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1. Introduction.

We study global properties of dynamical systems generated by the scalar para-
bolic equation

(1.1) ut = uξξ + f(t, ξ, u, uξ), ξ ∈ S1

and their C1 small perturbations. Here f is C2 in all variables and 1-periodic in t.
Long time behavior of the solutions of these equations as well as the equations

in the same form on an interval with the separated boundary conditions have been
investigated in many papers (see [An1], [AF], [BF1], [BF2], [BPS], [Br], [CCH],
[CM], [CP], [FM], [FR], [FS], [He2], [HR], [Kw], [M1], [M3], [Na], [SY]). Let us
mention now three works having direct impact on the questions solved in Theorems
1.1 and 1.2 below.
Fiedler and Mallet-Paret proved a Poincaré-Bendixson theorem in [FM-P] for the

semiflow given by autonomous equation (1.1), i.e. when f does not depend on t.
A description of ω-limit sets is also available for nonautonomous equations (1.1) in
case f is independent of ξ (see [FS]). On the other hand, Fiedler and Sandstede [FS]
showed that, in the general case, ω−limit sets of solutions can be as complicated as
those of solutions of smooth 1-periodic vector fields in R

2. More specifically, to any
C2 1−periodic vector field in the plane one can associate a nonlinearity f such that
(1.1) yields the same dynamics in some invariant plane as the given vector field.
One of our theorems complements these results; we show that each ω−limit set
of (1.1) can be imbedded in the plane. Chen and Poláčik studied chain reccurent
set for the period map of the nonautonomous equation in the form (1.1) under the
Dirichlet boundary conditions in [CP]. They described a way how to prove that
for a broad class of small C1 perturbations of this period map the ω-limit sets are
just single points. Similar perturbation results for separated boundary conditions
as well as for equations on S1 are proved in this work, using a completely different,
unified method.
Before stating our results we review some properties of equation (1.1).
Let X be any fractional power space associated with the operator u 7→ −uξξ :

H2(S1) → L2(S1), denoted by A, such that the embedding relation X →֒ C1(S1)
is satisfied. Then by the standard theory ([He1]) equation (1.1) induces a local
semiflow (t, u(t, ·)) ∈ [0,∞)×X , where u(t, u0) is the solution of (1.1) in the sense
of ([He1]). If the solution u(t, ·) of (1.1) is bounded in X norm then it is global
and its orbit is precompact in X . We are interested in asymptotic behavior of
these solutions. In fact we restrict ourselves to the solutions starting in a bounded
open set B ⊂ X . For the next two theorems we assume the following dissipativity
condition fullfiled for a large subclass of equations (1.1) (see [Ha])

(D)
there is a T0 > 0 such that for any u0 ∈ cl(B) the solution of (1.1)

with u(0, ·) = u0 is global and u(t, ·) ∈ B for all t > T0.

This condition also follows from pointwise dissipativity and compactness of the flow
(see [Ha]). Having (D), in the nonautonomous case we can define the Poincaré map
F by
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Fu0 = u(1, u0), u0 ∈ B.

By [He1] the restriction of the map F to the set B belongs to the following Banach
space

C1(B, X) := {G : B → X : G is continuously Fréchet differentiable

with bounded derivative on B},

with the norm

| G |C1(B,X)= sup
x∈B

| G(x) |X + sup
x∈B

| DG(x) |L(X,X) .

Because of (D) all F nu0, u0 ∈ B, n ∈ N are defined. Thus we can define ω-limit set
of u0 ∈ B for F as the set of all limits of convergent subsequences of the sequence
Fnu0, n = 1, 2, . . . .

Theorem 1.1. Assume (D) for equation (1.1). Let F be the Poincaré map for

(1.1) and denote by B1 the set
⋃N0

n=1 Fn(B) for an N0 > T0. Then there is an ǫ > 0
such that for any map G : X → X with

sup
x∈B1

| Gx − Fx |X , sup
x∈B

| DG(x)− DF (x) |L(X,X)< ǫ

the ω-limit set of any u0 ∈ B for G is homeomorphic to a subset in the plane.

Now we turn to the autonomous case when (D) is satisfied for (1.1). Then
equation (1.1) defines maps St : X → X, t > 0 by the formula

Stu0 := u(t, u0).

Obviously St1+t2 = St1 ◦ St2 , t1, t2 ≥ 0 and limt→0 Stu0 = u0, u0 ∈ X . Such a
family of maps is called a semiflow on X . By [He1] we know that each map St, t > 0
restricted to B is from C1(B, X). and the map

(t, u) 7→
d

dt
Stu : R

+ × X → X

is defined and continuous.
We say that family of maps St : X → X, t > 0 with the above properties is a

semiflow on X C1 on B.
By the ω-limit set of a point u0 ∈ B, denoted by ω(u0), we mean the set of all

limits of all convergent sequences Stn
u0, n = 1, 2, . . . where tn, n = 1, 2, . . . are

unbounded increasing sequences of positive numbers. The ω-limit set of any point
u0 ∈ B is invariant under the semiflow St, i.e St(ω(u0)) = ω(u0). Therefore for any
point x in ω(u0) we can associate a map

t 7→ Stx : R → ω(u0),

where for t > 0 S−tx is a point whose St image is x. If this map has limits for both
t → +∞ and t → −∞ then we call its image a connecting orbit of equilibria.
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Theorem 1.2. Assume (D) for an autonomous equation (1.1). Let St, t > 0 be
the semiflow given by (1.1) and denote by B1 the set

⋃
0<t≤T0

St(B). Then there

is an ǫ > 0 such that for any semiflow S ′
t, t > 0 on X C1 on B such that

sup
x∈B1

| S′
tx − St |X , sup

x∈B

| DS′
t(x)− DSt(x) |L(X,X)< ǫ, for all t ∈ [1, 2]

the ω-limit set of any u0 ∈ B for S′
t consists of either a single periodic orbit or

equilibria and their connecting orbits.

Note that in the above theorems we do not assume small C1 perturbations to
be injective or compact. The possible applications of these theorems are parabolic
equations on thin annulus (see [HR]) or perturbations of the nonlinearity in (1.1)
by a small delay.
Now we state immediate application for abstract parabolic equations allowing

for instance small C1 dependence on nonlocal terms containing in nonlinearity of
(1.1).
Consider the abstract parabolic equation

(1.2) ut = Au+ f0(t, u) + ǫg(t, u),

where ǫ > 0, A is the sectorial operator on L2(S1) given above, f0(·, ·) : [0,+∞)×
X → L2(S1) is a C1 1-periodic function representing for fixed t ∈ [0,+∞) the
Nemitskii operator

u(·) 7→ f(t, u(·), uξ(·)) : X → L2(S1),

g(·, ·) : [0,+∞)× X → L2(S1) is any C1 1-periodic globally Lipschitz function.

Corollary 1.1. Let the operator f0 be such that for equation (1.1) (D) is satisfied.
Then there is an ǫ0 > 0 such that for any ǫ ∈ [0, ǫ0] the ω-limit set of any u0 ∈ B

for the Poincaré map associated with equation (1.2) is embedded into the plane.
If moreover the functions f0 and g do not depend on t, the ω-limit set of any

u0 ∈ B for the semiflow associated with (1.2) consists of either a single periodic
orbit or some equilibria and their connecting orbits.

Note that in the case when a Poincaré-Bendixson theorem is valid for C1 small
perturbations of a finite dimensional systems (cf. Theorem 8.2) arbitrarily small
C0 perturbations could have a chaos as it is proved in [Ge]. It is obvious that
the C1 structural stability of ω-limit sets stated in the above results does not
take place for general dynamical systems even in finite dimensions. The needed
structure here is provided by the properties of the linear equation (1.1), i.e. when f

is linear in the variables u, uξ and not necessary depending periodically on t. That
structure is used in most works devoted to the study of dynamical properties of the
solutions of the same kind of equations as (1.1) (see e.g. [An1], [AF], [BF2], [BPS],
[Br], [CCH], [CM], [CP], [CLM-P1], [CLM-P2], [FM], [FR], [FS], [He2], [M1], [M2],
[M3], [Na], [SY]). The crucial properties are compactness of the solution operator
and monotonicity of number of zeros (see [Ni], [M2], [He2], [An2]) for solutions of
these linear equations. They are useful for dynamical study because the difference
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of any two solutions of nonlinear equation (1.1) u(t, ·)−v(t, ·) satisfies such a linear
equation. The compactness is standard for even more general parabolic equations
(see [He1]). In [An1] the full strenght of the monotonicity is proved, namely, any
nonzero solution of the linear equation (1.1) has immediately finite number of zeros
nonincreasing with time and strictly dropping at each time when the solution has a
double zero. These properties led to the definition of an abstract discrete Ljapunov
functional (cf. Definition 2.1).
In [FM-P] it is showed for autonomous equations that ω-limit sets are injectively

projected by the following map

u(·) 7→ (u(ξ0), uξ(ξ0)) : X → R
2, ξ0 ∈ S1

into the plane. This follows from the fact that the zero number is constant along
the difference of two trajectories in the ω-limit sets. To prove this, the Poincaré-
Bendixson Theorem in the plane was used in [FM-P]. We show that the stability
of dimensions of ω-limit sets is a consequence of the mentioned constancy of a
discrete Ljapunov functional constructed for each C1 small perturbation from a
cone structure of the unperturbed problem (cf. Theorem C and Corollary 2.3 in
Section 2). To accomplish that we need the existence of an exponential separation
(cf. Definition 2.3) for vector bundle maps ”strongly” preserving a cone structure.
This is formulated in the next section in Theorem B. This theorem is also the main
abstract result obtained here with possible other applications to the dynamics of
equation (1.1) (cf. Remark 8.1).
The paper is organized as follows. In the next section we formulate all abstract

results. In Section 3 the mentioned constancy of an abstract Ljapunov functional
for a discrete dynamical system is proved. Theorem B and C indicated above are
proved in the following two Sections 4 and 5. Their consequences are shown in
Section 6. Section 7 is devoted to the proof of Theorems 1.1 and 1.2 from abstract
results. In the last section we apply abstract results to the equation in the form
(1.1) on the segment under the Dirichlet boundary conditions (cf. Theorem 8.1)
and to monotone cyclic feedback systems.

Acknowledgement. I would like to thank my advisor P. Poláčik for proposing
me the subject and for valuable comments and discussions.
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2. Abstract results.

