portfolio model in section 6.4, the distributions need to distinguish
the time structure of the profit flows. Whereas in the basic framework a
technology was represented by a single distribution, in this case we gener-
ate a sequence of 5-year discounted profit distributions over the lifetime of
the plant for each scenario and each technology under the assumption of
annualized capital costs for all installations (i.e. the plant itself and also
any retrofitted equipment such as the CCS module). These distributions are
derived in the same way as the total cost distributions. To calculate these
distributions, we use annualized capital costs, i.e. we assume the capital
costs are distributed over the whole planning horizon, so that the sum of
the discounted yearly payments is equal to the capital costs. The cost for
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each subperiod is discounted to the beginning of the subperiod, i.e. the first
subperiod is discounted to year 0, the second to year 5 etc. In this way, the
magnitudes between the periods become comparable, each representing the
net profit of the operation of the power plant in the respective interval. In
this case, one technology is represented by 6 profit distributions, each given
by the distributions of profit in the individual subperiods.

Distributions for the Dynamic portfolio model

The dynamic portfolio model presented in Chapter 7 requires some additional
modification in the input distributions. First, we derive return distributions
instead of profit distributions. The return is calculated as the profit on a unit
of investment, i.e. it is the quotient of the sum of the discounted operations
profit (discounted to the time of investment) over the capital costs. The
operations profit consists of the profit of producing electricity minus the
operations costs.

Second, some adjustment of the parameters of the real options model
is necessary. The planning horizon is extended, investigating the effect of
investment that will be undertaken in future. The solution of the real options
model is computed not only for each technology for the case presented (i.e.
where T = 30), but also for cases where T = 35 and T = 40, where the power
plant is installed only in year 5 and 10 respectively. In this way, we have a
return distribution for each technology and each installation time.

4.2 Profit Distribution Analysis

The method for deriving the profit distribution of a given electricity gen-
erating technology was described in the previous sections. Using the data
presented in Table 2.2 the method can be used to produce the profit distri-
butions of the individual technologies. In this section we can finally analyze
the outcome and present the properties of the derived distributions.

The results presented are for the coal, gas and biomass technology, using
the B2 590ppm scenario for the carbon price (see Table A.1). The descriptive
statistics of the distributions together with the estimated correlation are
presented in Tables 4.1 and 4.2. A comprehensive summary of the statistics of
the individual technology profit distributions for each socio-economic scenario
and target can be found in Appendix B.

Two important facts can be observed in the presented tables. Firstly, for
this scenario the most profitable technology is gas, followed by biomass and
coal. Biomass is the technology with the largest variance of the profits, coal
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Parameters Biomass Coal Gas
Mean -4349.12 -4656.28 -3001.08
Standard Deviation 883.69 314.25 694.90
Sample variance 780899.64 98752.47 482890.15
Kurtosis 1.79 1.48 4.72
Skewness -0.90 -0.81 -1.61
–CVaR -6591.51 -5443.00 -4970.82

Table 4.1: Descriptive statistics of the distributions derived by the Real Op-
tions model for the B2 590ppm scenario
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Figure 4.1: Gas distribution for the B2 590ppm compared to a normal dis-
tribution with the same mean and standard deviation

with the lowest and gas being in between. However, if we measure risk by
the conditional Value-at-Risk, the relationship is different, with gas being
the least risky one. This already suggests that the optimal combination of
technologies based on CVaR could lead to significantly different conclusions
as would be the case if based on variance. Secondly, the correlation between
the individual technology chain profits is relatively small with biomass be-
ing negatively correlated with the fossil-fueled technologies. Both can be
explained by the fact that the biomass power plant, in contrary to the other
technology chains can actually gain from a stricter climate policy. This is
due to the special feature of biomass being a zero-emission technology in
the first place and a negative-emission technology upon addition of a car-
bon capture module, which will then capture a larger amount of CO2 than
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Biomass Coal Gas
Biomass 1 -0.0904 -0.0429
Coal -0.0904 1 0.0432
Gas -0.0429 0.0432 1

Table 4.2: Estimated correlation between the distributions for the B2 590ppm
scenario
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Figure 4.2: Normal probability plot for the gas distribution for the B2 590ppm
scenario

generated by the combustion of biomass minus the amount sequestered by
planting biomass as fuel. The rising CO2 prices therefore lead not only to
increasing profits, but also to the increasing volatility of the profit streams.
On the contrary, the investment into the CCS module in case of a fossil-
fueled technology leads to a sharp decrease in net emissions and therefore
to smaller fluctuations caused by the carbon price. Since the effect of the
CO2 price on the biomass and fossil-fueled technology chains is contrasting,
also the resulting correlation between them is negative. This correlation is
not very significant, due to two reasons. Firstly, the fossil fueled technology
can smooth out a significant amount of the carbon price uncertainty by the
investment into the CCS module and secondly, the profit volatility also being
caused by the uncertain fuel prices, which are assumed to be independent.

Already the skewness and kurtosis figures from Table 4.1 suggest that
these distributions are not normally distributed. This suspicion is further
corroborated by the normal probability plots of the individual distribution.
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Jarque-Bera test Lillilifors test
Biomass 2683.70 0.0604
Coal 2008.7 0.0510
Gas 13552 0.0950
Critical value 5.98 0.0091

Table 4.3: Normality test statistics for the distributions derived by the Real
Options model for scenario B2 590ppm scenario.

For a normal distribution the the normal probability plot should be a linear
function, the result for the gas distribution is shown in Figure 4.2. Alterna-
tively, a direct comparison of the gas distribution with a normal distribution
with the same mean and standard deviation is presented in Figure 4.1. The
normality was tested for all distributions using the standard normality tests -
a Jarque-Bera [42] and Lilliefors test [44]. The Jarque-Bera test is a moment
test of the null hypothesis that the sample comes from a normal distribution
with unknown mean and variance, against the alternative that it does not
come from a normal distribution. The Lilliefors test is a 2-sided goodness-
of-fit test suitable when a fully-specified null distribution is unknown and its
parameters must be estimated. It is an empirical distribution function test of
the default null hypothesis that the sample in vector x comes from a distribu-
tion in the normal family, against the alternative that it does not come from
a normal distribution. In all cases the null hypothesis was clearly rejected
in both tests at the 5% significance level. The results of the performed tests
are summarized in Table 4.3.

4.3 Conclusion

In this section we presented a method of how to derive the profit distributions
for individual electricity generating technology chains. The distributions are
in terms of negative costs. They represent the value of investment into a
power plant of a given capacity, when the power plant is operated optimally.
We assume the investor is facing stochastic carbon and fuel prices. Four
different technologies are considered, coal and gas as the representatives of
the fossil-fueled capacities and biomass and wind as the representatives of
renewable technologies. The distributions are tested for normality and found
to be non-normally distributed. This substantiates the need to use a different
framework than the mean-variance for constructing energy portfolios.
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Chapter 5

CVaR vs. M-V

5.1 Problem specification

First, let us formulate the general portfolio problem to be analyzed in this
chapter. Let us consider n assets, investment into asset i yielding profit yi.
Here y = (y1, y2, . . . , yn)

T is a random vector with known distribution. Let
us further denote xi the share of the asset i in the portfolio. Let us consider
short positions not to be allowed, therefore, the share invested into each
asset cannot be negative. The problem is to find the optimal composition of
investment, with risk as the objective and expected profit as constraint.

A portfolio is hence any x ∈ R
n satisfying

∑n
i=1 xi = 1 and x ≥ 0.

The term feasible portfolio is used in this thesis always with respect to a
specific portfolio problem and represents an arbitrary portfolio satisfying the
constraint on the expected profit that is present in the portfolio problem
considered.

We will analyze two different problems, depending on the measure of risk
chosen. The first is the standard mean-variance Markowitz framework, where
the objective is to minimize variance:

min
xi

σ2(xTy)

s.t. µ(xTy) ≥ R
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n,


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(5.1.1)

where µ is used to denote the expected value, and σ2 the variance.
The second framework uses the risk measure introduced in the previous

chapter, conditional value-at-risk. Using the same notation, where the loss
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function of the portfolio is −xT y, the problem can be formulated in the
following way :

min
xi

φα(x)

s.t. µ(xTy) ≥ R
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n,


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(5.1.2)

where the CVaR is calculated for a given confidence level α. It is important
to note that the set of feasible portfolios is the same for both problems.
Moreover, the set of feasible solutions is nonempty if and only if R ≤ maxi µi.
Therefore, in the following we will always assume R ≤ maxi µi.

5.2 Optimal portfolios for normally distributed

assets profit

The main focus of this thesis is on energy portfolios, where the profits of
underlying assets were shown to be non-normally distributed. However, let us
first investigate the case of normally distributed asset profits. This example
is useful to demonstrate the difference between the CVaR and mean-variance
portfolio approaches. In this section we will ultimately analyze the difference
in the solutions x̄MV , x̄CV aR of problems (5.1.1) and (5.1.2) with respect to
the set of portfolios constituting the efficient frontier.

However, we do not do so immediately. First, we investigate the solutions
to slightly modified problems, where the constraint on the expected profit is
given by equality:

min
xi

σ2(xT y)

s.t. µ(xTy) = R
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n,


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(5.2.3)

min
xi

φα(x)

s.t. µ(xTy) = R
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n,


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(5.2.4)
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The justification of this step will be evident later on. Now we will analyze
the optimal portfolios for problems (5.2.3) and (5.2.4). Please note that the
set of feasible portfolios is the same for both problems. Therefore, it is
sufficient to refer to the elements of this set as feasible portfolios. Moreover,
the set of feasible portfolios is nonempty if and only if R ∈ [mini µi,maxi µi].
Therefore, when analyzing the solution of problems (5.2.3) and (5.2.4) we
assume R satisfies R ∈ [mini µi,maxi µi].

Consider all feasible portfolios for an arbitrary fixed profit R. An opti-
mal portfolio is then defined as the one with the lowest variance among all
portfolios with the same R. Let us denote the solution of the problem (5.2.3)
as x̂MV (R) and the resulting portfolio variance as V (R) = σ2(x̂MV (R)) re-
spectively. It is important to realize that the V (R) is a convex function of
R.

Similarly, let us denote the solution of (5.2.4) for given R as x̂CV aR(R) and
the value of the objective attained in x̂CV aR(R) as CV aRα(R) = φα(x̂CV aR(R)).

Let us denote the mean and covariance matrix of y by µ = (µ1, µ2, . . . , µn)
T

and Σ = (sij)
n
i,j=1 respectively, where sij = σiσjρij for i 6= j and sij = σ2

i

otherwise, i.e.σ2
i is the variance of yi and ρij the correlation between yi and

yj.
Let us denote ψµ,σ2 , Ψµ,σ2 the density and distribution function ofN(µ, σ2)

respectively.
The following result is crucial for the comparison of x̂MV (R) and x̂CV aR(R),

as it reveals the relationship between CVaR and variance for assets profit be-
ing normally distributed.

Lemma 5.2.1. Let y be normally distributed, y ∼ N(µ,Σ). Then

φα(x) = −xTµ+
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
xTΣx.

Proof: According to Theorem 3.2.2

φα(x) = min
ξ
Fα(x, ξ), (5.2.5)

where

F (x, α) = ξ +
1

1 − α
E[(−xT y − ξ)+]. (5.2.6)

Since y is normally distributed, the profit z = xT y of a portfolio defined by
the shares x is also normally distributed. Let us denote m = µ(z) = xTµ the
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mean and v2 = σ2(z) = xTΣx the variance of z. Then

E[(−xT y − ξ)+] =

∫

−ξ

−∞

(−z − ξ)
1√

2πv2
e−

(z−m)2

2v2 dz

=

∫

−ξ

−∞

(−z +m−m− ξ)
1√

2πv2
e−

(z−m)2

2v2 dz

=
v√
2π

[e−
(z−m)2

2v2 ]−ξ
−∞

+ (−m− ξ)Ψm,v2(−ξ)

= vψ0,1(
−ξ −m

v
) + (−m− ξ)Ψ0,1(

−ξ −m

v
)

Since Fα(x, ξ) is convex (Lemma 3.2.2), φα(x) = minξ Fα(x, ξ) is attained at
ξ solving the first order condition

∂Fα(x, ξ)

∂ξ
= 0. (5.2.7)

From 5.2.7 it follows

∂Fα(x, ξ)

∂ξ
= 1 − 1

1 − α

ξ +m

v
ψ0,1(

−ξ −m

v
) +

+
1

1 − α

ξ +m

v
ψ0,1(

−ξ −m

v
) − 1

1 − α
Ψ0,1(

−ξ −m

v
)

= 1 − 1

1 − α
Ψ0,1(

−ξ −m

v
)

Therefore the minξ Fα(x, ξ) is attained for ξ = −m− vΨ−1
0,1(1 − α) and

φα(x) = Fα(x,−m− vΨ−1
0,1(1 − α))

= ξ +
v

1 − α
ψ0,1(Ψ

−1
0,1(1 − α)) + (−m− ξ)

= −m+
v

1 − α
ψ0,1(Ψ

−1
0,1(1 − α))

= −xTµ+
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
xTΣx.