Let X be a metric space and G : X → X a map. If z ∈ X we say that the
following set

ω(z) = {u ∈ X : there is a sequence of natural numbers nk → +∞ as k → +∞ such that

limk→+∞ Gnkz = u}.

is the ω−limit set of z for G. By O+(z) for z ∈ X we denote the positive orbit of
z, i.e. the set {F iz : i ∈ N ∪ {0}}. The omega limit set of any point z is closed. If
moreover the positive orbit of z is precompact then ω(z) is compact.
A subset K of X is said to be invariant under G if G(K) = K. Note that if G

is continuous, injective and K is compact, invariant under G then G restricted to
K is a homeomorphism on K. In this case for any x ∈ K the set {Gix : i ∈ Z} is
defined and called the orbit of x.
Denote by D the set {(x, x) : x ∈ X}, by X (2) the induced metric space of the

metric space X × X on the set X × X \ D and by Ω(z) the set ω(z)× ω(z) \ D.

Definition 2.1. Let X be a compact metric space and let G : X → X be a
continuous, injective map. By a discrete Ljapunov functional for G on X we mean
a function θ : X (2) → N∪{0} satisfying the following axioms (A1-A3) with a natural
number µ

(A1) Monotonicity: θ(x, y) ≥ θ(Gmx, Gmy) for any point (x, y) ∈ X (2) and m ≥ µ.

(A2) Dropping property at the points of discontinuity: Let θ be discontinuous at a
point (Gµx, Gµy) for some (x, y) ∈ X (2). Then θ(G2µx, G2µy) < θ(x, y).

(A3) Shifted lower semicontinuity: Let (xn, yn), n = 1, 2 , ... be a convergent se-
quence of points from X (2) with the limit (x, y) ∈ X (2). Then

θ(Gµx, Gµy) ≤ lim inf
n→+∞

θ(xn, yn).

We remark that the zero number for the image of positively invariant subset under
the period map for equation (1.1) satisfy the axioms above with µ = 1. We actually
prove stronger properties of functionals we use (cf. Remark 5.1).

Theorem A. Let X be a compact metric space and G be an injective continuous
map of X. If there is a discrete Ljapunov functional θ for G on X , then for each
z ∈ X and (x, y) ∈ ω(z) × ω(z) \ D the functional θ is constant on the sequence
{(Gnx, Gny) : n ∈ Z} .

Now we are going to introduce several definitions needed for the formulation as well
as for the proof of Theorem B stated below.

Definition 2.2. Let F be a homeomorphism of a compact metric space K, and Y

a metric space. Further let {Yx, x ∈ K} a family of subsets of Y and {Rx, x ∈ K}
be a family of continuous maps Rx : Yx → Y, x ∈ K. Then we say that:
i) the set
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⋃
x∈K

{x} × Yx or shortly K × (Yx)

is a bundle of sets over K (or shortly a bundle). If there is a subset Y0 such that
Y0 = Yx for all x ∈ K we write the bundle K × (Yx) as K × Y0.
ii) the family of sets {Yx, x ∈ K}, or the corresponding bundle is continuous iff for
any convergent sequences xn ∈ K, yn ∈ Yxn

, n = 1.2. . . . their limits, x ∈ K and
y ∈ Y , respectively, satisfy y ∈ Yx .
iii) a pair (F, {Rx, x ∈ K}), or shorter (F, R) is a bundle map on the bundle
K × (Yx) iff

Rx(Yx) ⊂ YFx.

iv) the family {Yx, x ∈ K} or the corresponding bundle K × (Yx) is invariant
(positively invariant ) under a pair (F, R) iff for all x ∈ K

Rx(Yx) = YFx (Rx(Yx) ⊂ YFx).

v) a bundle K × {Zx, x ∈ K} is a subbundle of the bundle K × (Yx) iff Zx ⊂ Yx

for all x ∈ K.
vi) a bundle K × (Yx) is a k−dimensional vector bundle iff Y is a Banach space
and each Yx, x ∈ K is a k− dimensional linear subspace of Y .
vii) a bundle map (F, R) on a vector bundle K × (Yx) is a vector bundle map iff
each Rx, x ∈ K is a linear bounded map from Yx to YFx.
viii) Rn

x for x ∈ K and n ∈ N is the map

RF n−1x ◦ · · · ◦ RFx ◦ Rx : Yx 7→ YF nx.

Let Y be a Banach space and k a natural number. Then by G(k, Y ) we denote
the metric space of k−dimensional linear subspaces of a Banach space Y . The
distance of any two elements in G(k, Y ) is given by the Hausdorff distance of the
unit spheres in the corresponding linear subspaces. Having v1, . . . , vk any k vectors
in Y by [v1, . . . , vk] we denote the linear subspace generated by these vectors. For
any subset A in Y we denote by Gk(A) or simply GkA the set of all k−dimensional
linear subspaces lying in A. We will also write GA if it is clear which k is used.
Now consider any k−dimensional vector subbundle K × (Yx) of a vector bundle

K×Y where K is a compact metric space. Then K×(Yx) is a continuous subbundle
of K × Y iff the map x 7→ Yx : K → G(k, Y ) is continuous. This is a consequence
of Definition 2.2ii) and the definition of the metric in G(k, Y ).
For two Banach spaces Y1, Y2, L(Y1, Y2) denotes the Banach space of linear

bounded operators from Y1 to Y2. Let J be from L(Y, Y ),where Y is a Banach
space. Then by GkJ or GJ we denote the map defined for elements E ∈ G(k, Y ),
on which J is injective, by GJ(E) = J(E). In Sections 3 and 4 by X is denoted a
Banach space with norm | · |. By S we denote its unit sphere, and by X∗ the dual
Banach space. If a map J is in L(X, X) then by J∗ we denote its adjoint map in
L(X∗, X∗). For any linear subspace L in X∗ we define the anihilator of L in X as
follows

Anih(L) := {v ∈ X : l(v) = 0 for all l ∈ L}.
6



Also if L is a k−tuple of functionals from X∗ then Anih(L) means the anihilator
of the linear space generated by these vectors. Analogously for a linear subspace E

in X we define the anihilator of E in X∗.
A crucial concept is a k − cone in X defined as follows.

A closed subset C in X is a k−cone iff λC = C for all λ ∈ R \ {0} and there
are k−dimensional space V0 and k− codimensional space L0 such that V0 ⊂ C and
L0 ∩ C = {0}.

Sometimes, when it is clear which k we have in mind, we say simply that C is a
cone.

For the next definition we need one additional notation. Let X be a Banach
space, {Tx, x ∈ K} a family of operators in L(X, X), and F a homeomorphism of a
compact metric space K. Then by (F−1, T ∗) is denoted the vector bundle map on
K × X defined by the homeomorphism F−1 on the compact set K and the family
of compact maps {T ∗

F−1x
, x ∈ K}.

Definition 2.3. Let X be a Banach space, K a compact metric space, F a home-
omorphism of K and {Tx, x ∈ K} a family of maps in L(X, X) continuously de-
pendent on x ∈ K. We say that the vector bundle (F, T ) admits a k−dimensional
continuous separation along K or that there is a k−dimensional continuous sepa-
ration for (F, T ) on K iff there are k−dimensional subbundles K × {Vx, x ∈ K}
and K × {Lx, x ∈ K} of the bundles K × X and K × X∗, respectively, such that
i) K × (Vx) and K × (Lx) are continuous bundles, invariant under the bundle maps
(F, T ) and (F−1, T ∗), respectively.
ii) (exponential separation ) There are constants M > 0 and 0 < γ < 1 such that

| Tn
x w |≤ Mγn | Tn

x v |

for all x ∈ K, w ∈ Anih(Lx) ∩ S, v ∈ Vx ∩ S and n ∈ N.
If C is a k−cone and Vx ⊂ C and Anih(Lx) ∩ C = {0} for all x ∈ K then we say
that (F, T ) admits a k−dimensional continuous separation associated to the cone
C.

The following theorem gives sufficient conditions for the existence of the just
introduced object.

Theorem B. Let X be a Banach space, C a k−cone in X, K a compact metric
space, F a homeomorphism of K and {Tx, x ∈ K} a family of maps in L(X, X)
continuously dependent on x ∈ K. Assume that each Tx, x ∈ K, is compact and
for any x ∈ K and v ∈ C\{0} there is an open neighborhood of v in X mapped into
C \{0} by the map Tx. Then the vector bundle map (F, T ) admits a k−dimensional
continuous separation along K associated with the k−cone C.

Here we give a review of results generalized by Theorem B and its semiflow ana-
log Corollary 2.2 below. The next of them concerns the case when C is a 1−cone
given as a union of two convex positive cones with nonempty interior. If K is a
point, Theorem B is proved in [Pe] for finite-dimensional X and if X is any Banach
space it is the Krein-Rutman Theorem. With described 1−cones the theorem is
proved in finite dimensions in [Ru] and for any Banach space in [PT]. There is also
the result in [Mi] with a family of operators coming from linear reaction diffusion
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equations. The first result when C is not a 1−cone seems to be the following one
in [FO1]. If K is a point, dim(X) < +∞, C a k−cone with nonempty interior
the theorem is proved. Actually for this result in [FO1] is used little weaker defi-
nition of a k−cone, namely, C is a closed set invariant under the multiplication of
nonzero real numbers and containing at least one k-dimensional subspace of X and
not any k + 1 dimensional subspace. But if there is any linear map satisfying the
assumptions of Theorem B in this case, i.e. T (C \ {0}) ∈

∫
(C), this set has the

same properties as our k−cone. Further, there are several results of transversal in-
stersections of invariant manifolds for some monotone systems of equations ([FO2])
and equations of type (1.1) (see [An1], [He2], [CCH]) which include the existence of
invariant bundles with K consisting of a connecting orbit (mostly for flows) of two
equilibria or periodic orbits and the family of operators given by the linearizations
of these equations. In [CLM-P1] the conclusion of Theorem B is proved for K a
point and linear operators are time-one maps of linear equations of type (1.1) with
Dirichlet boundary conditions. Results in [CLM-P2] concern linear nonautonomous
equations of type (1.1) with various boundary conditions. We describe the main
results in [CLM-P2] for equations ut = uξξ + b(t, ξ)u with Dirichlet boundary con-
ditions and b(t, ·) are from any but fixed ball in L∞(R × [0, 1]) endowed with the
weak star topology. The solution operators for these equations together with the
usual skew-product flow on these balls give the vector bundle semiflow for which
k−dimensional continuous separations are proved with any k ∈ N.
The method of the proof of Theorem B has some common features with that in

[PT] proving the theorem with 1−cone consisting of two positive convex cones with
nonempty interiors. The essential difference between them manifests in showing the
existence of a dual invariant bundle. In [PT] this bundle was given by Tikhonov
fixed point theorem due to involved convexity, without using ”strong” monotonicity.
Here, for general k(≥ 2)-cones and bundle maps (F, T ) no fixed point theorem could
be applied without utilizing ”strong” preserving of cones by bundle maps.