�

In other words, Lemma 5.2.1 reveals that for normally distributed asset
profits

φα(x) = −µ(xTy) +
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
σ2(xTy) (5.2.8)
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Since for any feasible portfolio µ(xTy) = R, the problem (5.2.4) is for
normally distributed assets equivalent to:

min
xi

σ2(xT y)

s.t. µ(xTy) = R
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n.
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(5.2.9)

This only implies following:

Theorem 5.2.1. For normally distributed assets the solution x̂MV (R) of the
problem (5.2.3) is equal to the solution x̂CV aR(R) of problem (5.2.4) for any
R ∈ [mini µi,maxi µi].

Although it may seem that Theorem 5.2.1 proves, that for normally dis-
tributed assets are both frameworks equivalent, this is not the case. For the
derived result it was crucial to formulate the problem with the constraint on
the expected profit given by equality. However, in reality it is more sensible
to formulate the problems with the constraint in the form of equality, i.e. as
problems (5.1.1) and (5.1.2).

We will show that for this formulation the optimal portfolios of the two
frameworks are not necessarily the same.

First, we need to prove the following result:

Lemma 5.2.2. The function CV aRα is convex in R.

Proof: Let R1, R2 ∈ R. Then x = λx̂CV aR(R1) + (1 − λ)x̂CV aR(R2) is a
feasible portfolio for problem (5.2.4) for R = λR1 + (1 − λ)R2. Moreover,

CV aRα(R) ≤ φα(x) ≤ λφα(x̂CV aR(R1)) + (1 − λ)φα(x̂CV aR(R2))

= λCV aRα(R1) + (1 − λ)CV aRα(R2).

where the first inequality holds because CV aRα(R) is minimal among feasi-
ble portfolio and the second follows from the convexity of φα in x. �

Therefore, CV aRα(R) is a convex function defined on the compact in-
terval [mini µi,maxi µi]. Hence, R̂CV aR = arg minRCV aRα(R) exists, and
CV aRα(R) is a decreasing for R ∈ [mini µi, R̂CV aR] and increasing for R ∈
[R̂,maxi µi]. Therefore, the solution x̄CV aR of the problem (5.1.2) is given by

x̄CV aR(R) =

{

x̂CV aR(R̂CV aR) R < R̂CV aR

x̂CV aR(R) R ≥ R̂CV aR

(5.2.10)
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Moreover, x̂CV aR(R̂CV aR) is the solution of a portfolio selection problem with-
out any constraint on the expected profit:

min
xi

φα(x)

s.t.
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n.















(5.2.11)

Similarly, for the mean-variance portfolio framework. V (R) is convex
in R, R ∈ [mini µi,maxi µi]. Thus, there exists R̂MV = arg minR V (R).
Furthermore, the solution x̄MV of the portfolio problem (5.1.1) is given by

x̄MV (R) =

{

x̂MV (R̂MV ) R < R̂MV

x̂MV (R) R ≥ R̂MV

(5.2.12)

Additionally, x̂MV (R̂MV ) is the solution of

min
xi

σ2(xT y)

s.t.
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n.















(5.2.13)

The relationship between R̂MV and R̂CV aR is described by the following
Lemma:

Lemma 5.2.3. R̂MV ≤ R̂CV aR

Proof: Proof by contradiction. Let us assume R̂MV > R̂CV aR. Using the
expression for CVaR from Lemma 5.2.1 we get

CV aRα(R̂CV aR) ≤ CV aRα(R̂MV ) ≤ φα(x̂MV (R̂MV ))

= −x̂MV (R̂MV )Tµ+
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
σ(x̂MV (R̂MV ))

= −R̂MV +
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
σ(x̂MV (R̂MV ))

< −R̂CV aR +
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
σ(x̂CV aR(R̂CV aR))

= −x̂CV aR(R̂CV aR)Tµ+
ψ0,1(Ψ

−1
0,1(1 − α))

1 − α
σ(x̂CV aR(R̂CV aR))

= φα(x̂CV aR(R̂CV aR)) = CV aRα(R̂CV aR)



5.2 CVaR vs. M-V 61

where the first inequality follows from the definition of R̂CV aR, the second
from definition of CV aRα and the last inequality stems from both the defi-
nition of R̂MV and from the assumption R̂MV > R̂CV aR. �

Although this proves, that R̂MV ≤ R̂CV aR, it does not specify, whether
there exist a case where R̂MV < R̂CV aR. The following Lemma illustrates,
that such a case is indeed possible.

Lemma 5.2.4. If x̂MV (R̂MV ) > 0 and µi 6= µj for some i, j, then R̂MV 6=
R̂CV aR.

Proof: Proof by contradiction. Let us assume R̂MV = R̂CV aR. By Lemma
5.2.1, we have x̂CV aR(R̂CV aR) = x̂MV (R̂MV ).

For z = (z1, . . . zn−1)
T ∈ R

n−1 let us denote ηMV (z) = σ2(xTy), where
x = (z1, . . . , zn−1, 1−

∑n
i−1 zi). Further let us by ẑi denote the i-the coordinate

of x̂MV (R̂MV ), i = 1, . . . n − 1. We know that x̂MV (R̂MV ) is the solution of
(5.2.13), therefore ẑ is the solution of

min
z∈Z

ηMV (z) (5.2.14)

where Z = {z ∈ R
n−1 : z ≥ 0,

∑n

i=1 zi ≤ 1}. The assumption x̂MV (R̂MV ) > 0
implies that the minimum of ηMV (z) on Z is attained in the interior of Z
and therefore, ẑ is a stationary point of ηMV (z).

Similarly, let us denote ηCV aR(z) = φα(x), where x = (z1, . . . , zn−1, 1 −
∑n

i−1 zi). By analogy, ẑ is also a stationary point of ηCV aR(z).
By Lemma 5.2.1 we have

ηCV aR(z) = −µn − zT ζ + kηMV (z) (5.2.15)

where k =
ψ0,1(Ψ−1

0,1(1−α))

1−α
and ζ = (µ1 − µn, . . . , µn−1 − µn). Thus

0 =
∂ηCV aR(z)

∂z
|z=ẑ (5.2.16)

= −ζ + k
∂ηMV (z)

∂z
|z=ẑ (5.2.17)

= −ζ (5.2.18)

This implies µi = µn for any i, which yields the contradiction. �

Note, that this condition is fulfilled for example in case Σ = σ2I, µ 6= 0,
since for independent assets with the same variance the share of each asset
in x̂MV (R̂MV ) is equal to 1

n
.



5.2 CVaR vs. M-V 62

Lemma 5.2.4 implies, that if all assets are present in x̂MV (R̂MV ) and the
expected profit of the underlying assets is not equal, then R̂MV < R̂CV aR.
And by 5.2.10 and 5.2.12 we have that for R < R̂CV aR portfolio x̄MV (R)
yields profit max(R, R̂MV ) whereas the profit of x̄CV aR(R) is R̂CV aR. Thus,

x̄MV (R) 6= x̄CV aR(R). (5.2.19)

Lemma 5.2.3 and 5.2.4 reveal an interesting observation. Let us recall,
that x̂MV (R), x̂CV aR(R) are the solutions of (5.2.3) and (5.2.4) respectively,
with V (R), CV aRα(R) being the values of the objective attained it the opti-
mal solution. In turn, R̂MV and R̂CV aR are the arguments, where the global
minimum of V (R) and CV aRα(R) with respect to R is attained, respec-
tively. This result, therefore, reveals that even though the optimal shares of
(5.2.3) and (5.2.4) are the same, the the global minimum of the values of the
objective can be attained for different arguments.

Furthermore, since both x̂MV (R̂MV ) and x̂CV aR(R̂CV aR) are the solution
to the unconstrained portfolio problems (5.2.13), (5.2.11) respectively, they
represent the optimal portfolios for investors that choose the portfolio with
minimum risk without any concern about the resulting profit. The Lemma
5.2.3 implies, that decisions based on CVaR will always be superior to those
based on variance with respect to expected profit.

These results are of particular importance for the comparison of the ef-
ficient frontiers of both portfolio frameworks. For the mean-variance frame-
work, the term "efficient frontier" is closely linked to the solutions of problem
(5.1.1). Every possible asset combination can be plotted in the variance-profit
space, and the collection of all such possible portfolios defines a region in this
space. The line along the upper boundary of this region is known as the ef-
ficient frontier (sometimes "the Markowitz frontier"). In other words, the
efficient frontier is the graph drawn in the variance-profit space represent-
ing a set of portfolios for which one cannot improve both risk and profit.
We will investigate the set of portfolios constituting the efficient frontier,
which we denote by EFMV . From the definition of the efficient frontier,
EFMV is a set consisting of the solutions to the problem (5.1.1) for varying
R, i. e. EFMV = {x̂MV (R̂), R ≥ R̂MV }. Similarly, the efficient frontier
for the CVaR framework can be defined as a graph depicting the set of the
solutions (EFCV aR) to the problem (5.1.2) in the CVaR-profit space, i.e.
EFCV aR = {x̂CV aR(R̂), R ≥ R̂CV aR}. We conclude this section with the
relationship between the efficient frontiers EFMV , EFCV aR.

Theorem 5.2.2. For normally distributed assets EFCV aR ⊂ EFMV .

Proof: This follows directly. Let x ∈ EFCV aR, then x = x̂CV aR(R̄) for
some R̄ ≥ R̂CV aR. According to Theorem 5.2.1, x̂MV (R̄) = x̂CV aR(R̄). And
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according to Lemma 5.2.3 R̄ ≥ R̂CV aR ≥ R̂MV , which implies x = x̂MV (R̄) ∈
EFMV . �

The results imply that although the solutions of problems (5.2.3) and
(5.2.4) are the same for any choice of R , this does not necessarily hold
for the solutions of (5.1.1) and (5.1.2) in case of normally distributed assets
profit.

5.3 Energy Portfolios

The idea of the framework proposed in this section is to combine portfolio
optimization with the results derived by the real options model from Chapter
4. The general concept and the underlying assumptions have already been
explained in Chapter 2. Let us recall, that the portfolio model is supposed
to provide the optimal energy mix under the optimal operation of individual
power plants. That is, we use the real options model to find the optimal
operation strategy for a given technology chain and its implied profit distri-
bution; the profit distribution is then employed as the input into the portfolio
optimization.

We first present the formulation of the CVaR portfolio model to be used
to compute the results presented afterwards. Then we discuss the difference
between the mean variance framework and the suggested model in case of
investment into electricity generating capacities, using the distributions pro-
duced by the real options model. Finally, we use the framework to illustrate
the impact of different climate policy assumptions on the resulting optimal
energy mix.

5.3.1 Portfolio model formulation

Let us consider n different assets, which in this case represent the different
power generating capacities (e.g. coal plus CCS as the first "chain", biomass
plus CCS as the second one, wind as a single technology etc). The profits of
the assets are a random vector y ∈ R

n with the discrete uniform distribution
over values yk, k = 1, 2, . . . , N , where yk = (yk1 , y

k
2 , . . . , y

k
n)
T ∈ R

n. We
describe the investment strategy by vector x = [x1, . . . , xn]

T ∈ R
n, the scalar

value x1, i = 1, . . . , n standing for the portion of capital invested into the
technology chain i. Since the assets represents real power plants, we assume
that no short positions are possible. A portfolio it thus any element of set
X, where

X = {x ∈ R
n;

n
∑

i=1

xi = 1, x ≥ 0 for i = 1, 2, . . . , n}. (5.3.20)
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The profit function xTy depends on the chosen investment strategy and on
the profit of the underlying assets. Because the actual value of the profits is
unknown, there is some risk associated with each investment strategy x. The
investor chooses the "best" portfolio as the one minimizing the risk. As the
measure of risk we employ the conditional Value-at-Risk for the loss function
f(x, y) defined as negative profits f(x, y) = −xT y. According to Theorem
3.2.2, the problem of minimizing CVaR with respect to the investment strat-
egy is equivalent to the problem of minimizing Fα(x, ξ) with respect to both
x and ξ. By (3.2.15) for discretely distributed y and f(x, y) given by the
portfolio loss function we have

Fα(x, ξ) = ξ +
1

N(1 − α)

N
∑

k=1

(−xT yk − ξ)+. (5.3.21)

Let us denote by m = 1
N

∑N
k=1 y

k the vector of expected profit of the indi-
vidual assets. The problem to find a portfolio minimizing the conditional
Value-at-Risk of its losses given a constraint R on its expected profit can be
according to 3.2.16 formulated as follows:

min
(x,ξ,uk)

ξ + 1
N(1−α)

N
∑

k=1

uk

s.t.
∑n

i=1 xi = 1
xTyk + ξ + uk ≥ 0, k = 1, 2, . . . , N
xTm ≥ R
uk ≥ 0, k = 1, 2, . . . , N
xi ≥ 0 i = 1, 2, . . . , n

(5.3.22)

Part (x∗, ξ∗) of the solution of the LP problem (5.3.22) yields the optimal
investment strategy x∗ with minimal α-CVaR. ξ∗ is the corresponding thresh-
old of the loss function and an upper bound of VaR. Problem (5.3.22) is a
linear programming (LP) problem, with N + n + 1 variables, and N + 1
and constraints. For the applications presented we use N = 10, 000 and
n ∈ {3, 4}. The solution of this problem is computed with the help of GAMS
using the simplex CPLEX solver.

5.3.2 Comparison with the MV framework

Before presenting the overall results of optimal portfolio composition involv-
ing all technologies for different CO2 price scenarios, let us first compare the
the model with the results of the mean- variance framework.

Consider only three technology chains for now - coal, gas and biomass
(each with the option to add a CCS module). Using the price parameters for
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R̂ Gas share Bio share Coal share
Variance -4387.8 13.99 % 11.99 % 74.01 %
Conditional Value-at-Risk -4003.1 36.47 % 16.14 % 47.40 %

Table 5.1: Comparison of MV and CVaR approach. Shares and expected
profit of the optimal portfolios for the unconstrained problem.
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Figure 5.1: Technology shares - MV and CVaR approach comparison

the ‘B2’ 590 ppm scenario, we use the real options model from Chapter 4 to
produce the profit distribution for each technology. The descriptive statistics
for these distributions were presented in Section 4.2. Let us recall that coal
was characterized by both the lowest mean and lowest variance, gas by the
highest mean and biomass by the highest variance.

The estimated mean and variance (Table 4.1) of the assets’ profit are
used as the parameters for the mean-variance portfolio problem (5.1.1). For
a range of constraints R on the expected profit x̂MV (R) is calculated an-
alytically according to Appendix A. Also, the solution x̂MV (R̂MV ) of the
unconstrained problem (5.2.13) and the resulting expected portfolio profit R̂
is derived. For the same set of constraints we compute the solution x̂CV aR(R)
of the CVaR portfolio optimization problem (5.3.22) using the distributions
from the real options model. Similarly, also the solution of the unconstrained
CVaR optimization problem x̂CV aR(R̂CV aR) and the resulting R̂CV aR are com-
puted.

Table 5.1 summarizes the results for unconstrained models, showing both
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Figure 5.2: The efficient frontier - MV and CVaR approach comparison

the the shares and the expected profit.
For the unconstrained problems the difference in the resulting portfolios

is significant. We observe a similar feature to the case of normally distributed
profits, namely that R̂CV aR ≥ R̂MV . This means that in case the expected
profit constraint is not present in the optimization problem, the investor using
CVaR is rewarded by a higher expected profit than the one using the mean-
variance framework Apart from this, we see that the shares of individual
technologies differ noticeably. Whereas the mean-variance portfolio relies
heavily on coal, in case of CVaR one third of the portfolio is constituted of
gas. Biomass does not play a major role in either case, which is caused by the
extremely high variance without any significant profit. The shift from coal
to gas can be explained easily. As has been argued in Chapter 4 (Table 4.1),
the gas distribution is characterized by the lowest risk in terms of CVaR,
whereas coal is characterized by the lowest variance.

The optimal portfolios for CVaR portfolio problem(5.3.22) and the mean-
variance portfolio problem (5.1.1) are shown in Table 5.2 for a range of con-
straints R on the minimum expected profit. These are also depicted on Figure
5.1.

We see that as the constraint on the minimum expected profit increases,
the results of both approaches grow more similar, as was the case for normally
distributed asset profits. This is caused partly by the fact, that we consider
only three technologies, which implies that as the constraint gets binding
(R ≥ R̂CV aR), the share of one technology is given by the shares of the other
two so that the constraint on expected profit is met. However, whereas for
normal distributions the optimal portfolios were equal for R ≥ R̂CV aR, in
this case a noticeable discrepancy can be observed.
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R CV aRGas CV aRBio CV aRCoal MVGas MVBio MVCoal
-3001.07 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
-3300 77.83% 22.18% 0.00% 79.50% 13.17% 1.21%
-3316 76.64% 23.36% 0.00% 78.53% 13.15% 7.34%
-3317 76.57% 23.41% 0.03% 78.47% 13.15% 8.38%
-3350 74.63% 23.10% 2.27% 76.49% 13.11% 10.40%
-3400 71.77% 22.25% 5.98% 73.48% 13.06% 13.47%
-3600 60.11% 19.99% 19.90% 61.43% 12.84% 25.72%
-3800 48.43% 17.81% 33.76% 49.39% 12.63% 37.98%
-4003.13 36.47% 16.14% 47.40% 37.16% 12.41% 50.43%
-4100 36.47% 16.14% 47.40% 31.32% 12.30% 56.37%
-4387.8 36.47% 16.14% 47.40% 13.99% 11.99% 74.01%

Table 5.2: Comparison of MV and CVaR approach. Shares and expected
profit of the optimal portfolios depending on the constraint on the expected
profit.

However, the shares are not the only important result of the optimiza-
tion frameworks. Comparison of the CVaR attained in the individual opti-
mal portfolios is at least as much important. It shows how much risk can
be avoided by employing the more appropriate framework. Figure 5.2 de-
picts the relationship between the profit constraints and the resulting risk
of the optimal portfolio measured by CVaR for the two approaches. The
CVaR approach naturally shows better performance, since the objective of
the mean-variance approach is different. On the other hand, we also see that
in case R ≥ R̂CV aR, this effect is almost negligible. Therefore, the difference
between the results these two frameworks deliver, is significant only for in-
vestors, who care mostly about risk and much less about the profits gained
by the investment.

5.3.3 Climate Policy impact

Now let us analyze the optimal portfolios for different climate policy scenar-
ios, using the full set of technologies for all climate policy scenarios. In this
case we introduce the constraint on the use of renewables that was already
mentioned in Section 2.4. The renewables share (i.e. wind and biomass) is
limited to 50%, because of spatial constraints. Whereas in Section 5.3.2 we
investigated the effect of different profit constraints, in this section we focus
on the composition of the portfolio under different levels of CO2 price. We
compare the results of the CVaR97 portfolio model without the constraint on
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Scenario Target Exp. Profit Gas Bio Wind Coal

‘B1’ 590 -4041.76 13.71% 0.00% 50.00% 36.29%
‘B2’ 590 -4126.41 19.90% 1.05% 48.95% 30.10%
‘A2r’ 590 -4251.33 21.47% 10.03% 39.97% 28.53%
‘B1’ 520 -4265.50 18.27% 9.74% 40.26% 31.73%
‘B2’ 520 -4013.70 25.09% 16.58% 33.4% 24.91%
‘A2r’ 520 -3594.66 50.00% 50.00% 0.00% 0.00%
‘B1’ 480 -1314.34 50.00% 50.00% 0.00% 0.00%
‘B2’ 480 -2246.74 50.00% 50.00% 0.00% 0.00%
‘A2r’ 480 193.27 50.00% 50.00% 0.00% 0.00%

Table 5.3: Technology shares given by the solution of the basic model across
different climate policy scenarios

the expected profit, representing an investor interested only in minimizing
the risk of investment.

To better understand the results, let us recall that whereas the variance
of a profit distribution is independent of its mean, this is not the case of
CVaR. Therefore, even though we analyze the results of the CVaR portfolio
model without the constraint on expected profit, the expected profit is still
accounted for in the objective, a higher expected profit translating to a lower
CVaR.

The optimal portfolio composition for each socio-economic scenario and
emission concentration target is presented in Table 5.3. Let us recall, that
targets measure the stringency of the chosen climate policy. A higher target
represents a more lenient policy, whereas lower values lead to a higher CO2

price. Therefore, it is natural that the portfolio moves to less CO2 intensive
technologies as the target decreases. We see that in all cases the constraint
on the renewables is binding, with biomass playing the leading role for strict
targets. We also see the shift from coal fired powerplants to gas as for higher
CO2 prices.

It may seem somewhat counterintuitive, though, that the expected profit
of the optimal portfolio is higher for stricter targets. This is caused by the
combination of two facts. First, a biomass power plant gets significantly
more profitable for higher CO2 costs due to its negative emissions property.
Second, although the the profit of the fossil-fueled technologies suffers if
the policy is strict, the difference in profits is relatively small compared to
biomass, since with a CCS module the CO2 emissions drop significantly.

We noted, that although we do not introduce a constraint on the expected
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profit, the CVaR itself accounts for it. This explains why biomass constitutes
such a substantial part of the optimal portfolio for the stricter targets. Al-
though this gain is also reflected in the variance increase, the effect on risk
in terms of CVaR is not as pronounced because of the significant expected
profit.

When comparing different socio-economic scenarios, we see that the prof-
its and composition of the portfolio for the ‘A2r’ are usually close to the
results of ‘B1’, or ‘B2’ for a stricter target, where the difference between the
‘B1’, or ‘B2’ portfolios is minor.

In general, we see that the optimal portfolios differ significantly, in partic-
ular when comparing results for different targets. Whereas for strict targets
the portfolio consists solely of gas and biomass for any scenario considered,
high targets rely mostly on a combination of coal and wind. The differences
in shares between scenarios for a given target are less pronounced, with the
single exception of the 520 ppm target. Concerning the resulting expected
profit, we see that again the target is the key driver. For a given target the
expected profit if the optimal portfolio stays comparable across scenarios,
except for the case of 590 ppm.

This section provided insights as to how a specific climate policy affects
the optimal energy mix. However, in reality we do not know, which scenario
- target combination best represents the future development of the climate
policy. Hence, it is a pertinent question to ask, which portfolio is optimal if
at the decision moment there is no information available as to which scenario
will materialize. This question can not be answered by the basic portfolio
model. Therefore, the model is modified in the next chapter to provide an
answer this question.
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Chapter 6

Robust Portfolios

6.1 General formulation

Below we present an extension of the model formulated in Chapter 5. Similar
to Chapter 5, let us consider n assets. However, in this case the investment
into asset i results in profit ysi , where ys ∈ R

n, is a random vector with known
distribution depending on scenario s ∈ {1, 2, . . . , S}. Let us further denote
by xi the share of the asset i in the portfolio without short positions.

The problem we try to answer in this section is how to find the optimal
composition of the portfolio, if the distribution of ys for a given scenario is
known, but at the decision moment it is not known which scenario will mate-
rialize. Without this knowledge, the investor tends to invest in a combination
of the underlying assets performing well in each of them. We suggest the fol-
lowing solution: the investor chooses a portfolio that performs best under the
worst scenario possible, performance is measured by the conditional-value-at
risk.

Such a portfolio is a solution of the following problem:

minx maxs φ
s
α(x)

s.t.
∑n

i=1 xi = 1
xi ≥ 0 for i = 1, . . . , n







(6.1.1)

where the φsα denotes the α-CVaR associated with the loss function −xT ys
of the portfolio for scenario s.

In other words, we apply a minimax approach (minimizing the maximal
possible loss) to value the performance of the portfolio under the different
scenarios. This approach is quite common in game theory, originally formu-
lated for two-player zero-sum games. The crucial feature of minimax decision
making is that it is non-probabilistic, in contrary to decision based on ex-
pected value or expected utility.
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Prior to presenting the model for uniformly discretely distributed asset
profit, let us analyze the robust portfolio model (6.1.1) in general. It was
shown in Chapter 3 that the CVaR portfolio model leads to a convex opti-
mization problem. We show that this pleasant feature is preserved also in
this extension. Since the set of feasible solutions is convex, it is sufficient to
prove the following.

Theorem 6.1.1. The function G(x) = maxs φ
s
α(x) for the loss function

−xT ys is convex in x.

Proof: We will show that G(λx1 + (1 − λ)x2) ≤ λG(x1) + (1 − λ)G(x2) for
any x1, x2 ∈ R

⋉ and λ ∈ [0, 1]. Since for any s the φsα(x) is convex in x in
case of the loss function considered,we have

φsα(λx1 + (1 − λ)x2) ≤ λφsα(x1) + (1 − λ)φsα(x2) (6.1.2)

for any s. Also, we know that G(x) = φs̄α(x) for some s̄ from the definition
of G. Hence

G(λx1 + (1 − λ)x2) = φs̄α(λx1 + (1 − λ)x2) (6.1.3)

≤ λφs̄α(x1) + (1 − λ)φs̄α(x2)

≤ λG(x1) + (1 − λ)G(x2).