The next theorem gives sufficient conditions under which the ω-limit sets for
small C1 perturbations of a map F0 are embedded into the d-dimensional linear
space.

Theorem C. Let X be a Banach space, U0 an open subset of X, F0 ∈ C1(U0, X),
K0 a compact subset of U0 invariant under F0, N ∈ N or N = +∞, Ci, 1 ≤ i < N

a ki−cone , CN = X and Π a d−codimensional linear subspace of X. Further let
Ci ⊃ Ci−1, ki > ki−1 for any 1 < i < N and C0 = {0}. Suppose that there is a
continuous family of compact operators {T(x,y) ∈ L(X, X), (x, y) ∈ U0 × U0} such
that for any x, y ∈ K0 the following holds
i) T(x,y)(x − y) = F0x − F0y.

ii) for any 1 ≤ i ≤ N and v ∈ Ci \ {0} there is a neighborhood of v mapped into
Ci \ {0} by T(x,y).

iii) v ∈ X \ {0} implies T(x,y)v ∈ Cj \ {0} for some j ∈ N.
iv) T(x,y)(Ci) ∩ (Ci \ Ci−1) ∩ Π = ∅ for all 1 ≤ i ≤ N .
Then there exist an open neighborhood of K0 denoted by V and an ǫ > 0 such that
for any G ∈ C1(V, X) with

| F0 |V −G |C1(V,X)< ǫ

the ω−limit set for G of any point x0 ∈ V, with all Gnx0, n ∈ N defined and
8



cl({Gnx0 : n ∈ N} ⊂ V, is homeomorphic to a subset in R
d.

If in the above theorem d = 1 then we obtain that ω-limit sets from the statement
of the theorem are embedded into the line. If F is the time one map for the equation
of the form (1.1) on the segment under the separated boundary conditions the
assumptions of the following corollary are satisfied (see Theorem 8.1).

Corollary 2.1. Let the assumptions of Theorem C be satisfied. Moreover suppose
that Π is 1−codimensional linear subspace of X and the following assumption is
satisfied

(A) if v ∈ Ci \Ci−1 and T(x,y)v ∈ Ci \Ci−1 for some v ∈ X, (x, y) ∈ K0×K0, 1 ≤
i ≤ N then the vectors v and T(x,y)v lie in the same component of X \Π.

Then there is an ǫ > 0 and open neighborhood V of K0 such that for any G ∈
C1(V, X) with

| F0 |V −G |C1(V,X)< ǫ

and any distinct x, y ∈ V, with all Gnx, Gn, n ∈ N defined, there is an n0 ∈ N such
that all Gnx−Gny lie in the same halfspace of X \Π or | Gnx−Gny | exponentially
tends to zero as n → +∞. Moreover, the ω-limit set for G of any x0 ∈ V, with all
Gnx0, n ∈ N defined and cl({Gnx0 : n ∈ N}) ⊂ V , is just a single point.

For the formulation of analogous assertions for flows we need several definitions.
Let X be a metric space and U0 a subset in X . We say that a family of maps

St ∈ C(U0,X ), t > 0 is a semiflow continuous on U0 iff
a) the function t 7→ Stx : (0,+∞)→ X is uniformly continuous and limt→0 Stx = x

for all x ∈ U0.
b) if x ∈ U0 and t1, t2 > 0 such that St1+t2x ∈ U0 then

St2 ◦ St1x = St1+t2x.

If moreover X is a Banach space and the function (t, x) 7→ d
dt

Stx : (0,+∞)×U0 → X
is continuous then we call St regularizing semiflow continuous on U0.

The image of the map t 7→ Stx : [0,+∞)→ X is called a positive orbit of x ∈ U0.
By the ω−limit set of the point x ∈ U0 for a semiflow St on U0 we mean the set of
limits of all convergent sequences Stn

x where tn → +∞.
LetK be a compact metric space. We say that a semiflow St onK is a continuous

flow on K if St is a homeomorphism of K for all t > 0. Let moreover {T t
x : t >

0, x ∈ K} be a family of bounded linear maps of a Banach space X with the
following properties:

j) the function (x, t) 7→ T t
x : K × (0,+∞)→ L(X, X) is continuous .

jj) T t1+t2
x = T t1

St2
x ◦ T t2

x for all t1, t2 > 0 and x ∈ K.

Then the pairs of families of maps (St, T
t) is called a vector bundle (or skew product)

semiflow on K × X . We denote it by (St, T
t).

If C is a k−cone in X we give an analogue of the Definition 2.3 as follows:
We say that a vector bundle semiflow (St, T

t) on K × X admits a k−dimensional
continuous separation alongK associated with the k−cone C if there are k−dimensional

9



subbundles K × {Vx : x ∈ K} and K × {Lx : x ∈ K} of the bundles K × X and
K × X∗, respectively, such that the following properties are satisfied:
i) K × (Vx) and K × (Lx) are continuous bundles .
ii) T t

xVx = VStx and T t∗
x LStx = Lx for all t > 0, x ∈ K.

iii) (exponential separation) There are constants M > 0 and 0 < γ < 1 such that
one has

| T t
xw | ≤ Mγt | T t

xv |

for all x ∈ K, w ∈ Anih(Lx) ∩ S, v ∈ Vx ∩ S and t ≥ 1.

The following result is a continuous analog of Theorem B, and it actually follows
from that theorem.

Corollary 2.2. Let X be a Banach space, C a k−cone in X, K a compact metric
space, (St, T

t) a vector bundle semiflow on K × X. Assume that each T t
x, x ∈

K, t ≥ 1 is compact and maps an open neighborhood of any v ∈ C \ {0} into C \
{0}. Then the vector bundle semiflow (St, T

t) admits a k−dimensional continuous
separation along K associated with the k−cone C.

Theorem C has a semiflow analog in the next corollary.

Corollary 2.3. Let X be a Banach space, U0 an open subset of X, N ∈ N or
N = +∞, Ci, 1 ≤ i < N a sequence of ki−cones, C0 = {0}, CN = X and
Ci ⊃ Ci−1, ki > ki−1 for all 1 < i < N . Further let St be a semiflow continuous
on U0, Π a d−codimensional linear subspace of X and K0 ⊂ U0 a compact and
invariant set under each map St, t > 0.
Suppose that for any (x, y) ∈ U0 × U0 and any

1
2 ≤ t ≤ 1 there is a compact

operator T t
(x,y) ∈ L(X, X) with the following properties :

i) T t
(x,y)(x − y) = Stx − Sty.

ii) if v ∈ Ci \ {0} then there is an open neighborhood of v mapped into Ci \ {0} by
T t
(x,y).

iii) v ∈ X \ {0} implies T t
(x,y)v ∈ Cj \ {0} for some j ∈ N.

iv) if 0 6= T t
(x,y)v ∈ ((Ci \ Ci−1) ∩ Π) for an 1 ≤ i ≤ N then v 6∈ Ci.

v) the function (t, x, y) 7→ T t
(x,y) : [

1
2
, 1]× U0 × U0 → L(X, X) is continuous.

Then there exist an open neighborhood of K0 denoted by V and an ǫ > 0 such that
for any semiflow S′

t continuous on V with S′
t ∈ C1(V, X), t ∈ [ 12 , 1] and

| St |V −S′
t |C1(V,X)< ǫ for all

1

2
≤ t ≤ 1

the ω−limit set of any x0 ∈ V for S′
t, for which the closure of its positive orbit lies

entirely in V, is homeomorphic to a subset in R
d.

A Poincaré Bendixsom Theorem is stated in the following corollary.

Corollary 2.4. In addition to the assumptions of Corollary 2.3 suppose that the
semiflow St is regularizing and d = 2. Then there exist an open neighborhood of K0
denoted by V and an ǫ > 0 such that for any regularizing semiflow S ′

t continuous
on V with S′

t ∈ C1(V, X), t ∈ [ 1
2
, 1] and

| St |V −S′
t |C1(V,X)< ǫ for all

1

2
≤ t ≤ 1

10



the ω− limit set of any x0 ∈ V, for which the closure of its positive orbit lies entirely
in V, consists of either a single periodic orbit or equilibria and their connecting
orbits.

We rephrase the result of the last corollary by saying that x0 ∈ U has the PB
property for the semiflow S ′

t.

11



3. Discrete Ljapunov functionals on omega-limit sets.

We begin with a definition of a function. Let u, v be two different points in
X . Then sequence θ(Giu, Giv), i = 1, 2 , ... is eventually constant. Indeed, it is
eventually nonincreasing because of Axiom A1 and has only natural or zero values.
Therefore there is a minimal number m ∈ N∪{0} from which the above sequence is
constant. Hence θ is continuous at the point (Gm+1u, Gm+1v) because in the other
case by Axiom A2 we obtain θ(Gmu, Gmv) > θ(Gm+µu, Gm+µv), contradicting
the definition of the number m. Denote the number m+1 by η(u, v). We shall use
it in the following lemma.

Lemma 3.1. If z 6∈ ω(z) then θ is bounded on Ω(z).

Proof: We show that θ is bounded on {Gmz} × {Gi+mz : i ∈ N} for some m ∈ N

and then the shifted lower semicontinuity of θ gives boundedness of θ on Ω(z).
Denote the compact set cl(O+(z) \ {z}) by C. Then z 6∈ C because z 6∈ ω(z).

By the definition of η the function θ is continuous on the set

{(Gη(z,u)z, Gη(z,u)u) : u ∈ C}.

Hence, using the continuity of G, we find for any u ∈ C an open neighborhood
U such that the function θ is constant on sets {Gη(z,u)z} × Gη(z,u)(U). Since
C is compact there are points u1, u2 , ..., uk in C such that their corresponding
neighborhoods Ui, i = 1, ..., k cover C. Denote

m = max{η(z, ui), 1 ≤ i ≤ k} and τ = max{θ(Gη(z,ui)z, Gη(z,ui)ui), 1 ≤ i ≤ k}.