�

6.2 Energy Portfolios

Now we can proceed to the case of the assets profit being discretely uniformly
distributed. This is also the case of the distributions stemming from the real
options model. Let us assume that the assets profit distribution in scenario s
is given by the sample {yks}Nk=1, where yks ∈ R

n for k = 1, . . . , N . Substituting
the formula for φα for such distributions (3.2.15) we get the formulation of
model (6.1.1) for this case as:

min
x

maxs minξs(ξs + 1
N(1−α)

∑N

k=1(−xT ysk − ξs)
+)

s.t.
∑n

i=1 xi = 1
xi ≥ 0 for i = 1, 2 . . . , n











(6.2.4)
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We show that this formulation is equivalent to the following problem:

min
(x,ξ,u,v)

v

s.t. v ≥ ξs + 1
N(1−α)

∑N
k=1 u

s
k for s = 1, . . . , S

ξs + xTysk + usk ≥ 0 for s = 1, . . . , S, k = 1, . . . N
∑n

i=1 xi = 1
xi ≥ 0 for i = 1 . . . , n
usk ≥ 0 for s = 1, . . . , S, k = 1, . . .N



































(6.2.5)

Theorem 6.2.1. The quadruple (x∗, ξ∗, u∗, v∗), x∗ ∈ R
n, ξ∗ ∈ R

S, u∗ ∈
R
N ×R

S and v ∈ R is the solution of problem (6.2.5) if and only if x∗ is the
solution of problem (6.1.1). Moreover, one has

v∗ = max
s

min
ξs

(ξs +
1

N(1 − α)

N
∑

k=1

(−(x∗)Tysk − ξs)
+). (6.2.6)

Proof: It is important to realize following general rules hold:

max
m∈M

F (m) = min
w

{w : w ≥ F (m), ∀m ∈M} (6.2.7)

min
m∈M

F (m) = max
w

{w : w ≤ F (m), ∀m ∈M} (6.2.8)

min
w

{w : w ≥ min
m∈M

F (m)} = min
w,m∈M

{w : w ≥ F (m)} (6.2.9)

Using rule (6.2.7) yields

A = min
x

max
s

min
ξs

(ξs +
1

N(1 − α)

N
∑

k=1

(−xT ysk − ξs)
+) (6.2.10)

= min
x

max
s

min
ξs

(ξs +
1

N(1 − α)

N
∑

k=1

min
uk

s

usk) (6.2.11)

with usk satisfying
usk ≥ −xT ysk − ξs, usk ≥ 0 (6.2.12)

for ∀(k, s), i.e. s = 1, . . . , S and k = 1, . . .N . Furthermore, (6.2.8) and
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(6.2.9) imply

A = min
x

max
s

(min
us

k
,ξs

[ξs +
1

N(1 − α)

N
∑

k=1

usk]) (6.2.13)

= min
x

min{v : v ≥ min
us

k
,ξs

[ξs +
1

N(1 − α)

N
∑

k=1

usk], ∀s} (6.2.14)

= min
x

min
ξ,u

{v : v ≥ ξs +
1

N(1 − α)

N
∑

k=1

usk, ∀s} (6.2.15)

= min
x,ξ,u

{v : v ≥ ξs +
1

N(1 − α)

N
∑

k=1

usk, s = 1, ∀s} (6.2.16)

which yields the desired result. �

This implies that the problem of finding robust portfolios can be reduced
to a linear programming problem. In this case the problem comprises Ns+
n+ s+ 1 variables and SN + S + 1 constraints. The solution for this model
in the numerical applications was calculated by GAMS using the CPLEX
solver. In the following applications we use the same parameters concerning
the technologies and confidence level as in Section 5.3.3, in order to be able
to compare back to the results of the basic framework presented there. That
means we consider four technologies: biomass, coal and gas (all with the
option of CCS) and wind, with the constraint limiting the share of renewables
up to 50 %. The confidence level α is assumed 97%. What differs, however, is
the set of scenarios over which the portfolio should be robust. Let us further
refer to this set as the robust range.

6.3 Response to Climate Policy Uncertainty

In Chapter 5 we investigate the optimal portfolio composition of electricity
generating capacities for different climate policy scenarios. The results vary
greatly depending on the scenario and target chosen, moving from a gas-
biomass preference for the strict policies to an energy mix relying on wind,
followed by coal and gas. We see that targets have a stronger impact on the
optimal energy mix than the socio-economic scenarios. In fact, except for
the 520 ppm case, for a fixed target optimal portfolios were rather similar
across soico-economic scenarios.

In reality, it is still unclear which scenario and target combination is the
best prediction for the future development. However, as has been already
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Scenario Gas share Biomass share Wind share Coal share

‘B1’ 18.27% 9.74% 40.26% 31.73%
‘B2’ 24.06% 14.44% 35.56% 25.94%
‘A2r’ 21.47% 10.03% 39.97 28.53%
480ppm 50.00% 50% 0% 0%
520ppm 18.27% 9.74% 40.26% 31.73%
590ppm 21.47% 10.03% 39.97% 28.53%
All 21.47% 10.03% 39.97 28.53%

Table 6.1: Technology shares across different robust ranges

mentioned, there is a strong need for the replacement of aging capacities in
the OECD countries, where some of the investment will occur before this
uncertainty about the direction of both socio-economic conditions and the
target is resolved. Therefore, it is of interest to analyze the composition of
portfolios of electricity generating capacities that are robust across different
climate policy scenarios.

In Section 5.3.3 we present the results of the basic CVaR portfolio model
for each of 9 possible combinations of both socio-economic scenarios and tar-
gets. In this section we investigate what is the composition of portfolios that
are robust across a subset of these 9 combinations. Precisely, we investigate
portfolios that are robust across targets for a given socio-economic scenario,
as well as portfolios that are robust across socio-economic scenarios for a
given target. In addition, we look for the portfolio that is robust across
any possible climate policy development, i.e. across all nine combinations of
scenarios and targets.

The results of the robust portfolio optimization for different robust ranges
are presented in Table 6.1. The rows indicate the robust ranges, the first three
rows showing the portfolios robust across scenarios, e.g. 480 ppm denotes
the case where the target is fixed at 480 ppm and the robust range consists
of ‘A2r’ 480 ppm, ‘B1’ 480 ppm and ‘B2’ 480 ppm. The middle part gives
the portfolios robust across targets for a fixed scenario and the last row refers
to a case where the solution has to be robust across all nine scenario-target
combinations. The shares are also depicted in the Figure 6.1, so that the scale
of the differences between the individual robust portfolios is easily observed.

First let us focus on the difference between scenarios for a fixed target.
We see that if we incorporate the need to make a robust decisions, the original
CVaR portfolio results (Table 5.3) change. The only exception is the case
of the 480ppm target, where even the basic portfolio model suggests the
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Figure 6.1: Technology shares across different robust sets

same optimal portfolio, independent of the scenario choice. For the 590
ppm target, the robust portfolio contains over 10% of biomass, whereas in
the basic portfolio framework this is the case only in one socio-economic
scenario, the share of biomass in the other two is basically zero. A similar
effect is present in case of gas. However, since the basic model results for the
590 ppm target are quite similar across the scenarios, the need to be robust
across scenarios does not cause a significant transition. When analyzing
the optimal portfolios for a given scenario and target with the basic model
in Section 5.3.3, we saw the most significant difference between investment
responses to climate policy assumptions ocurred for the 520ppm target. The
shares ranged from a half-half combination of gas and biomass on one hand
to a coal and wind based energy mix on the other. For the 520 ppm target,
the robust framework recommends a coal and wind combination, with a little
addition of the other two technologies.

A similar shift can be seen when focusing on the robustness across targets
for a given scenario. Even though the basic CVaR model recommends the
50-50% combination of gas and biomass for the 480 ppm target, if we need to
choose a portfolio that is robust across all targets, this combination in never
optimal. The investor chooses a combination of all technologies considered,
preferring wind followed by coal. Precise numbers differ between scenarios,
but the general picture is the same. The portfolio that is robust across all
9 possible alternative climate policies considered has the same composition,
which is actually the optimal solution of the basic CVaR portfolio model in
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case of a ‘A2r’ 590 ppm policy.
Generally, we see that for a given robust range, the robust framework

does not recommend a compromise of the results of the basic CVaR portfolio
problem for elements of the robust range. It rather suggests one of the limit
cases. This is understandable, since the objective of the robust portfolio
problem is based on the analysis of extreme cases, not on the combination
of the underlying scenarios. In most cases the optimal portfolio is a mix of
all technologies relying more on coal and wind. The preference of coal and
wind lies mainly in their stability across both scenario and targets. Since the
biomass technology is the one that is most sensitive to climate policy, being
the most attractive one in case of strict targets but featuring low profit and
high risk in others, it is not an adequate choice for a robust decision. Gas
shows similar characteristics, although they are by far not as pronounced
as in the case of biomass. However, the precise effect varies depending on
the robust range considered. In some cases the robust framework does not
suggest a composition markedly different from the basic results.

Figure 6.1 shows that the targets have a higher impact on the optimal
solution than the socio-economic scenarios. The results for robust ranges
consisting of different targets for a given socio-economic scenario are mu-
tually similar, which can not be said in the opposite case. Therefore, the
identification of the the right target is more crucial for the investor, enabling
him to react optimally. This is best illustrated on the biomass share. In case
the target is not known, the share of biomass is kept low, whereas for some
targets biomass is the leading technology.

6.4 Robust across Time

The second aspect we want to analyze in this chapter is the time structure of
the profits, which is a point neglected previously. The technologies considered
react differently to the rising CO2 prices. Whereas the profits of the fossil
fueled technologies suffer, biomass becomes attractive only later as the prices
rise high enough. The only unaffected technology is wind, which performs
steadily independent of the climate policy. The motivation for this extension
is following: the investor may not be willing to invest into a technology
performing best over the whole plant lifetime, if the profits materialize only
in the final decade of the planning horizon. Instead, he may feel inclined to
substitute a part of his investment by a technology, which does not perform
optimally from the point-of-view of overall profits, but is instead especially
attractive in the first decades. In other words, the time structure of the profit
streams generated by a technology may play an important role in the optimal
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portfolio selection.
The distributions used in this case are a bit different than the ones used

in the previous applications. For a given socio-economic scenario, target and
technology, we generate not a single, but six profit distributions. Whereas
before the distribution was derived as the sum of the discounted yearly profit
for the whole lifetime of the power plant considered, to derive distributions
accounting for the time structure the lifetime is formally divided into six
5-year subperiods. The profit is calculated for each of the subperiods sepa-
rately, as described in the section 4.1.3. Let us recall that the profit for each
subperiod is a sum of the discounted the yearly profit in that subperiod,
where the profit is discounted to the beginning of the subperiod. Therefore,
the profit distributions used in the previous sections is equal to the sum of the
discounted profit distributions for the subperiods, each of them discounted
from the beginning of the subperiod to year zero. In other words, the profit
distribution of the first subperiod reflects the performance of the considered
technology during the first 5 years of its lifetime, the second subperiod cap-
tures its performance in during the next five years etc.

The robust CVaR portfolio model is then applied to these distributions,
where the robust range is comprised of the 6 subperiods. In other words,
the investor chooses a portfolio that performs best in terms of CVaR even in
the worst of the subperiods considered. By taking into account the changes
in the distributions over time (i.e. over 5-year intervals), we can thus also
capture such characteristics of the profits’ time structure and determine their
effects by comparing back to the findings in the previous chapter.

6.4.1 Distribution features

Let us first present an illustration of the statistics of the underlying profit
distributions, since their characteristics are the major drivers of the results
of the CVaR portfolio model robust across the 5-year subperiods. Figure 6.2
shows both the expected costs and the 97%-CVaR of the distributions for all
subperiods and technologies in the the B2 590 ppm case (where the profit
distribution is the negative of the costs). Although the precise numbers vary
across the scenario-target combinations, the general features are the same.

We see the expected costs for biomass decrease sharply, which is caused
by the investment into the CCS module. CCS causes a sudden drop in the
net yearly emissions of the biomass power plant from zero to a substan-
tial negative amount, the highest in absolute value among the technologies.
Therefore, biomass not only gains a lot from a rising CO2 price in terms of
expected profit, but is also the most affected by the CO2 price fluctuations.
This can be observed when examining its CVaR. Recall that CVaR accounts
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Figure 6.2: Technology Costs Distribution Statistics - B2 520 ppm

also for the expected value of the underlying distribution, therefore the CVaR
of biomass is particularly high when comparing to the low expected costs.
On the contrary, since wind is unaffected by both CO2 and fuel price un-
certainty, it is the only technology having constant profits over time. Gas
and coal have similar characteristics. Investment into the CCS module can
decrease the yearly costs temporarily (because the yearly emissions decrease
substantially with the CCS). As the CO2 price is rising, the costs are in-
creasing after the drop caused by the CCS investment, however this increase
is slower since CCS captures a large part of the emissions. The CVaR of
both coal and gas is therefore affected more by the fuel than by the CO2

price fluctuations. This is also one of the major differences between coal and
gas. The gas plant is cheaper than the coal one in terms of both capital and
operations costs, but is more fuel intensive, i. e. the requirements for fuel are
higher than the ones for coal. Therefore, it is more affected by the rising fuel
prices, which results in its faster expected costs increase compared to coal.
In addition, the volatility of gas prices is higher that the volatility of coal
ones. This is reflected in coal having a much lower CVaR than gas, despite
its higher cost. For a stricter target, the difference between the technologies
gets more pronounced, with higher costs of coal and gas and lower costs of
biomass.
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Multi-period results [%] Basic results [%]
Bio Coal Gas Wind Bio Coal Gas Wind

‘B1’ 590 0.00 43.84 6.16 50.00 0.00 36.29 13.71 50.00
‘B2’ 590 6.88 41.25 8.75 43.12 1.05 30.10 19.90 48.95
‘A2r’ 590 9.16 41.99 8.01 40.84 10.03 28.53 21.47 39.97
‘B1’ 520 4.84 44.226 5.774 45.161 9.74 31.73 18.27 40.26
‘B2’ 520 12.39 41.26 8.74 37.61 16.58 24.91 25.09 33.42
‘A2r’ 520 23.66 32.00 18.00 26.34 50.00 50.00 0.00 0.00
‘B1’ 480 32.03 30.51 19.49 17.98 50.00 50.00 0.00 0.00
‘B2’ 480 18.53 40.54 9.46 31.47 50.00 50.00 0.00 0.00
‘A2r’ 480 50.00 0.00 50.00 0.00 50.00 50.00 0.00 0.00

Table 6.2: Comparison of the results for the multi-period and the basic ap-
proach. Technology shares across different climate policy scenarios.

6.4.2 Portfolio results

Finally let us present the results of the robust CVaR portfolio model in case
of robustness across time. For the rest of the section let us refer to the
results that are robust also across time as multi-period results. We inves-
tigate two types of robust ranges. First, for a given stabilization targets
and socio-economic scenario, we compute the optimal solution of the robust
CVaR model, where the robust range is comprised of the 6 subperiods. This
represents the case when the target and scenario is known and the investor
chooses a portfolio performing well in terms of CVaR in each of the subpe-
riods. Second, we compute portfolios robust not only across time but also
across climate policy.

First, let us compare these portfolios to the corresponding results, where
the time structure is not considered. All these results were already presented
in Section 5.3.3 and Section 6.3. However, we list them also here, so that the
difference between the portfolios is easily perceptible.

Basic vs. Multi-period

Table 6.2 presents the shares of the individual technologies for the optimal
portfolios in case the target and scenario is known. The multi-period results
are in the first four columns, whereas the basic results from Section 5.3.3
are shown in the last four columns. Each row represents a different scenario-
target combination.

The general effect caused by the introduction of the time structure is the
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Figure 6.3: Comparison of the results for the multi-period and the basic ap-
proach for the ‘B1’ scenario.

same across the socio-economic scenarios, but its significance varies, being
most and least prominent in the ‘B2’ and ‘A2r’ case respectively. Let us
illustrate this by examining the results for middle case, i.e. the ‘B1’ sce-
nario. The comparison between the multi-period shares and the basic shares
for this scenario are depicted in Figure 6.3; the shares are shown for each
target, where the multi-period and basic results are denoted by MP and B
respectively.

We see a pattern that is common for all targets. Coal gains at the expense
of gas, and wind at the expense of biomass. This is of course most noticeable
in the 480 ppm target, since the basic results recommend a pure gas and
biomass mix. In the multi-period case, the results suggest a more than 30%
share of coal and almost 20% share of wind. The cause of this shift from
gas to coal lies in the distribution features. Although the overall statistics of
gas make it attractive for the basic model; when considering time structure,
we see that its CVaR is increasing faster than the one for coal (due to both
higher fuel requirements and higher volatility of fuel prices). Therefore, the
high levels of risk in the later subperiod disqualify the gas technology in favor
of coal, and similarly also biomass in favor of wind.

For the ‘B1’ scenario, this pattern is common to all targets. The situation
for ‘B2’ is similar, but the shift from gas to coal is even more pronounced.
In the most stringent target, the coal comprises more than 40% of the multi-
period portfolio, whereas in the basic case it was not present at all. Also,
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Multi-period results [%] Robust results [%]
Bio Coal Gas Wind Bio Coal Gas Wind

‘B1’ 1.97 43.52 6.48 48.03 18.27 9.74 40.26 31.73
‘B2’ 6.88 41.25 8.76 43.12 24.06 14.44 35.56 25.94
‘A2r’ 9.16 42.00 8.01 40.84 21.47 10.03 39.97 28.53
480 18.53 40.54 9.46 31.47 50.00 50.00 0.00 0.00
520 8.38 42.07 7.93 41.62 18.27 9.74 40.26 31.73
590 2.81 43.03 6.97 47.19 21.47 10.03 39.97 28.53
All 6.54 42.74 7.26 43.46 21.47 10.03 39.97 28.53

Table 6.3: Comparison of the results for the multi-period and the robust
approach. Technology shares across different robust ranges.

biomass suffers much more for this target than in the ‘B1’ case, its share
decreases by more than 30%. For the ‘A2r’ scenario, the results differ de-
pending on the target considered. The 480 ppm is the only case when both
approaches deliver the same results. This is the case when the underlying
CO2 price is the highest, therefore the gas and biomass still dominate the
portfolio. For other targets, we see an overall decrease of the share of gas
and a slightly lower decrease of biomass.

Whereas for the basic model the results vary greatly and are mainly
driven by targets, the gas dominating over coal for the stricter targets and
the vice versa for the loose targets, the results for the multi-period model
are more similar amongst themselves. We see, that an investor accounting
for time structure of the profit chooses an energy mix consisting of a signifi-
cantly larger coal share and a slightly lower biomass share than an investor
indifferent to the time structure. Still, there are still differences between the
portfolios suggested, depending on the climate policy. However, in this case
they mostly impact the biomass share, the coal share remains stable in the
majority of cases.

Robust vs. Multi-period

Now let us turn to the results robust across different climate policies, com-
paring the optimal energy mix given by the multi-period approach back to
the approach neglecting time structure presented in Section 6.3. The robust
ranges considered were based on the experiments from that section. For each
target, we computed the results for a robust range consisting of the subpe-
riods for each socio-economic scenario, i.e. in total of 18 possible scenarios.
Similarly, for each scenario we analyzed the robust range comprising a com-



6.4 Robust Portfolios 82

480 −MP 480 − R 520 − MP 520 − R 590 − MP 590 − R All − MP All
0

5

10

15

20

25

30

35

40

45

50

55

Robust range

T
ec

h
n
ol

og
y

sh
a
r
e

[%
]

 

 

Biomass

Coal

Gas

W ind

Figure 6.4: Comparison of the results for the multi-period and the robust
approach for different robust ranges.

bination of all targets and subperiods. Finally, the portfolio robust across all
scenarios, targets and subperiods was computed, the robust range consists of
54 elements.

The shares of the individual technologies for the multi-period portfolios
accounting for time structure are in the first four columns of Table 6.3, the
results neglecting the time structure are listed in the last four columns, the
rows showing the robust ranges denoted in the same way as in Section 6.3.
To foster the visualization, the shares are also shown in Figure 6.4, where in
this case for simplicity the robust ranges for fixed scenarios are omitted. The
results from Section 6.3 are denoted by R, the multi-period results by MP.

These experiments represent the case when the stabilization target is
known but the socio-economic scenario is unknown. The case when the
investor does not care about the time structure of the profit was already
presented in Section 6.3. We saw that if we need to be robust across the dif-
ferent socio-economic scenarios, apart from the strictest target, the investor
prefers a portfolio consisting of all four technologies, relying mostly on wind
followed by coal and gas. We see a similar impact of the introduction of the
concept of time structure as in as in the case of the basic framework, which
is most noticeable in the 480 ppm case. Whereas the robust decision not
accounting for the time structure recommended a 50-50% combination of gas
and wind, the portfolio that is robust also across subperiods consists of more
that 40% coal and 30 % wind. In general, the multi-period portfolio, when
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compared to the respective case neglecting time structure, is characterized
by a major shift from gas to coal. In addition, also the wind share increases
noticeably at the expense of biomass, which makes the coal and wind even
more dominant than in the robust case neglecting time structure. Both these
effects persist also in case when the decision needs to be robust across both
scenario and target.

Climate Policy impact

In Section 6.3 we discuss the impact of the uncertainty with respect to the
development of climate policy, using the results from the basic model and
results derived with the robust framework (the robust ranges consisting of
a combination of scenarios and targets). Now we can investigate the same
question, assuming the investor cares about the time structure of the profit
by comparing the shares presented in the first four columns of Tables 6.2
and 6.3. In Section 6.3 we did not discover any common pattern in the
change of the technology shares. However, if the investor cares about the
time structure, the situation is different. For a given target, the multi-period
portfolios that are robust across socio-economic scenarios always prefer the
portfolios with the larger share of both coal and biomass than the multi-
period results for each of the socio-economic scenarios. That means that
even if in some instances of the multi-period approach the optimal portfolio
consists of a significant share of gas or biomass (as for example the ‘B1’ 480
ppm case), the portfolio that is robust also across this policy does not have
this feature anymore. This can be easily noticed, since both coal and wind
are dominant for any robust set of climate policies in the multi-period results
from Table 6.3, whereas in the case when the climate policy is known, it was
not always the case.

6.5 Conclusion

The portfolio model extension suggested in this chapter is a novel contribu-
tion to the literature on power generation technology portfolios. Not only
does it enable us to capture relevant features, in the case of discrete distri-
butions it is also shown to be equivalent to a linear programming problem,
which makes it widely applicable. Moreover, even in the case of general dis-
tributions, the model was shown to have favorable characteristics. Leading
to a convex optimization problem, it makes the powerful tools of convex
analysis applicable.

The proposed extension enables us to find portfolios robust across a set
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of scenarios considered, i.e. performing best in the worst scenario possible.
This makes it extremely suitable to investigate the uncertainty surrounding
the future climate policy development, represented by a scenario-target com-
bination. Since there is currently little knowledge as to which scenario and
target combination is the most likely one, the investors will need to invest
into portfolios that perform well in each of them. As was explained, the
scenarios represent the future socio-economic development of the world, try-
ing to capture different rates of population growth, technology transfer to
developing countries etc. On the other hand, the target represents the CO2

concentration level at which emissions need to be stabilized. Whereas the
socio-economic conditions are of a more global nature and therefore can not
be resolved easily by the policy makers, the situation is different for the sta-
bilization targets. We want to emphasize. that we do not assess the targets
by their desirability. Rather, in this thesis the target represents the beliefs of
the investor about the stringency of the future climate policy. If the policy
makers set clear signals promising a strict policy, the investor will assume a
strict target. On the other hand, if the policy makers fail to give an indi-
cation concerning the stringency of the policy, he chooses a robust portfolio
that performs well across the targets. Therefore, analyzing the difference
between robust portfolios and portfolios where the target is known provides
insights also for the policy makers concerning the importance of setting clear
guidelines for their intent.

Independent of climate policy uncertainty, we have shown that the time
structure of the profit flows varies greatly over the underlying technologies.
We do not argue that this is crucial for all investors, still, some of them will
not be willing to invest in a portfolio that is attractive from the overall point
of view, but suffers losses in the first 20 years, getting profitable only in the
last decade. This motivation led us to study portfolios that behave robustly
across time.

In total this provides the incentive to study robust decisions across two
dimensions - across time and climate policy. The effects of both were in-
vestigated. We have shown that both of these dimensions bring substan-
tial changes in the investor’s behavior. The introduction of time structure
revealed a uniform pattern, where the resulting portfolio comprises a sub-
stantial share of coal and wind, even if the original results neglecting time
structure suggested otherwise. This was observed in almost all of the cases,
with the only exception being the case of the strictest CO2 policy considered
(‘A2r’ 480 ppm). The effects of robustness across different climate policy
alternatives was noticeable, but in case of neglecting the time structure not
so unambiguous. However, we saw that the key climate policy parameters
driving the portfolio composition are targets, not the scenarios. In combining
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both the climate policy and time structure this was confirmed, in addition
we saw that the effects of climate policy are more significant. The coal and
wind shares are even more substantial in this setting, effectively eliminating
a gas and biomass based mix.

This analysis not only shows how important it is for the investor to ac-
count for climate policy uncertainty correctly. It also illustrates the impor-
tance of strong policy signals. If the signals from the policy makers are not
clear, the investor has to choose a portfolio that is far from the optimal one,
with respect to the technology shares. This is best seen in the comparison
of robust results for the ‘A2r’ scenario across different targets. Whereas in
case the target is known, the investment response is in both of the stricter
targets a 50-50% biomass and gas mix, the robust results prefer the optimal
portfolio for the ‘A2r’ 590 ppm, which is markedly different. Moreover, since
the biomass and gas produce less emissions than wind and coal respectively,
the resulting portfolio will be much more emission intensive mix.