The monotonicity of θ implies that τ is the upper bound of θ on the set {Gm+µz}×
Gm+µ(C).
Now take any (u, v) ∈ Ω(z). Since ω(z) is invariant under Gµ there are points ū

and v̄ lying in ω(z) such that u = Gµū, v = Gµv̄ . Therefore we can choose two
increasing sequences of natural numbers such that

ū = lim
k→+∞

Gmkz and v̄ = lim
k→+∞

Gnkz.

In addition we may suppose that nk > mk, k = 1, 2, .... Since Gnk −mkz ∈ C,
we have

θ(Gmz, Gnk −mk +mz) ≤ τ.

Hence, by the monotonicity property of θ and Axiom A3, we finally obtain

τ ≥ lim inf
k→+∞

θ(Gmkz, Gnkz) ≥ θ(Gµū, Gµv̄).

Thus θ(u, v) ≤ τ . Since (u, v) was an arbitrary point in Ω(z), τ is the upper
bound of θ on Ω(z). ♦

The next lemma follows from Lemma 3.1.
12



Lemma 3.2. If z 6∈ ω(z) then for any (u, v) ∈ Ω(z) such that

θ(u, v) > θ(Gu, Gv)

there is a natural number N such that

θ(G−Nu, G−Nv) > θ(GNu, GNv)

and, moreover, θ is continuous at the points (G−Nu, G−Nv) and (GNu, GNv).

Proof: Take any (u, v) from the assumptions of the lemma. Then a sequence of
natural numbers θ(G−iµu, G−iµv), i = 1, 2 ... , is nondecreasing by Axiom A2 and
by Lemma 3.1 it is also bounded from above. Therefore this sequence is eventually
constant. Hence by Axiom A1 the sequence θ(G−iu, G−iv) is eventually constant
as well as the sequence θ(Giu, Giv), i = 1, 2 .... Hence there exists N > 2 such
that

θ(GN−µu, GN−µv) = θ(GNu, GNv) = θ(GN+µu, GN+µv)

θ(G−N−µu, G−N−µv) = θ(G−Nu, G−Nv) = θ(G−N+µu, G−N+µv)

Because of Axioms A1, A2 the number N has the property needed in the lemma.
♦

Now we state three propositions the proofs of which will be given later. The first
one is a discrete version of Lemma 2.1 in [FM-P]. We give here a modification of
that proof to our setting. In the sequel we will use a notion of the α-limit set for
a point in a ω-limit set. It is defined as the ω-limit set of the same point for the
inverse of the injective function G. By O(x) we denote an orbit of a point x lying
in some ω-limit set, i.e. the set O(x) = {Gix, i ∈ N}. The semiorbit of z, i.e. the
set {Giz : i ∈ N}, is denoted by O+(z).

Proposition 3.1. Let w ∈ ω(z). Then

(3.1) θ(u, v) = θ(Gu, Gv)

for all (u, v) ∈ cl(O(w))× cl(O(w)) \ D.

Proposition 3.2. Let z 6∈ ω(z), (u, v) ∈ Ω(z). If u 6∈ α(u) or v 6∈ α(v), then

θ(u, v) = θ(Gu, Gv)

Proposition 3.3. Let z 6∈ ω(z), (u, v) ∈ Ω(z). If u ∈ α(u) and v ∈ α(v) then

θ(u, v) = θ(Gu, Gv).

It is easy to see that Theorem A follows from these propositions. Indeed, if
z ∈ ω(z) then the theorem follows from Proposition 3.1 with w = z. If z 6∈ ω(z),
Propositions 3.2 and 3.3 give θ(u, v) = θ(Gu, Gv) for all (u, v) in Ω(z) and thus
establish Theorem A in this case.

13



Proof of Proposition 3.1: First we show (3.1) for (u, v) coming from iterates of w.
Take any two natural numbers m, n such that Gmw 6= Gnw. Since w ∈ ω(z)

there is an increasing sequence of natural numbers nk, k = 1, 2 ... such thatGnkz →
w as k → +∞. Using Axioms A1, A3 and the continuity of G we obtain

θ(Gmw, Gnw) ≥ θ(Gm+µw, Gn+µw) ≥ lim inf
k→+∞

θ(Gm+nk−µz, Gn+nk−µz) ≥ θ(Gmw, Gnw).

Hence (3.1) follows for (Gmw, Gnw).
Now take any (u, v) ∈ cl(O(w))× cl(O(w)) \ D. Suppose on the contrary that

(3.1) is false for this (u, v). We have Gnkw → u and Gmkw → v as k → +∞ for
some sequences of integer numbers nk, mk, k = 1, 2 , .... Moreover we may suppose
that nk 6= mk for all k ∈ N. Note that θ is constant on some neighborhood of
(Gη(u,v)u, Gη(u,v)v). Denote this constant θ0. Hence using subsequently Axioms
A1, validity (3.1) for iterates of w and Axiom A3 we obtain

θ(G−muu, G−µv) ≥ θ(u, v) > θ(Gu, Gv) ≥ θ0 ≥ lim
k→+∞

θ(Gnk+η(u,v)w, Gmk+η(u,v)w)

= lim
k→+∞

θ(Gnk−2µw, Gmk−2µw) ≥ θ(G−µu, G−µv)

.
Thus (3.1) is established in all needed cases.♦

Proof of Proposition 3.2: Take any (u′, v′) ∈ Ω(z) satisfying the assumptions of
the proposition. We shall suppose that u′ 6∈ α(u′), the other case, v′ 6∈ α(v′), is
analogous. We proceed by contradiction. Thus, let (u′, v′) ∈ Ω(z), u′ 6∈ α(u′) and
θ(u′, v′) > θ(Gu′, Gv′). By Lemma 3.1 there are negative iterates of u′, v′, denoted
by u, v, respectively, and m ∈ N such that

(3.2) θ(u, v) > θ(Gmu, Gmv)

and θ is continuous at the points (u, v), (Gmu, Gmv). Since u lies on the same
orbit as u′ we have u 6∈ α(u).
Because α(u) ⊂ cl(O(u)) we can apply Proposition 3.1 for w = u which, in

conjunction with (A2) yields the continuity of θ at each point of the compact set
α(u) × {u}. Moreover, θ is continuous at (u, v). Therefore there exist open sets
U, V, U1, ..., Uk such that

u ∈ U, v ∈ V, α(u) ⊂
⋃k

i=1 Ui and θ is constant on each Ui × U, i = 1, ..., k

and also on U ×V . Since the function (u, v)→ θ(Gmu, Gmv) is continuous at (u, v)
we take U and V above smaller, if necessary, such that

(3.3) {θ(Gmu, Gmv)} = θ(Gm(U)× Gm(V ))
14



.
Note that U∩O+(z) is nonempty because u ∈ ω(z). So choose any x ∈ U∩O+(z).

Since all large negative iterates of u lie in the open neighborhood

k⋃
i=1

Ui of α(u)

and v ∈ ω(x) = ω(z) there is an n ≥ µ such that Gnx ∈ V and G−nu ∈ Uj for a
1 ≤ j ≤ k.
At this point we are ready to derive a contradiction. Since θ is constant on the

sets Uj × U , U × V and G−nu ∈ Uj , x ∈ U, v, Gnx ∈ V we have

θ(G−nu, u) = θ(G−nu, x) and θ(u, Gnx) = θ(u, v).

Hence, by the monotonocity property of θ we obtain the following inequality

(3.4) θ(G−nu, u) ≥ θ(u, v).

Further, since (Gmx, Gm+nx) ∈ (Gm(U)×Gm(V )) because (x, Gnx) ∈ U × V , the
fact that θ is constant on U × V and (3.3) give

θ(Gmu, Gmv) = θ(Gmx, Gm+nx)

Hence using (3.2) we obtain

(3.5) θ(u, v) > θ(Gmx, Gm+nx).

Now, the fact that θ is locally constant near each point of O(u) × O(u) \ X (2)

together with u ∈ ω(x) implies the existence of an arbitrarily large m1 ∈ N such
that the following holds

θ(Gm1x, Gm1+nx) = θ(u, Gnu).

Therefore, choosing such m1 greater than m + µ, Axiom A1 together with (3.5)
implies that

θ(u, v) > θ(u, Gnu).

From this inequality and (3.4) we obtain

θ(G−nu, u) > θ(u, Gnu).

This is a contradiction with the conclusion of Proposition 3.1 for w = u.

Proof of Proposition 3.3: Suppose on the contrary that there is a (u0, v0) ∈ Ω(z)
such that u0 ∈ α(u0), v0 ∈ α(v0) and

θ(u0, v0) > θ(Gu0, Gv0).

If u0 ∈ α(v0) or v0 ∈ α(u0) then the points lie in the closure of the orbit of one of
them. But in this case the last inequality contradicts the conclusion of Proposition
3.1. Thus we may assume that u0, v0 are such that u0 6∈ α(v0), v0 6∈ α(u0). By
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Lemma 3.2 we find a (u1, v1) ∈ Ω(z) and natural numbers m, r with the following
properties

(3.6) Gmu1 = u0, Gmv1 = v0

(3.7) θ(u1, v1) > θ(Gru1, G
rv1)

and the function θ is continuous at its arguments in the last inequality. Since u0, v0
lie in their α-limit sets not containing the other point of these two, the same holds
for u1, v1 because of (3.6).
Now we are going to use the fact that for any point with compact α-limit sets,

including this point, there is a point w1 arbitrarily close to w such that ω(w1) =
α(w) (see Corollary 11.5 in [Ma]). Thus, we can change the points u1, v1 by the
other points u, v such that all what we have said about the relation of the former
points and their α-limit sets is satisfied for the later points and their ω-limit sets.
Moreover u, v can be chosen arbitrarily close to the respective points u1 and v1,
hence by the continuity of θ in the arguments in (3.7) the inequality (3.7) holds for
(u, v) as well. Therefore it is sufficient to show the impossibility of the following
assertion (S):
There exists (u, v) ∈ Ω(z) and r ∈ N such that u ∈ ω(u), v ∈ ω(v), u 6∈ ω(v), v 6∈
ω(u), the function θ is continuous at the point (u, v) and

(3.8) θ(u, v) > θ(Gru, Grv).

The contradiction is reached as follows. First we construct two sequences {u1, u2, ..., uk}
in ω(u) and {v1, v2, ..., vk} in ω(v) such that

(3.9) θ(ui, vi) ≤ θ(Gru, Grv)

for 1 ≤ i ≤ k and

(3.10) θ(u, v) = θ(uk, vk)

The number k above will be equal to a number k1 + k2 + l1 + l2 + 1 defined later
(using Lemma 3.4 below). Hence combining (3.10) with the inequality (3.9) for
i = k we obtain that θ(u, v) ≤ θ(Gru, Grv) contradicting (3.8).

For the construction of the above sequence we need two observations formulated
in two lemmas below with the proofs postponed to the end of this section.

Lemma 3.3. There exist open neighborhoods U and V of the points u and v,respectively,
and a natural number N such that for any (x, y) ∈ U ×ω(v) and (x′, y′) ∈ ω(u)×V

it holds

(3.11) θ(x, y) ≥ θ(Gmu, Gmy)

(3.12) θ(x′, y′) ≥ θ(Gmx′, Gmv)

for all m ≥ N.

Moreover the function θ is constant on U × V .
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Lemma 3.4. LetM, N be infinite subsets of N. Then there are natural numbers
k1, k2, l1, l2 and m1, m2, m3 ∈ M, n1, n2, n3 ∈ N such that

n3 > k1m1 + k2m2 +m1

and

m3 = l1n1 + l2n2 + n3 − k1m1 + k2m2.

Denote

M = {m ∈ N : m ≥ max(N, r + µ) and Gmu ∈ U}

N = {n ∈ N : n ≥ max(N, r + µ) and Gnu ∈ V }

Note thatM and N are infinite sets because u and v are contained in their respec-
tive ω-limit sets. Thus M and N satisfy the assumptions of Lemma 3.4 . Thus
we have natural numbers k1, k2, l1, l2 and m1, m2, m3, n1, n2, n3 as in the lemma.
Define the announced sequences as follows

ui = Gm1u, vi = Gim1v for 1 ≤ i ≤ k1

uk1+j = Gm2u, vk1+j = Gjm2+k1m1v for 1 ≤ j ≤ k2

uk1+k2+1 = Gn3−k1m1−k2m2u, vk1+k2+1 = Gn3v

uk1+k2+i+1 = Gin1+n3−k1m1−k2m2u, vk1+k2+i+1 = Gn1v for 1 ≤ i ≤ l1

uk1+k2+l1+j+1 = Gjn2+l1n1+n3−k1m1−k2m2u, vk1+k2+l1+j+1 = Gn2v for 1 ≤
j ≤ l2

Now it is easy to verify (3.9) using induction and Lemma 3.3, as follows.
Since m1 > r + µ the monotonicity property of θ implies (3.9) for i = 1. Let

(3.9) holds for some i ∈ {1, 2, ..., k1 + k2}. Note that putting

s = 1 if 1 ≤ i < k1

s = 2 if k1 ≤ i < k1 + k2

we have

ui+1 = Gmsu and vi+1 = Gmsvi.

Then taking x = ui, y = vi andm = ms in (3.11) we obtain the following inequality

θ(ui, vi) ≥ θ(Gmsu, Gmsvi) = θ(ui+1, vi+1).

This together with the induction hypothesis gives (3.9) for i+ 1.
If i = k1 + k2 + 1 then (3.9) follows similarly as in the preceding induction step

but putting in (3.11)
17



x = uk1+k2 , y = vk1+k2 and m = n3 − k1m1 − k2m2 (> m1 > N)

In order to prove (3.9) for the remaining i we can proceed by the same way as
for i less than k1 + k2. It is sufficient to change the role of u by v as well as the
role of (3.11) by (3.12), k1 and k2 by l1 and l2, ms by analogously defined ns.
Since θ is constant on U × V and

uk = Gm3u ∈ U and vk = Gn2v ∈ V,

the equality (3.10) also holds. Thus, it remains to prove lemmas 3.3 and 3.4.

Proof of Lemma 3.3: We shall find U , an open neighborhood of u, and N ∈ N.
Analogously we find V and a possibly different N ∈ N satisfying (3.12) on ω(u)×V .
But the monotonicity of θ gives that the maximum of these N ’s satisfies both (3.11)
and (3.12). By the continuity of θ at (u, v), we can choose U and V smaller, if
necessary, such that, in addition, θ will be constant on U × V .
Take any point y ∈ ω(v) and recall that u 6∈ ω(v). Denote n(y) = η(u, y).

Then by the definition of η the function θ is locally constant on some neighborhood
of the point (Gn(y)u, Gn(y)y). Therefore, by the continuity of G, there is an open
neighborhood Uy×Vy of the point (u, y) in X (2) such that θ is constant on Gn(y)Uy×
Gn(y)Vy. Because of compactness of ω(v) we can choose a finite subset {y1, ..., yl}
in ω(v) such that the sets Vyi

, i = 1, ..., l cover ω(v). Denote

U :=
l⋂

i=1

Uyi
, N := max

1≤i≤l
n(yi) + µ

Then, for any (x, y) ∈ U ×ω(v) we have y ∈ Vyi
, for some i ∈ {1, ..., l}. Henceforth

Axiom A1 gives (3.11) for all m ≥ N by the following sequence of inequalities

θ(x, y) ≥ θ(Gn(yi)x, Gn(yi)y) = θ(Gn(yi)u, Gn(yi)y) ≥ θ(Gmu, Gmy)

The proof of Lemma 3.3 is complete.♦

Proof of Lemma 3.4: This lemma follows from the Euclides algorithm for integers
and infiniteness of the setsM and N . The details follows.
Denote by d(a, b) the largest common divisor of two natural numbers a and b.

Choose m1 and n1 to be arbitrary numbers in M and N , respectively. Then we
find m2 and n2 such that there are infinite subsetsM′ ofM and N ′ of N such that
all their elements are divisible by d(m1, m2) and by d(n1, n2), respectively. Denote

n := d(n1, n2)

d := d(n, d(m1, m2))

Further choose a natural number r̃ which multiplied by d appears infinitely often
as a remainder at dividing numbers ofM′ by n. By the Euclides algorithm, n can
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be written as n = pn1 + qn2 where p, q are integers. Using similar expressions for
d(m1, m2) and d we find that

(3.13) r̃ · d = l′2n2 + l′1n1 − k′
1m1 − k′

2m2

for some quadruplet of integers (k′
1, k

′
2, l

′
1, l

′
2). Denote by K a natural number

greater than absolute values of all numbers in this quadruple. Then we choose k1
and k2 to be

k1 = Kn1 + k′
1, k2 = Kn2 + k′

2

which together with

l̄1 = Km1 + l′1, l̄2 = Km2 + l′2

gives a quadruple (k1, k2, l̄1, l̄2) of the natural numbers satisfying (3.13) with obvious
replacements.
Let L be a natural number greater than | p | and | q |. Then

(3.14)
all multiples of n greater than 4Ln21n

2
2 can be written as i1n1 + i2n2

for some natural numbers i1, i2

This can be seen from the following formula involving integers t > 2Ln1n2 and
0 ≤ s < 2n1n2

(t · 2n1n2 + s)n = (tn2n+ s · p)n1 + (tn1n+ s · q)n2.

Now we take any number n3 from N ′ greater than (k1 + 1)m1 + k2m2. By the
choice of r̃ and n3 we have an arbitrarily large m ∈ M such that m− (l̄1n1+ l̄2n2+
n3 − k1m1 − k2m2) is divisible by n. Therefore, in view of (3.14), the remaining
numbers m3, l1 and l2 are easily found. ♦
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4. Existence of exponential separation.

This section is divided into three parts . In part a) we show that Theorem B
follows from Theorem 4.1 below. In part c) the steps of the proof of Theorem 4.1
are formulated in five claims. The proofs of this claims use observations included
in part b). There, we outline the proof of Theorem 4.1 for the finite dimensional X .
Then we indicate a problem arising in infinite dimensions for overcoming of which
Proposition 4.2 and 4.3 will be useful.
Recall that by S we denote the boundary of the closed unit ball B in the Banach

space X .

a) Reducing the problem. The first purpose of this part is to create a k−cone
C1 such that T 2x = TFx ◦ Tx(C1 \ {0}) ⊂ C \ {0} ⊂ int(C1) for each x ∈ K.
We shall use the continuity of the vector bundle map (F, T ), the compactness of
K and the following property rewritten from the assumption of preserving C by
(F, T ):
for every v ∈ C \ {0} and x ∈ K there is a real number δ(x, v) > 0 such that

Tx(v + 2δ(x, v)B) ⊂ C \ {0},

Let L0 be the k−codimensional linear subspace of X from the definition of the
k−cone C. We show in a moment that for any v ∈ C \ {0} there is a δ(v) > 0 such
that T 2x (v+ δ(v)B) ⊂ C \ {0} for any x ∈ K. Then we find a desired k−cone C1 as
follows.
Consider the set

⋃
v∈S

((v + δ(v)B) ∩ S) \ L0.

This is an open neighborhood of C ∩ S in the metric space S with the induced
topology from X . Therefore there is a closed set C1 ⊂ S such that C∩S ⊂ intS(C1)
⊂ C1 ⊂ S \ L0. Hence it is easy to see that the set

C1 :=
⋃

λ∈R

λC1

is the desired k−cone.
In order to find δ(v) for a fixed v ∈ C \ {0} and any x ∈ K consider the set

Txv + δ(Fx, Txv)B

which is mapped by TFx to C \ {0}. The union of these sets over x ∈ K is an open
neighborhood of the compact set {Txv : x ∈ K}. Thus the continuous dependence
of Tx ∈ L(X, X) on x ∈ K gives the existence of a δ(v) > 0 independent on x ∈ K

such that

⋃
x∈K

Tx(v + δ(v)B) ⊂
⋃

x∈K

(Txv + δ(Fx, Txv)B)

Now it is easy to see that δ(v) has the properties required above.
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Since C \ {0} ⊂ int(C1), T
2
x (C1 \ {0}) ⊂ int(C1) and the k−cone C1 contains a

k−dimensional subspace without zero in its interior. So for the vector bundle map
(F 2, T 2) we can apply the next theorem the proof of which is postponed to part c)
of this section.

Theorem 4.1. Let (F, T ) be a vector bundle map on K × X and C1 a k−cone
in X containing a k−dimensional linear subspace in int(C1) ∪ {0}. Suppose that
Tx is compact and Tx(C1 \ {0}) ⊂ int(C1) for all x ∈ K. Then (F, T ) admits a
k−dimensional continuous separation on K associated with the k−cone C1.