Also, the analysis of the time structure provided interesting insights for
the investment. It has helped to understand the importance of considering
the time profile of technologies. In particular, the multi-period framework
can explain why power plant owners hold on to coal-fired capacity and plan
even more of the same, even though they know that they will be facing
some sort of CO2 policy in the medium to long run. This is because coal-
fired capacity will eventually be less risky than gas-fired power plants, which
suffers from higher fuel price volatility. Also the riskiness of biomass increases
over the sub-periods, a fact which is not taken into account in the single-
period framework, where only overall expected profits count.

Although the analysis presented is still an admittedly stylized exercise,
with a limited number of technologies, it still manages to provide insights
to the effect that uncertainty has on decision-making when there is no in-
formation about the probability of the occurrence of events. This extension
provides a new perspective on such investment decisions, illustrated by the
numerical application to electricity-generating technologies.
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Chapter 7

Dynamic Portfolios

Models discussed both in Chapter 5 and Chapter 6 suffered from one short-
coming. The discussion remained inherently static insofar as the investor
would allocate his funds once in the beginning of the planning period, using
information about the optimal, dynamic behavior of individual plants from
the real options model. In other words, we disregarded the fact that this in-
vestment may be followed by others in the coming years. As we mentioned in
the introductory chapter, considerable investment into new capacities is due
in the OECD countries in the coming years [36]. Naturally, this investment
will be spread over the years and will not happen at once, as we assumed so
far.

This chapter seeks to remedy this deficiency by taking into account the
possibility to diversify not only over assets, but also over time. In other words,
we should take into account that the option to alter the portfolio in the future
might affect the present portfolio decisively. This is achieved by reformulating
the basic, static framework, so that it considers not only current portfolio
shares, but also future sub-portfolios. As before, the investor is choosing his
portfolio so as to minimize risk in terms of CVaR.

7.1 Formulation

We investigate a case, where the investor has the possibility to invest into
specific portfolios of sizes bt at different time points t = 1, 2, . . . , T ,

∑T

t=1 bt =
1. We therefore implicitly assume that there are pre-specified capacities that
have to be installed at pre-specified time instants. Furthermore, we assume
the decisions about the investment has to be taken today. This is, however,
not an extremely unrealistic assumption, since investment into new power
generating capacities requires thorough planning and is not carried out at
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short notice. As we assume the investor is bound by demand constraints, it
is also natural to assume the amount bt that has to be invested at a given
point in time t to be exogenously given. This setup corresponds to the
situation outlined in the introduction of this chapter.

Therefore in this case we consider nT underlying assets, n for each de-
cision point. The return of these assets is a random vector y ∈ R

nT , where
yt ∈ R

n is the return on investment into the technologies considered, when
invested at time t. This is the only exception, where we characterize the
investment into technologies by returns, rather than profits. Since we will
need to compare the profitability of investments at different points in time,
the returns are more convenient.

A portfolio is then defined by its shares x ∈ R
nT , where xt = (xt1, . . . , x

t
n)
T ∈

R
n is a vector comprising the shares of the technologies subject to invest-

ment at time t. The return of the portfolio is then given by
∑T

t=1(x
t)Tyt.

The problem of the investor can be hence formulated as follows:

minx φα(x)
s.t.

∑n

i=1 x
t
i = bt, t = 1, . . . , T,

x ≥ 0







(7.1.1)

where φα(x) is the α−CVaR of the loss function given by −∑T
t=1(x

t)Tyt.
For the application presented, the returns are derived by the real options

model from Chapter 4 and have a discrete uniform distribution over values
yk ∈ R

nT , k = 1, 2, . . . , N , where by ykt =∈ R
n we denote the sample of

returns of the investment into technologies at time t. Let us recall that the
return is calculated as the total discounted profit on a unit of investment,
where the profit is discounted to the moment when the investment is carried
out. The convenience of measuring profitability by returns compared to
profits lies in the following: the profit is expressed in [e ] at the time when the
investment is carried out. Therefore the current value of future investment is
not equal to the profit, but to the discounted value of this profit (discounted
from the time the investment is carried out to the current moment). Since
return is calculated as profit per 1 e of investment, this measure is indifferent
to the moment when the future investment is valued.

The problem (7.1.1) takes according to 3.2.16 following form:

min(x,ξ,u) ξ + 1
N(1−α)

∑N
k=1 uk

s.t.
∑n

i=1 x
t
i = bt, t = 1, . . . , T

∑T
t=1(x

t)Tykt + ξ + uk ≥ 0, k = 1, . . . , N
x ≥ 0
uk ≥ 0 k = 1, . . . N























(7.1.2)
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where uk ∈ R are auxiliary variables. The solution (x̂, ξ̂, û) of (7.1.2) yields
the optimal x̂∗ for which the minimum of the corresponding α-CVaR is at-
tained. This is a linear programming problem, with N + nT + 1 variables,
and N + T and constraints. In the application we use N = 10, 000, T = 3
and n = 2 and solve the model in GAMS with the use of the CPLEX solver.

7.2 Case study

Let us consider a case, where the investment is planned for the next decade,
happening in five years steps (i.e. we have three different investment time
point, in years 0, 5 and 10), where the capacity installed at decision point i
is given by bi, b1 + b2 + b3 = 1. This is a realistic perspective when we think
of the current situation of many OECD countries, which will have to replace
part of their existing capacity over the next decade. A ten-year planning
horizon, where investment can happen in five-year steps therefore seems a
reasonable case.

For simplification and easier interpretation of results we concentrate on
two technologies only - coal (with the option of adding CCS) as the typical
representative of the fossil-fueled technologies, and biomass (also with the
option of adding CCS) as the representative of renewables. The analysis is
performed for the ‘B2’ 590 ppm, which is a scenario with a relatively loose
climate policy. The sample of returns yk, k = 1, . . . , N is derived as described
in Section 4.1.3. As we discussed in Section 6.4.1 (e.g. see Figure 6.2), these
two technologies are affected by the rising CO2 price differently. Whereas
currently coal is the more attractive technology, the profitability of biomass
increases substantially later in time.

Before we present the results of the portfolio model(7.1.2), let us first
inspect the characteristics of these distributions (see Table 7.1). The table
lists the expected profit, standard deviation, –VaR and –CVaR for each asset
considered. We report –CVaR, since the CVaR is defined for a loss function,
i.e in this case for the negative of the return. Hence –CVaR describes how
much return can be secured at the given confidence level. We see the results
are consistent with the expectations. Coal has the highest expected return
when installed today (i.e. in year 0). In addition, it is less risky both in terms
of variance and CVaR compared to its biomass counterpart. However, this
relationship between the technologies changes if we consider a later invest-
ment time. The later the coal-fired power plant is installed, the more do the
expected return and also the –CVaR and –VaR fall. This implies that less
return can be secured at the confidence level of 97%. In contrast, biomass
gains both on the investment safety side (in terms of –CVaR) and in terms
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Installation time Exp. return Std. deviation –VaR –CVaR

Coal 0 1.421 0.043 1.345 1.333
5 1.313 0.052 1.225 1.209
10 1.223 0.047 1.145 1.129

Biomass 0 1.414 0.111 1.239 1.216
5 1.583 0.163 1.321 1.287
10 1.821 0.241 1.444 1.394

Table 7.1: Descriptive statistics of the return distributions of coal-fired and
biomass-fired power plants for the 97% confidence level

of expected returns as we move further into the future. However, we see the
variance of biomass is higher than the variance of coal, independent of the
investment time. Since the biomass-fired power plant gains from a rising CO2

price, it gets more and more profitable the later it is installed. However since
the profitability is caused by the substantial amount of negative emissions,
it is also connected with a high sensitivity to the CO2 price.

7.3 Portfolio results

The next step in the analysis is to determine the optimal portfolios, given
as the solutions of the problem (7.1.2) for a range of constraints bt. Let us
recall that bt is the fraction of total investment that has to be carried out at
decision point t. As the investment is planned for the next decade, happen-
ing at decision points 1, 2 and 3 (referring to year 0, 5 and 10 respectively),
the optimal portfolio x̄ consists of 3 sub-portfolios x̄t for t = 1, 2, 3. We will
refer to these as to the dynamic sub-portfolio shares and to the constraints
bt as sub-portfolio sizes. For the dynamic portfolio optimization we expect
the future to play a vital role. While the static analysis insofar considered a
portfolio of coal and biomass that are installed now and used for the coming
30 years, the dynamic analysis will also allow for funding to be spread across
time, i.e. portfolios can be composed of coal installed today and bio installed
five years later. The option of having bio in the portfolio at a later point in
time should then affect the decisions made today. For comparison, the corre-
sponding static portfolios x̃t are computed at each point in time individually,
without taking future options of having other portfolios into account. This
situation reflects the way how we calculated the optimal energy mix in the
previous chapters, disregarding future investment plans.

As the portfolios x̃t are chosen independently for for every decision point,
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Inst. time Coal share [%] Biomass share[%] Exp. return –CVaR

0 89.5 10.5 1.42 1.337
5 28.8 71.2 1.506 1.29
10 0 100 1.821 1.394

Table 7.2: Portfolio results for the static setup.

each of them is a solution of the problem 5.3.22 for two technologies without
the constraint on the expected return. Then x̃ = (b1x̃

1, b2x̃
2, b3x̃

3) is the total
portfolio if the the sub-portfolios of size bt are chosen independently in each
time point. We will refer to the portfolio x̃ as the static solution, with btx̃

t

being the static sub-portfolio for time t.
The results x̃t of the static optimization for sub-portfolio t are presented

in Table 7.2. We see that for example, if the investor only has the option
to invest in power plants, which are installed today, he will choose for over
89.5% of the capacity to be coal-fired and invests 10.5% into biomass. This
gives an expected return of 1.42 and a –CVaR of 1.337. However, in case
the investment will be realized 5 years later, the biomass is preferred, having
a share of over 70% , in case of the decision for year 10 we observe a total
dominance of biomass.

The complete dynamic portfolio results for all sub-portfolio sizes consid-
ered are presented in Tables 7.3, 7.4 attached at the end of the chapter. It
lists on the left-hand side the results of model (7.1.2) for a range of con-
straints b, starting with case b = (1, 0, 0) (i.e. all investment goes into plants
installed in year 0), and reducing the share b1 as we go down in the table.
Next to the sub-portfolios, the expected return, R, the –VaR, the –CVaR
and the shares of coal and biomass at the different time points are displayed.
The Table lists also the shares and statistics of the static solution, given in
the right hand side of the tables.

Let us first describe some general observations that hold for all sub-
portfolio sizes considered. The results of the portfolio optimization show
that dynamic portfolios always outperform the corresponding static portfo-
lios not only in terms of CVaR (which is natural since the portfolios that
solve the static framework are feasible in the dynamic case), but also in
terms of expected return. When the difference is computed, gains in excess
of 3% can be observed for returns and also –CVaR and –VaR often improve
by around 1 percentage point. In fact, the lower b1, the higher the gains
are. This is intuitively plausible, since higher returns can be realized if di-
versification flexibility over time opens up new opportunities. The fact that
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we observe the static portfolios to be inferior in terms of expected return
and risk underlines the usefulness of an integrated optimization process and,
thus, a dynamic framework for the assessment of investment opportunities
at different points in time.

Apart from the gains in the objective, we are interested also in the dif-
ference in the portfolio shares between the dynamic and static results. Since
the primary motivation for this extension was to investigate the impact of
planned investments in the future on the composition of capacities to be in-
stalled now, one of the most important results is the difference in the shares
of coal installed in decision point 1, i.e. year 0 between the two frameworks.
More precisely we calculate the relative difference, i.e. the 1

b1
x̄1
Coal − x̃1

Coal.
In this the way, the shift in the first sub-portfolio is expressed independently
of b1, reflecting which fraction of the investment done in the first decision
point is used differently in the dynamic framework than in the static one. Of
course, it is also interesting to see how the overall resulting mix of technolo-
gies changes, i.e. what is the absolute difference in the coal technology share
between the dynamic and static portfolio (

∑3
t=1(x̄

t
Coal − btx̃

t
Coal)).

Concerning the investment planned for the other decision points, the
results show that x̄3 = b3x̃

3 independently of the choice of b3, where the
investment planned for year 10 consists always of 100 % biomass. This is
not true for the second decision point. In this case the dynamic results never
recommend a higher share than the share of the static results. A closer look
reveals, that x̄2

Coal is positive only in cases where both b1 and b3 are low, i.e.
where the size of the second sub-portfolio dominates the others. Otherwise
x̄2 consists solely of biomass, whereas we saw that for the static case we
would invest almost 30 % of the sub-portfolio size into coal.