So we have a k−dimensional continuous separation for (F 2, T 2) along K as-
sociated to the k−cone C1 above. Using Lemma 4.1 below we next obtain a
k−dimensional continuous separation for (F, T ) along K associated to the same
cone C1. But since Tx(C1) ⊂ C for all x ∈ K the invariance of the vector bundles
in this separation gives that the same separation is associated also to the k−cone
C, i.e. a separation required in the statement of Theorem B. Therefore in order to
finish our reduction of the proof of Theorem B to the proof of Theorem 4.1 we just
need to show the following lemma.

Lemma 4.1. Let (F, T ) be a vector bundle on K×X and C, C1 k-cones such that
Tm

x (C1 \ {0}) ⊂ C \ {0} for an m ∈ N and Tx(C) ⊂ C ⊂ int(C1) ∪ {0} for every
x ∈ K. Assume that the bundle map (F m, Tm) admits a k−dimensional continuous
separation along K associated with the k-cone C1. Then there is a k− dimensional
continuous separation for (F, T ) along K with the same invariant vector bundles
as for the k−dimensional continuous separation for (F m, Tm) along K.

Proof. Denote by K × (Vx) and K × (Lx) invariant k−dimensional subbundles of
K×X and K×X∗, respectively, in the separation for (F m, Tm). First we show the
property i) from the definition of the separation for (F, T ) by using the exponential
separation for (F m, Tm) with the corresponding constants denoted by M ′ and γ′.
The invariance of the bundle K × (Vx) under the bundle map (F

m, Tm) and the
finite dimensionality of each Vx, x ∈ K imply that every Tx(Vx) is an isomorphic
image of Vx under the map Tx. The continuous dependence of Vx, Lx and Tx on
x ∈ K yields that the vector spaces Tx(Vx) and T ∗

Fx(LFx) continuously depend on
x ∈ K. By the assumptions of the lemma we have that T n

x u ∈ C1 \ {0} for all
u ∈ C1 \ {0}, n ≥ m and x ∈ K. Hence, using positive invariance of the bundles
K×(Vx) and K×(Anih(Lx)) under the bundle map (F

m, Tm) on K×X we obtain
that Tx(Vx) ∩ Anih(LFx) = {0} and Anih(T ∗

Fx(LFx)) ∩ C1 = {0}. Therefore the
continuous dependence of the vector spaces Tx(Vx) and T ∗

x (LFx) on x ∈ K together
with the compactness of K give a constant c > 0 such that the following property
holds:
whenever we have x ∈ K, 0 6= v ∈ Vx and y ∈ K, 0 6= w ∈ Anih(T ∗

y (LFy)) together
with uniquely associated v1 ∈ VFx, w1 ∈ Anih(LFx), v2 ∈ Vy, w2 ∈ Anih(Ly) such
that

Txv = v1 + w1 and w = v2 + w2

then

| w1 |

| v1 |
< c and

| w2 |

| v2 |
> c.
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Note that in the last inequality, on the left hand side, assumes infinite value when
w ∈ Anih(Ly). We now show that in this property one actually has

(4.1)
| w1 |

| v1 |
= 0 and

| w2 |

| v2 |
= +∞,

which means Txv ∈ VFx and w ∈ Ly. Hence Tx(Vx) = VFx and T ∗
Fy(LFy) = Ly

because of the arbitrariness of x, y ∈ K, v ∈ Vx \ {0}, w ∈ Anih(T ∗
y (LFy)).

For the proof of (4.1) we use arbitrary but fixed p ∈ N, x, y ∈ K, 0 6= v ∈
Vx, 0 6= w ∈ Anih(T ∗

y (LFy)). Let v1, w1, v2 and w2 be as above. Then, by the
invariance of the bundles K × (Vx), K × (Lx), there is an element v′ ∈ VF−mpx

with the property

T
mp

F−mpx
v′ = v

and an element w′ ∈ Anih(T ∗
F mp+1y

(LF mp+1y)) with the property

Tmp
y w = w′.

Moreover, similarly as for Txv and w, we have the expressions

TF−mpxv′ = v3 + w3 and w′ = v4 + w4

with v3 ∈ VF−mp+1x, w3 ∈ Anih(LF−mp+1x), v4 ∈ VF mpy and w4 ∈ Anih(LF mpy).
Clearly,

T
mp

F−mp+1x
v3 = v1, T

mp

F−mp+1x
w3 = w1, Tmp

y v2 = v4, Tmp
y w2 = w4

and

| w3 |

| v3 |
< c <

| w4 |

| v4 |
.

Using the exponential separation for (F m, Tm) we obtain

| w1 |

| v1 |
=

| T
mp

F−mp+1x
(w3) |

| T
mp

F−mp+1x
(v3) |

≤ M ′γ′p | w3 |

| v3 |
< cM ′γ′p

and

c <
| w4 |

| v4 |
=

| Tmp
y w2 |

| T
mp
y v2 |

≤ M ′γ′p | w2 |

| v2 |
.

Thus for any p ∈ N it is proven that

| w1 |

| v1 |
≤ cM ′γ′p and c < M ′γ′p | w2 |

| v2 |

which can be satisfied only in the case that (4.1) holds.
It remains to show that (F, T ) satisfies the property ii) in Definition 2.2 with the

bundles K × (Vx), K × (Lx) and some constants M > 0 and 0 < γ < 1.
By the continuous dependence of Tx ∈ L(X, X) on x ∈ K we can find a constant

c1 > 0 such that
22



| T q
x |L(X,X)< c1 for all x ∈ K, 0 ≤ q < m.

The equality T m
x (Vx) = VF mx for any x ∈ K implies injectivity of every T q

x , 0 <

q < m, on the finite dimensional space Vx. Thus for each x ∈ K we can find a
constant c2 > 0 such that

| v |≤ c2 | T q
xv | for all v ∈ Vx 0 ≤ q < m.

Moreover, the continuous dependence of Tx and Vx on x ∈ K implies that the
constant c2 above can be chosen independent of x ∈ K.
Now using the above estimates, the exponential separation for (F m, Tm) and the

invariance of the bundle K × (Vx) under (F
m, Tm), we obtain for any x ∈ K, v ∈

S ∩ Vx, w ∈ S ∩ Anih(Lx), p ∈ N and 0 ≤ q < m

| T pm+q
x w |≤ c1 | T pm

x w |≤ c1M
′γ′p | Tmp

x v |≤ c1M
′γmp | Tmp

x v |

≤ c1M
′γmpc2 | Tmp+q

x v |≤ c1c2M
′γ−mγmp+q | Tmp+q

x v |,

where γ = γ′
1
m . Thus, since each n ∈ N can be written in the form n = mp+q, p ∈

N and 0 ≤ q < m, putting M = c1c2M
′γ−m, we have

| Tn
x w |≤ Mγn | Tn

x v |,

for all x, v and w as above. The needed exponential estimate for (F, T ) on K with
the bundles K × (Vx) and K × (Lx) is thus established. The proof of the lemma is
complete.♦

b) Useful observations. Consider a k−cone C1 from the assumptions of Theorem
4.1. First we will introduce an angle of two vectors in int(C1). Later we will
use the notation S(C1) for the set of all compact maps J ∈ L(X, X) such that
J(C1 \ {0}) ⊂ int(C1) and the notation GC∗

1 for the following set

{L ∈ G(k, X∗) : Anih(L) ∩ C1 = {0}}.

The set S(C1) is also considered as the topological subspace of L(X, X).
Now for any u, v ∈ int(C1) define

(4.2) α0(u, v) = inf{α ≥ 0 : βv − u ∈ int(C1) for all β ≥ α}

The correctness of this definition can be seen as follows. The set on the right hand
side of (4.2) is bounded below by zero. This set is also nonempty, since v ∈ int(C1)
implies that for all sufficiently large β the vector v− u

β
lies in a small neighborhood

of v.
The crucial property of this number is that for any map J from S(C1) and any

u, v ∈ int(C1) with α0(u, v) > 0, images of u, v by J satisfy

(4.3) α0(J(u), J(v)) < α0(u, v).
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Indeed, if βv − u ∈ C1 then J(βv − u) ∈ int(C1) and for β = α0(u, v) it implies
that for all β′ less than α0(u, v) and sufficiently close to it we have

β′J(v)− J(u) ∈ int(C1),

and thus (4.3) holds.
Further consider fixed u and v in int(C1). Since for any positive real numbers

r, s

βrv − su ∈ C1 iff β
r

s
v − u ∈ C1,

we have

α0(su, rv) =
r

s
α0(u, v).

Therefore the number

α(u, v) := α0(u, v) · α0(v, u)

has the following properties of the angle of two nonzero vectors

α(u, v) = α(v, u) = α(
u

| u |
,

v

| v |
).

Note that if the vectors u and v generate a plane contained in C1 then α(u, v) = 0
. We say that α(u, v) is the angle of the vectors u and v. It is an analog of
the Hilbert projective metric on unit vectors in the interior of a positive convex
cone. However, while the Hilbert projective metric is a continuous function of
those vectors, α(u, v) is only upper semicontinuously dependent on u, v. The part
”only” of the last assertion is caused by the nonconvexity of the k−cone C1. The
upper semicontinuity of α(u, v) follows from the fact that if vectors ui, vi ∈ int(C1)
converge to u and v, respectively, when i → +∞, and if βv − u ∈ int(C1) then for
all sufficiently large i the vectors βui − vi also lie in int(C1).

Actually we want to use an angle of any two elements in G(int(C1)). Thus take
two such elements E1, E2. As their angle we define the number

α(E1, E2) = sup{α(u, v) : u ∈ E1 \ {0}, v ∈ E2 \ {0}}

Useful properties of this angle are collected in Proposition 4.1.

Proposition 4.1. Let E1, E2 ∈ G(int(C1)). Then one has
i) α(E1, E2) = 0 iff E1 = E2
ii) If E1i, E2i converge to E1, E2 , respectively, when i → +∞ and α(E1i, E2i)
is defined for all i then

lim sup
i→∞

α(E1i, E2i) ≤ α(E1, E2)
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iii) If J ∈ S(C1) and α(E1, E2) 6= 0 then

α(J(E1), J(E2)) < α(E1, E2).