Although this cannot be observed from Tables 7.3, 7.4 directly, the total
share of the coal technology is generally lower for the dynamic framework
(i.e. the absolute difference is negative). Exceptions to this rule are only
the cases where the sub-portfolio size b2 = 0, i.e. the investment is planned
only for year 0 and 10. This can be observed in Figure 7.1 depicting the
absolute difference for the case of b1 = 0.3. This effect can be explained
as follows: since we know that the biomass is dominating coal in that case,
in the dynamic framework the investor reacts and diversifies by increasing
the share of coal in year 0. In case the b2 > 0 this diversification is not
needed because it is substituted by the diversification over time, into the
sub-portfolio x̄2. To the contrary if b2 = 0, the absolute difference is positive
independent of the b1 considered (see Figure 7.2).

Figure 7.1 reveals also an interesting result concerning the relative dif-
ference of the current investment into coal. Since the relative share of coal
in the static results x̃1

Coal is independent of the sub-portfolio sizes b, the
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Figure 7.1: The comparison of coal shares between the dynamic and static
framework in case b1 = 0.3

trend in the relative difference is in fact the trend in the relative share of
coal invested in year 0 in the dynamic framework. We see that if b1 = 0.3
the relative share of coal in the dynamic results increases with an increasing
b3, eventually reaching higher values than the static results. This effect is
present for any b1, if b1 does not dominate the whole portfolio. The effect
grows in magnitude with decreasing b1, where eventually the coal constitutes
all 100 % of the first sub-portfolio when b1 = 0.1 and b3 ≥ 0.4 resulting in
the relative difference of 10.5 %. This effect is illustrated for the limit case
b2 = 0.

Let us recall that the relative share of coal for the first sub-portfolio x̃1
Coal

in the static model reflects the optimal share of coal assuming we consider
only the current investment. This corresponds to the situation presented in
the previous chapters. We see that if the third sub-portfolio size is significant,
the share of current coal x̄1

Coal from the dynamic results is higher than the one
in the static results. This implies that an investor accounting for the future
investment will build more coal capacity now, even though the total share of
coal will be lower than in the static case, if some intermediate investment is
planned (i.e. b2 ≥ 0).

7.4 Conclusion

The portfolio framework suggested in this chapter analyzes the optimal cur-
rent investment decision, where the inclusion of future sub-portfolios makes
it possible to capture the effect from the flexibility to change the mix of tech-
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Figure 7.2: The comparison of coal shares between the dynamic and static
framework depending on b1 for the limit cases b2 = 0, b3 = 0.

nologies at a future point in time. As the model leads to a linear programming
problem, it enables the use of the wide range of solution algorithms. The
outcome of the new framework is then compared to the portfolios, which are
optimized for each decision point separately. By comparing these outcomes,
we can establish whether the option to diversify in the future has an impact
on the composition of today’s portfolio.

The findings show, indeed, that accounting for future investments has
an effect on today’s portfolio investment decisions. Including the future op-
portunities leads to diversification not only over technologies but also over
time. The analysis conducted and presented in this chapter has clearly shown
that also in portfolio applications dynamics matter. While this has not been
widely acknowledged in the existing literature on portfolios of electricity gen-
erating capacities, which largely rests on mean-variance Markowitz-style im-
plementations of portfolio optimization, we believe that a richer framework
taking into account the option of future portfolio investment can deliver
important insights for large-scale electricity planning and therefore also for
policy-makers, who are interested to learn about the impact of their actions
on investment behavior. In the energy sector, where most equipment is long-
lived, such information can be of great value, since large-scale investment
into particular technologies or a particular family of technologies can lead to
further lock-in for decades.

The interpretation of these results is that the dynamic optimization takes
into account the value of flexibility that the future opportunity offers, while
the static optimization fails to do so. As a result, the return and the –CVaR
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are lower as well, making the dynamic portfolio superior in terms of both
returns and risk. Moreover we saw that accounting for future investment
may result in a higher share of coal fired capacities installed today. This
may explain why even though the climate policy is getting more realistic, a
lot of investment into new fossil fueled technologies is planned in then OECD
countries, also in Slovakia. The results further suggest that this may be only
temporarily, resulting in a higher share of renewables in total.

A more detailed comparison of the results shows that the investor prefers
more coal, the lower the first sub-portfolio and the higher the the third sub-
portfolio sizes are, where the future investment shifts completely to biomass
in the future and most diversification is taken care of in the current period.
The conclusion from this is that for the dynamic version of the portfolio
optimization, there is not only a diversification effect across technologies
(coal versus biomass), but also a benefit to be reaped from diversification
over time.
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Table 7.3: Dynamic vs. static portfolio results. Note: Columns 4-12 correspond to the dynamic framework, columns
13-21 to the static one.
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Chapter 8

Conclusions

This thesis presents a combined real options and portfolio optimization frame-
work that can be used to analyze the investment in new power generation
capacities under climate policy uncertainty. It enables to account both for
the optimization on the plant level and on the larger scale.

The real options model formulated in 4 is used to derive the optimal
management strategy under stochastic CO2 and fuel prices on the power plant
level for each electricity generating technology considered. Following this
strategy implies a distribution of profit flows representing the profitability of
the technology in case it is operated optimally. These profit distributions are
used as an input for the portfolio model.

The portfolio model analyzes the optimal investment at the larger scale,
the objective of the investor being the minimization of risk, risk measured
by the conditional Value-at-Risk. Several portfolio models are proposed.
The basic CVaR portfolio model as formulated in [60] is discussed in 5. Its
results are used as a benchmark for the comparison of the models proposed
in Chapter 6 and 7.

8.1 Main contribution

The contribution of this thesis can be divided into following points:
First, it is the formulation of the combined framework optimizing the

decision both on the plant level and at a larger scale. In particular with
respect to the literature on investment into new electricity capacities, this is
an original addition. Until now, the decisions have been studied separately,
neglecting the effect of the optimization of the operation and incremental
investment on the optimal choice of the resulting energy mix. At the same
time, the results of the optimization on plant level presented in Chapter 4
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justify the choice of conditional Value-at-Risk as the measure of risk, instead
of the standard Markowitz approach used in the literature so far. As all
portfolio models discussed lead to linear programming problems, the pro-
posed framework is able to formulate quite a complex modeling problem in
an effective way.

Second lies in formulation of the robust and dynamic portfolio models
presented in Chapters 6 and 7 respectively. The formulation is motivated
by the need to account for issues neglected in the literature on portfolios of
electricity generating capacities so far. At the same time, the models are
shown to lead to linear programming problems, preserving the advantageous
feature of the basic CVaR portfolio framework.

Third, by testing and comparing the results of the individual portfolio
models, we can validate the motivation for the extension of the basic model
both with respect to robustness and dynamics. Even though the models re-
main still highly stylized, they provide an important insight for the decision
on the aggregate level. We see that the results of the modified portfolio mod-
els are substantially different from the ones derived by the basic framework.
The comparison between the models enables us to identify the key driving
forces of the portfolio composition, providing policy implications as well. The
concrete results and effects are discussed in the conclusion of Chapter 6 and
7 respectively. In general, we see that accounting for robustness in respect to
both time structure of the profit flows and climate policy uncertainty leads to
a significant shift in the portfolio composition. The effect of the introduction
of dynamics is not as pronounced, however, the proposed dynamic model can
capture the effect of diversification over time. We show that accounting for
future investment affects the composition of investment carried out today.
We see that analyzing both current and future investment within one frame-
work results in an increased current investment in fossil-fuel capacities for
some cases, even though the total share of fossil-fueled capacities is gener-
ally lower when compared to the case when these investments are analyzed
separately.

Not the least, the comparison of the portfolio model minimizing condi-
tional Value-at-Risk to the classic Markowitz portfolio framework minimizing
variance presented in Section 5.2 provides an interesting insight for the port-
folio theory as well. In particular, we analyze portfolios or real assets for
normally distributed asset profits. We show that in case the constraint on
the expected profit is given by equality, these approaches are equivalent.
However, if the constraint is formulated in form of inequality, which is more
natural, this feature is not necessarily preserved, implying the two frame-
works are not equivalent. Moreover, we show that the portfolios based on
the minimization of CVaR dominate the mean-variance portfolios in terms
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of expected profit.

8.2 Further research

With the respect to the presented applications, there is definitely still a lot of
scope for future development of the presented framework. The assumptions
formulated in Section 2.4 neglected some of the technical characteristics of
the technologies considered. In particular, the load structure of the tech-
nologies was not accounted for, as the time structure of demand and its
uncertainty were disregarded. However, to provide precise recommendations
for the optimal energy mix, these issues would need to be incorporated. In
addition, more technologies would need to be considered and regionally spe-
cific conditions (e.g. resource constraints) taken into account.

Another area that warrants further research is the comparison between
the classic Markowitz portfolio framework and the basic CVaR model. Sec-
tion 5.2 provided the analysis for the case of normally distributed assets,
showing that under some constraints the approaches are equivalent. It is
thus pertinent to ask whether this result holds true also for different distri-
butions.
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Appendix A:

Price parameters

Price Fuel Costs
Scenario Target CO2 Elec. Coal Bio Gas

Initial ‘B1’ 590 4.39 3.07 87.97 161.65 101.10
Condition ‘B2’ 590 8.00 2.29 85.12 193.77 94.32

‘A2r’ 590 19.66 2.62 90.01 253.72 94.64
‘B1’ 520 14.57 3.16 88.79 161.65 99.49
‘B2’ 520 15.19 2.38 85.94 195.91 93.35
‘A2r’ 520 35.69 2.81 89.60 250.51 94.64
‘B1’ 480 35.80 3.25 81.05 175.57 91.09
‘B2’ 480 25.20 2.48 84.71 182.00 92.38
‘A2r’ 480 58.01 3.05 84.31 267.64 94.97

Trend ‘B1’ 590 4.88 0.16 -0.16 2.45 1.72
‘B2’ 590 4.88 1.22 0.16 0.77 1.47
‘A2r’ 590 4.88 1.31 -0.32 0.82 1.58
‘B1’ 520 4.88 0.15 -0.64 2.78 1.47
‘B2’ 520 4.88 1.28 0.06 0.95 1.57
‘A2r’ 520 4.88 1.49 -0.05 1.58 1.36
‘B1’ 480 4.88 0.33 -0.60 2.81 1.38
‘B2’ 480 4.88 1.51 -0.27 1.81 1.65
‘A2r’ 480 4.88 1.64 0.45 2.13 1.46

Volatility All All 0.05 – 0.089 0.1 0.145

Table A.1: Electricity, CO2 price and fuel costs data across scenarios. Initial
conditions are in [e /tCO2] for the CO2 price, in [e /MWh] for the electricity
price and in [e /year] for all fuel costs. Price trends are given in [%].



Appendix B 101

Appendix B:

Distribution statistics

Scenario Target Expec. Cost Std. dev. –VaR –CVaR

Coal ‘B1’ 590 -4180.45 314.94 -4861.55 -5071.93
‘B2’ 590 -4656.28 314.25 -5336.24 -5554.39
‘A2r’ 590 -5214.79 301.68 -5871.84 -6086.07
‘B1’ 520 -5067.27 282.93 -5682.84 -5883.27
‘B2’ 520 -5045.23 302.74 -5705.41 -5926.23
‘A2r’ 520 -5644.1 325.84 -6352.26 -6569.17
‘B1’ 480 -5456.33 277.77 -6053.76 -6235.11
‘B2’ 480 -5229.58 290.81 -5861.28 -6062.35
‘A2r’ 480 -6168.91 359.93 -6938.49 -7165.63

Biomass ‘B1’ 590 -5177.91 935.76 -7291.87 -7990.93
‘B2’ 590 -4349.12 883.69 -6310.44 -6910.7
‘A2r’ 590 -2822.31 1296.14 -5536.61 -6355.47
‘B1’ 520 -3142.86 1097.55 -5500.02 -6239.11
‘B2’ 520 -2874.57 1016 -5012.04 -5653.91
‘A2r’ 520 352.22 1740.12 -3032.47 -3972.54
‘B1’ 480 1212.01 1626.89 -1894.85 -2704.97
‘B2’ 480 -780.75 1272.39 -3280.75 -3995.59
‘A2r’ 480 4597.51 2462.4 -17.46 -1051.98

Gas ‘B1’ 590 -2903.08 770.67 -4764.7 -5471.89
‘B2’ 590 -3001.08 694.9 -4662.04 -5303.49
‘A2r’ 590 -3635.36 705.9 -5332.1 -5983.58
‘B1’ 520 -3498.27 731.29 -5255.73 -5923.74
‘B2’ 520 -3423.11 696.4 -5100.25 -5737.17
‘A2r’ 520 -3891.4 680.9 -5529.28 -6153.01
‘B1’ 480 -3840.68 656.85 -5418.05 -6022.32
‘B2’ 480 -3712.74 695.6 -5392.2 -6030.61
‘A2r’ 480 -4210.96 698.41 -5880 -6525.78

Wind All All -4253.25 -4253.25 -4253.25 0

Table B.1: Profit distribution statistics of the individual technologies for all
scenarios and targets considered.
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Appendix C:

Solution of the mean-variance portfolio problem

C.3 Formulation

Let us consider the mean-variance portfolio choice problem 5.1.1, where y ∼
N(µ,Σ) with µ = (µ1, µ2, µ3)

T and

Σ =





σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3



 (C.1)

Let us analyze the optimal portfolio composition in case µ1 > µ2 > µ3 and
σi 6= σj for i 6= j.