Proof. Here is an outline of the proof. Statement i) follows from the fact that
k + 1− dimensional subspaces of X cannot lie in C1. The parts ii) and iii) are
consequences of their mentioned analogues of angles of vectors and one additional
observation. Namely, for any E1, E2 from the assumptions of the proposition, the
sets E1∩S and E2∩S are compact and the function α(·, ·) is upper semicontinuous,
so α(·, ·) reaches its supremum on (E1 ∩ S) × (E2 ∩ S). It means that there are
vectors u ∈ E1 and v ∈ E2 such that α(E1, E2) = α(u, v). Detailed proofs of i)-iii)
are next.

i) Suppose on the contrary that α(E1, E2) = 0 and E1 6= E2. Then there is a vector
e ∈ E2 \ E1 such that α(e, u) = 0 for all u ∈ E1. Since u ∈ E1 implies (−u) ∈ E1
we have that α(e, u) = α(e,−u) = 0 for all u ∈ E1. Hence by definition of α(·, ·)
it holds β1e + β2u ∈ C1 for all u ∈ E1 and β1, β2 ∈ R. So a k + 1−dimensional
subspace lies in C1 and it contradicts the definition of a k−cone.

ii) Let ui ∈ E1i and vi ∈ E2i be such that α(E1i, E2i) = α(ui, vi). Then since
E1i and E2i converge to E1 and E2, respectively , we can choose a subsequence
im, m = 1, 2, . . . from any subsequence of natural numbers such that uim

, vim

converge to some vectors, u ∈ E1 and v ∈ E2, respectively. Choosing an appropriate
subsequence of im, m = 1, 2, . . . , by upper semicontinuity of α(·, ·) we obtain that

lim sup
m→∞

α(E1i, E2i) = lim
m→∞

α(E1im
, E2im

) = lim
m→∞

α(uim
, vim
) ≤ α(u, v) ≤ α(E1, E2).

Hence ii) is established.

iii) Since J is injective on E1 and E2, it is an isomorphism on its images of E1
and E2, respectively . Therefore if u ∈ J(E1) and v ∈ J(E2) are such that
α(J(E1), J(E2)) = α(u, v) then by (4.3) we obtain

α(J(E1), J(E2)) = α(u, v) < α(J−1(u), J−1(v)) = α(E1, E2).

So the proof of the proposition is finished.♦

Now we give an outline of the proof of Theorem 4.1 for finite dimensional X .
First, we take for each x ∈ K the set GC1 at the point F−nx and then we squeeze
it by taking GT n

F−nx
(GC1). Denote this set by Vn

x . Since the closure of the union
of all GTx(GC1), x ∈ K is a compact set in int(GC1), we have the limit V0x of V

n
x

as n → +∞ in the sense of ω-limit sets. This has to be Vx because of the strong
monotonicity of α(·, ·). To prove it , not knowing at this time that the bundle
K × (V0x) is continuous, we take its continuous hull. This is the bundle K × (Vx)
where Vx is the limit of Vy as y → x in the sense of ω-limit sets. This bundle is
invariant under (F, GT ). Further we consider α(x)-the maximal angle of the points
in Vx. The function α : K → [0,+∞) is uppersemicontinuous by the continuity of
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K × (Vx) and the uppersemicontinuity of α(·, ·) (cf. Prop. 4.1ii) ). Since K is also
compact, the function α is bounded and takes its maximum onK. By the invariance
of K × (Vx) under (F, GT ) and the strong monotonicity of α(·, ·) (cf. Prop.4.1iii)
) this maximum is 0. Thus α(x) = 0 for all x ∈ K implying by Proposition 4.1i)
that each Vx is a k-dimensional subspace of X . Since K × (Vx) is also continuous
and invariant under (F, GT ) we have obtained the desired k−dimensional invariant
bundle K × (Vx).
Here, in the finite dimensional case, GC∗

1 and (F
−1, GT ∗) have the same prop-

erties as GC1 and (F, GT ), respectively. Therefore, analogously as above we obtain
a dual bundle K × (Lx).
In order to prove the exponential separation consider for each x ∈ K the set

Cx(δ) = {u ∈ X : u = v + w where v ∈ Vx, w ∈ Anih(Lx) and | w |≤ δ | v |}.

If δ > 0 is sufficiently small then K × (Cx(δ)) is a subbundle of the bundle K ×
(int(GC1). Hence, due to the construction of K × (Vx), which is in fact K × (Vx),
we obtain that all normalized sequences Txu, x ∈ K, u ∈ Cx(δ) has the limit in
the union of all Vx, x ∈ K. This implies that there is a 0 < γ < 1 and n ∈ N such
that

| Tn
x w |

| Tn
x v |

≤ γ
| w |

| v |
, x ∈ K, u = v + w ∈ Cx(δ).

From this using Lemma 4.1 we obtain the exponential separation completing the
outline of the proof of Theorem 4.1 with dim(X) < ∞.

If X has infinite dimensions it may happen that the sets above depending on
n ∈ N are always noncompact even in the limit. So the crucial part of the proof of
Theorem 4.1 (see Claims 1 and 2) creates at any point x ∈ K a cone Cx ⊂ int(C1)
such that the closure of the set GTx(GCx) is already compact in G(k, X).
In order to obtain such cones Cx, we need a property, stated in Proposition 4.2,

of a compact subset of the set of compact operators in S(C1). For example, for
just one operator J ∈ S(C1), this property says, in a different way, that the set
GJ∗(GC∗

1 ) is a precompact subset of GC∗
1 .

Before we give a general statement we introduce some notation. First consider
for any (l1, . . . , lk) ∈ (X∗)k, (v1, . . . , vk) ∈ Xk the k × k matrix with elements

ι(l1, . . . , lk, v1, . . . , vk)i,j = li(vj)

for i, j = 1, . . . , k.
The matrix ι(l1, . . . , lk, v1, . . . , vk) is regular iff functionals l1, . . . , lk as well as

vectors v1, . . . , vk are linearly independent and Anih([l1, . . . , lk])∩[v1, . . . , vk] = {0}
.

By the assumption on the cone C1, we can find k linearly independent unit vec-
tors e1, . . . , ek generating a k−dimensional linear subspace V0 contained in int(C1)∪
{0}. Fix such an k−tuple e1, . . . , ek. Take for any given L ∈ GC∗

1 an element of
(X∗)k denoted by (l′1, . . . , l

′
k) such that [l

′
1, . . . , l

′
k] = L. Since V0 ⊂ int(C1)∪{0} the

matrix ι(l′1, . . . , l
′
k, e1, . . . , ek) is regular. The representant of any given L ∈ GC∗

1 is
chosen to be (l1, . . . , lk) ∈ (X∗)k such that
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(l1, . . . , lk) = (ι(l
′
1, . . . , l

′
k, e1, . . . , ek))

−1(l′1, . . . , l
′
k);

thus the matrix
ι(l1, . . . , lk, e1, . . . , ek) = Id,

where Id is the k × k identity matrix. We denote (l1, . . . , lk) also by the letter L.

In this representation GC∗
1 corresponds to the following set

L := {(l1, . . . , lk) ∈ (X
∗)k : Anih([l1, . . . , lk])∩int(C1) = ∅ and ι(l1, . . . , lk, e1, . . . , ek) = Id}

Next we define a representation of GJ∗ for J ∈ S(C1). Note that these maps J are
injective on V0 = [e1, . . . , ek] ⊂ C1 and hence Je1, . . . , Jek are linearly independent
vectors in int(C1). So for any (l1, . . . , lk) ∈ L the matrix

AJ(L) := ι(l1, . . . , lk, Je1, . . . , Jek)

is regular. Thus GJ∗ for J ∈ S(C1) corresponds to the map J ∗ : L → L defined
by

J ∗(L) = (AJ(L))
−1(J∗l1, . . . , J

∗lk)

for any L ∈ L and J ∈ S(C1).

Proposition 4.2. Let J be any compact subset of maps in S(C1). Then the fol-
lowing set

{J ∗(L) : L ∈ L and J ∈ S(C1)}

is precompact in (X∗)k.

For the proof of Proposition 4.2 we need the following lemma.

Lemma 4.2. The set L is bounded and closed in (X∗)k. Moreover, each sequence
in L has a subsequence (lp1 , . . . , l

p
k) ∈ L, p = 1, 2, . . . such that for each i = 1, . . . , k

the sequence l
p
i , p = 1, 2, . . . has a weak star limit li and (l1, . . . , lk) lies in L.

Proof of Lemma 4.2. In order to prove the boundedness of L, realize that there is
a δ > 0, such that for any

(e′1, . . . , e
′
k) ∈ (e1 + δB)× · · · × (ek + δB)

e′1, . . . , e
′
k are linearly independent vectors generating a subspace in int(C1) ∪ {0}.

We claim that

(4.4) li(ei − v) > 0 for all (l1, . . . , lk) ∈ L, v ∈ δB and i = 1, . . . , k.
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Indeed, in the opposite case there are i ∈ {1, . . . , k}, (l1, . . . lk) ∈ L and a v ∈
δB such that li(ei − v) = 0. Moreover, we already know that li(ej) = 0 for all
j ∈ {1, . . . k} \ {i}. Therefore for linearly independent vectors e1, . . . , ei−1, ei −
v, ei+1, . . . , ek generating a subspace E ′ contained in int(C1) ∪ {0} the matrix

ι(l1, . . . , lk, e1, . . . , ei−1, ei − v, ei+1, . . . , ek)

is nonregular. But this contradicts the fact that Anih([l1, . . . lk]) ∩ E′ = {0} and
l1, . . . , lk are linearly independent functionals.
Now using (4.4) we obtain that 1 = li(ei) > li(v) for all v ∈ δB, (l1, . . . , lk) ∈ L

and i ∈ {1, . . . , k}. This implies that

if (l1, . . . , lk) ∈ L then | li |≤
1

δ
for all i ∈ {1, . . . , k}.

Thus the boundedness of L is established.
The closedness of L in (X∗)k follows from the sequential weak star compactness

of L which we are going to show next.