In section 5.2 we considered three different formulations for the mean-
variance portfolio problem, distinguished by the constraint on the expected
profit: problem 5.2.13 where the constraint was not present, 5.2.3 where the
constraint was given as equality and finally 5.1.1 where the constraint was
in form of an inequality with the expected profit bounded below. Although,
ultimately, only the solution to problem 5.1.1 is of interest, its solution can
be derived by analyzing the former two.

For the purpose of the appendix we will simplify the notation used in
5.2. Let us denote the solution to the unconstrained problem 5.2.13 x∗ and
the resulting expected profit of the portfolio as R∗ = µTx∗. As already
discussed in Section 5.2, the solution to the problem 5.1.1 is equal to x∗ in
case R ≤ R∗ and to the solution of problem 5.2.3 for R > R∗. Therefore to
derive the solution to 5.1.1 it is sufficient to derive the solution to 5.2.3 and
5.2.13. The solutions of both of these are presented in the following section.

C.4 Solution

C.4.1 Unconstrained problem

First let us first derive x∗. In case of only three assets the problem 5.2.13
can be reformulated as follows

min
x1,x2

σ(x1, x2) = x2
1σ

2
1 + x2

2σ
2
2 + (1 − x1 − x2)

2σ2
3

+2x1x2σ12 + 2x1(1 − x1 − x2)σ13 + 2x2(1 − x1 − x2)σ23 (C.2)

s.t. (x1, x2) ∈ X
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where X = {x1, x2; x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}. This is in principle a
problem of minimizing a convex function on a compact set. Therefore the
minimum exists and is equal either to the global minimum of the objective,
or is attained at the boundary of X.

First let us compute the global minimum x̄ of the function σ(x1, x2).
Since it is a convex function the solution is attained in those x̄1, x̄2 that fulfil
the first-order conditions. Since σ is a quadratic function in both x1 and x2,
the first order conditions yield a linear system for x1, x2:

∂σ

∂x1

|x=x̄ = Ax̄1 +Bx̄2 +D = 0 (C.3)

∂σ

∂x2
|x=x̄ = Bx̄1 + Cx̄2 + E = 0 (C.4)

where

A = σ2
1 + σ2

3 − 2σ13

B = σ12 + σ2
3 − σ13 − σ23

C = σ2
2 − 2σ23 + σ2

2

D = σ13 − σ2
3

E = σ23 − σ2
3

The solution to the first order conditions is thus

x̄1 =
AE −BD

B2 −AC
(C.5)

x̄2 =
CD − BE

B2 −AC
. (C.6)

In case x̄ ∈ X the solution x∗ = (x̄1, x̄2, 1 − x̄1 − x̄2)
T and R∗ = µTx∗.

Otherwise the solution x∗ is attained at the boundary of X. In such case
x∗ belongs to one of the lines given by x1 = 0, x2 = 0, x1 + x2 = 0. Let us
denote x∗23, x

∗

13,x
∗

12 the solution of min σ(x1, x2) on the lines x1 = 0, x2 = 0,
x1+x2 = 0, respectively. It is important to realize that these lines correspond
to the case of portfolio composition where one share is equal to zero.

Let us derive x∗12. By definition it is the solution of min σ(x1, x2) on the
line x1 + x2 = 1, i.e. it is the solution of the unconstrained mean-variance
portfolio problem 5.2.13 for two assets. This problem can be reformulated as

min
x1∈R

x2
1σ

2
1 + 2x1(1 − x1)σ12 + (1 − x1)

2σ2
2 . (C.7)

This is a problem of minimizing a quadratic function and therefore its solution
can be derived as the solution of the first-order condition (which is in fact a
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linear equation) as

x1 =
σ2

2 − σ12

σ2
1 − σ12 + σ2

2

(C.8)

and therefore by symmetry

x∗12 = (
σ2

2 − σ12

σ2
1 − 2σ12 + σ2

2

,
σ2

2 − σ12

σ2
1 − 2σ12 + σ2

2

) (C.9)

x∗13 = (
σ2

3 − σ13

σ3
1 − 2σ13 + σ2

3

, 0) (C.10)

x∗23 = (0,
σ2

3 − σ23

σ2
2 − 2σ23 + σ2

3

) (C.11)

(C.12)

If X̃ = X ∩ {x∗23, x∗13, x∗12} 6= ∅, then x∗ = (x̃1, x̃2, 1 − x̃1 − x̃2), where x̃ =
arg minx∈X̃ σ(x). Otherwise

x∗ = arg min{σ(x)|x ∈ {e1, e2, e3}}, (C.13)

ei being the i-th coordinate unit vector.
It should be noted that the by-product of this solution is the optimal

portfolio for the unconstrained mean-variance portfolio problem 5.2.13 for
two assets, given by C.8.

C.4.2 Constrained case

Now let us turn to the constrained problem 5.2.3. Since the constraint is
given by equality, and µ1 > µ2 > µ3, the set of feasible solutions

X = {x ∈ R
3; x1 + x2 + x3 = 1, µ1x1 + µ2x2 + µ3x3 = R, x1, x2, x3 ≥ 0}

is not empty only for R ∈ [µ3, µ1] . Moreover, any feasible solution x is can
be written as

x = f(x2) = {(R− µ3

µ1 − µ3
− x2

µ2 − µ3

µ1 − µ3
, x2,

µ1 − R

µ1 − µ3
− x2

µ1 − µ2

µ1 − µ3
), }

for x2 ∈ X2 = [0,min( R−µ3

µ2−µ3
, µ1−R

µ1−µ2
)]. This implies that the problem 5.2.3 is

equivalent to the problem of minimizing σ(x2) = f(x2)
TΣf(x2) on a compact

interval, where σ(x2) is a convex quadratic function of x2. Therefore its global
minimum x̂2 is the solution of the first order condition, after some rearranging
it reads

∂σ

∂x2

|x2=x̂2= 2x̂2F − 2G = 0 (C.14)
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where

F =
(µ2 − µ3)

2

(µ1 − µ3)2
σ2

1 − 2
µ2 − µ3

µ1 − µ3
σ12 + σ2

2

−2
µ1 − µ2

µ1 − µ3
σ23 +

(µ1 − µ2)
2

(µ1 − µ3)2
σ2

3 + 2
(µ1 − µ2)(µ2 − µ3)

(µ1 − µ3)2
σ13

G =
(R− µ3)(µ2 − µ1)

(µ1 − µ3)2
σ2

1 −
R− µ3

µ1 − µ3

σ12 −
µ1 − R

µ1 − µ3

σ23

+
(µ1 − µ2)(µ1 −R)

(µ1 − µ3)2
σ2

3 +
(R− µ3)(µ1 − µ2) + (µ2 − µ3)(µ1 −R)

(µ1 − µ3)2
σ13.

If x̂2 ∈ X2, then x∗R = f(x̂2). Otherwise the minimum of σ(x2) on X2 is
attained at the border of X2 and therefore x∗ = f(x̌2), where

x̌2 = arg minσ(x2), x2 ∈ {0,min(
R− µ3

µ2 − µ3

,
µ1 −R

µ1 − µ2
)}. (C.15)
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Resumé

V tejto práci sa zaoberáme primárne formuláciou matematických modelov
voľby portfólia zloženého z reálnych aktív, s využitím pomerne nového kon-
ceptu miery rizika. Pojem podmienenej hodnoty rizika (CVaR) a jeho využi-
tie pri problémoch voľby portfólia boli prvý krát formulované v [60]. Tento
koncept je v tejto práci aplikovaný na voľbu optimálnej skladby investícií v
energetickom sektore pod vplyvom neistej ceny emisií.

Obsahovo je práca rozdelená na dve časti. Kým prvá časť poskytuje
motiváciu a formuláciu skúmaných problémov, spolu s prehľadom súčasného
stavu problematiky, druhá časť je venovaná vlastným výsledkom a navrhuje
riešenie nastolených problémov.

Prvá kapitola dizertačnej práce uvádza stručný prehľad energetického
sektora s dôrazom na stranu producentov elektriny pre distribučnú sieť.
Porovnáva základné charakteristiky jednotlivých technológií a objasňuje rel-
evantnosť otázok skúmaných v tejto práci. Druhá kapitola je venovaná
presnejšiemu popisu problému, naznačuje základný koncept jeho riešenia a
navrhnutý prístup dáva do súvislosti s doterajšími prácami v tejto oblasti. V
neposlednej miere uvádza súhrn predpokladov uvažovaných pri formulácii
modelov v ďalších kapitolách. Tretia kapitola uzatvára prehľadovú časť
práce a poskytuje potrebné poznatky o podmienenej hodnote rizika, najmä
s ohľadom na jej aplikáciu pri formulácii problémov tvorby portfólia.

Ostatné kapitoly tvoria jadro práce a obsahujú vlastné výsledky. Hlavný
prínos práce sa skladá z dvoch línií.

Prvou líniou je tvorba modelu pre určenie optimálnej skladby investí-
cií do reálnych aktív, s aplikáciou v energetike. Základná motivácia pre
tvorbu spomínaných modelov môže byť zjednodušene vyjadrená nasledovnou
otázkou: Ako optimálne voliť skladbu investícií do nových kapacít v prípade
neistej ceny emisií, uvažujúc že jednotlivé typy technológií budú využívané
optimálne?

Navrhnutým riešením je model zložený z dvoch prepojených úrovní. Prvá
úroveň reprezentuje optimalizáciu prevádzky jednotlivých reálnych aktív za
účelom maximalizácie zisku. Formulácia tejto úlohy vedie na problém stocha-
stického optimálneho riadenia. Jej primárnym výstupom je náhodný vektor
reprezentujúci zisk spojený s investíciou do daného reálneho aktíva, za pred-
pokladu že je dané aktívum využívané optimálne. Formulácia a riešenie tohto
problému, spolu s charakteristikou jednotlivých výstupov je prezentovaná v
kapitole 4.

Na druhej úrovni sa rieši optimalizačný problém voľby portfólia, kde vs-
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tupmi sú zisky jednotlivých aktív, t.j. vstup je tvorený výstupom z prvej
optimalizačnej úrovne pre jednotlivé aktíva. V tejto práci sú navrhnuté tri
rozdielne modely voľby portfólia zohľadňujúce špecifiká spojené s investo-
vaním do reálnych aktív v oblasti energetiky.

Kapitola 5 formuluje základný model minimalizujúci risk portfólia, kde
risk je definovaný podmienenou hodnotou rizika. Výsledky tohto modelu
slúžia ako referenčná hodnota pre porovnanie výsledkov zložitejších modelov
predstavených v kapitolách 6 a 7.

Kapitola 6 sa bližšie zaoberá problémom voľby robustného portfólia, t.j.
portfólia ktoré vykazuje žiaduce charakteristiky vo viacerých uvažovaných
scenároch. Formulácia tohto problému vedie rovnako ako v prípade základ-
ného modelu voľby portfólia na problém lineárneho programovania.

Kapitola 7 naopak rozširuje základný model o možnosť diverzifikácie rizika
nielen medzi jednotlivými aktívami, ale aj v čase. Tento model je schopný zo-
hľadniť, aký vplyv má plánované rozšírenie kapacít v budúcnosti na rozhod-
nutia urobené v súčasnosti. Riešenia jednotlivých modelov sú porovnané na
reálnych dátach a ukazujú, že obe rozšírenia majú výrazný vplyv na výslednú
skladbu portfólia.

Druhou líniou vlastného prínosu je teoretické porovnanie klasickej Markow-
itzovej teórie voľby portfólia so základným modelom portfólia z kapitoly 5 pre
normálne rozdelené výnosy reálnych aktív. Analýza ukazuje, že vo všeobec-
nosti uvedené prístupy vedú na rovnaké portfóliá, ak je vo formulácii prob-
lému prítomná podmienka na očakávaný výnos portfólia vo forme rovnosti.
Avšak v prípade že uvedená podmienka je formulovaná ako nerovnos?, dané
prístupy nie sú ekvivalentné, navyše výnos portfólia minimalizujúceho CVaR
je vo všeobecnosti zdola ohraničený výnosom portfólia minimalizujúceho vari-
anciu.