Take any sequence (lp
′

1 , . . . , l
p′

k ) ∈ L, p′ = 1, 2, . . . . Since L is bounded in
(X∗)k the Banach Alaouglu Theorem gives a subsequence of the previous sequence,
denoted by (lp1, . . . , l

p
k), p = 1, 2, . . . , such that for each i ∈ {1, . . . , k} the sequence

l
p
i has a weak star limit li ∈ X∗. Hence, since ι(lp1 , . . . , l

p
k, e1, . . . , ek) = Id for all

p, we have

(4.5) ι(l1, . . . , lk, e1, . . . , ek) = Id

Now we claim that

(4.6) Anih([l1, . . . , lk]) ∩ int(C1) = ∅

.
Suppose on the contrary that there is a v ∈ Anih([l1, . . . , lk]) ∩ int(C1). Thus if

we denote c
p
i := l

p
i (v) for any p ∈ N, i ∈ {1, . . . , k} then c

p
i → l′i(v) = 0 as p → ∞

for all i = 1, . . . , k. Since v ∈ int(C1), for all sufficiently large p we also have

v − c
p
1e1 − . . . c

p
kek ∈ int(C1).

But this vector lies in Anih([lp1, . . . , l
p
k]), too, contradicting (l

p
1 , . . . , l

p
k) ∈ L, p =

1, 2, . . . .
By (4.5) and (4.6) we obtain (l1, . . . , lk) ∈ L. This completes the proof of the

lemma.♦

Proof of Proposition 4.2.: In order to prove this proposition it is sufficient to show
that for any convergent subsequence of the sequence Jm, m = 1, 2, . . . from the
compact set J ∈ L(X, X) with a limit J and any Lm ∈ L, m = 1, 2, . . . there is a
subsequence of the sequence J ∗

m(Lm) converging to an element in L.
We have that J∗

m, m = 1, 2, . . . is a sequence of compact operators with the limit
J∗, also a compact operator, and L is bounded in (X∗)k by Lemma 4.2. Therefore
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we may suppose, without loss of generality, that if Lm = (l
m
1 , . . . , lmk ) then for

each i ∈ {1, . . . , k} the sequence J ∗
m(l

m
i ) converges to an l′i ∈ X∗. The above

lemma allows us to assume that the sequence (lm1 , . . . , lmk ) has for all its component
i = 1, . . . , k a weak star limit (l1, . . . , lk) creating L := (l1, . . . , lk) ∈ L. Hence for
any v ∈ X

lmi (Jv)→ li(Jv) as m → ∞, 1 ≤ i ≤ k.

Moreover, the convergence of Jm to J with the boundedness of L implies that

lmi (Jmv − Jv)→ 0 as m → ∞,

so lmi (Jmv)→ li(Jv) for any v ∈ X, i = 1, . . . , k. This means that

(J∗
mlm1 , . . . , J∗

mlmk )→ (l
′
1, . . . , l

′
k) = (J

∗l1, . . . , J
∗lk)

as well as

AJm
(Lm)→ AJ (L)

as m → ∞. So J ∗
m(Lm) converges to J ∗(L) in (X∗)k. Since L is closed in (X∗)k

the proposition is proved. ♦

The next proposition will be used twice in the proof of Theorem 1 (see Claims 1
and 3). For its formulation we need several definitions of the properties of a bundle

K×(Yx) and the bundle map (F̃ , {Rx, x ∈ K}) on it. Here F̃ is a homeomorphism
of a compact metric space K, each Yx, x ∈ K, is a subset of a metric space Y and
Rx : Yx 7→ YF̃x is a continuous map for any x ∈ K. We say that

i) the bundle K × (Yx) is nontrivial iff Yx 6= {0} for all x ∈ K.
ii) the bundle K × (Yx) is compact iff from any sequence yn ∈ Yxn

, n = 1, 2, . . . ,
where xn → x as n → +∞, we can choose convergent subsequence yni

, i = 1, 2, . . .
with a limit y in Yx. Obviously any compact bundle K × (Yx) is also continuous.

iii) the bundle map (F̃ , R) on K × (Yx) is compact iff

cl(
⋃

x∈K

Rx(Yx))

is a compact subset of Y .

iv) the bundle map (F̃ , R) on K × (Yx) is continuous iff for any sequences xi → x0
and yi → y0, where xi ∈ K and yi ∈ Yxi

for all i ≥ 0, the sequence Rxi
yi has the

limit Rx0y0 when i → +∞.

v) the maximal invariant subbundle K×(Zx) for the bundle map (F̃ , R) onK×(Yx)
is defined by

Zx = {z ∈ Yx : there is a sequence zi, i ∈ Z,

such that RF̃ ix(zi) = zi+1 for all i ∈ Z, and z0 = z}
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Proposition 4.3. Let F̃ be a homeomorphism of a compact metric space K, Y a
metric space, K×(Yx) a subbundle of the bundle K×Y and (F̃ , R) = (F̃ , {Rx, x ∈
K}) a bundle map on K × (Yx). Suppose that the bundle K × (Yx) is continuous

and the bundle map (F̃ , R) is continuous and compact. Then the following bundle

Zx := {y : y = limp→∞ R
mp−1

F̃−mpxp

yp

for some sequences mp → +∞ and xp → x as p → ∞, and yp ∈ YF̃−mpxp
}

is nontrivial, compact and it is equal to the maximal invariant subbundle for (F̃ , R).

Proof: It is easy to see that the maximal invariant subbundle is contained in the

bundle K × (Zx). Since any R
mp−1

F̃−mpxp

yp from the definition of Zx is contained in

Yxp
the continuity of the bundle K × (Yx) implies that K × (Zx) is a subbundle

of K × (Yx). The nontriviality of K × (Zx) is assured by the compactness of the

bundle map (F̃ , R).
Now we show that for any x ∈ K and z ∈ Zx one has Rx(z) ∈ Zx and that there

exists a z′ ∈ ZF̃−1x such that z = RF̃−1xz′. Thereby we prove the invariance of the
bundle K × (Zx).
By the definition of Zx there is a sequence mp ∈ N, xp ∈ K and yp ∈ YF̃−mpxp

such that

xp → x and R
mp−1

F̃−mpxp

yp → z as p → +∞.

Therefore, using the continuity of the bundle map (F̃ , R), we obtain

Rxz = Rx( lim
p→∞

R
mp−1

F̃−mpxp

yp) = lim
p→∞

Rxp
◦ R

mp−1

F̃−mpxp

yp = lim
p→∞

R
mp

F̃−mpxp

yp.

Hence, since F̃ xp → F̃ x as p → ∞, we have Rxz ∈ ZF̃ x by the definition of ZF̃x.
Further consider the sequence

y′
p = R

mp−2

F̃−mpxp

yp ∈ YF̃−1xp
, p = 1, 2, . . . .

Obviously

(4.7) Rxp
y′

p → z as p → ∞.

Moreover, each convergent subsequence of y′
p has its limit in ZF̃−1x. Since y′

p is
contained in the precompact set

⋃
x∈K Rx(Yx) for all sufficiently large p (such that

mp > 2), it has a convergent subsequence with a limit z′. We already know that

z′ ∈ ZF̃−1x. Combining (4.7) with the continuity of the bundle map (F̃ , R), we also
obtain Rxz′ = z. Thus z′ has properties required above.
In order to prove the compactness of the bundle K × (Zx), take any sequence

zp ∈ Zxp
, p = 1, 2, . . . where xp ∈ K, p = 1, 2, . . . is a sequence with limit

x ∈ K. Then we can choose for any p a natural number mp and points x′
p ∈ K,

yp ∈ YF̃−mpx′

p
in Y such that
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the distance of zp from R
mp−1

F̃−mpx′

p

yp in Y

and the distance of x′
p from xp in K

go both to zero as p → ∞ and moreover mp → +∞.

So x′
p → x as p → ∞ and the compactness of (F̃ , R) gives at least one convergent

subsequence of the sequence

R
mp−1

F̃−mpx′

p

yp, p = 1, 2, . . . .

Then zp, p = 1, 2, . . . has clearly a convergent subsequence as well. The definition
of Zx implies that each such convergent subsequence has its limit in Zx. Therefore
the compactness of the bundle K × (Zx) is proved and the proof of the proposition
is complete.

c) Proof of Theorem 4.1. In the first claim below we state the existence of
a ”generalized” invariant bundle K × (Lx). We will use the notation T ∗

x for the
representation, indicated above, of the map GT ∗

x restricted to GC∗
1 where x ∈ K

and {Tx, x ∈ K} is the family of operators from the assumptions of Theorem 4.1.
The set L ⊂ X∗k is considered with the induced topology from X∗k.

Claim 1. Denote by K × {Lx, x ∈ K} the maximal invariant subbundle for the
bundle map (F−1, T ∗) on the bundle K×L. Then the bundle K×(Lx) is nontrivial
and compact.

This claim is an immediate consequence of Proposition 4.3 applied to the bundle
map (F−1, T ∗) on the bundle K × L. Here the assumptions of Proposition 4.3
are trivially satisfied with two exceptions. The first one is the compactness of the
bundle map (F−1, T ∗). It follows from Proposition 4.2 applied to the compact
family of maps {Tx, x ∈ K}. The second one is the continuity of the bundle map
(F−1, T ∗). It is an easy consequence of the continuity of the functions (L, J) ∈
(L,S(C1)) 7→ AJ(L) and (l, J) ∈ (X∗, L(X, X)) 7→ J∗l ∈ X∗.

Our next step is to show the existence of a bundle of cones K × (Cx) invariant
under (F, T ) and such that the bundle map (F, GT ) restricted to K × (GCx) is
compact. Recall that V0 = [e1, . . . , ek] denotes a k−dimensional linear subspace in
int(C1)∪ {0}. The main ingredients in this step are the obtained bundle K × (Lx)
above , Proposition 4.2 and a number β, similar to ”secans” of an angle between
v and V0 with respect to some subspace of X whose anihilator in X∗ is a L ∈
L. In order to define this number consider any L ∈ L . For any v ∈ X let
PL(v) be the projection of the vector v into the k− dimensional space V0 along
the k−codimensional space Anih(L). Since for any (l1, . . . , lk) ∈ L we have the
following equality of matrices

ι(l1, · · · , lk, e1, · · · , ek) = Id,

we can write for any v ∈ X

PL(v) =
k∑

i=1

li(v)ei
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It is easy to see that the map

X ×L ∋ (v, L) 7→ PL(v) ∈ X

is continuous if we use product topology on X × L.
Now we define a function, possibly taking the infinite value, on (C1 \ {0}) × L

by

β(v, L) =
| v |

| PL(v) |
.

The restriction of β to int(C1)×L obviously takes only finite values and is contin-
uous.

Claim 2. Let K × (Lx) be the bundle map from Claim 1 and V0 ∈ G(int(C1)).
Then for all sufficiently large τ > 0 the cones

Cx := {v ∈ C1 : β(v, L) ≤ τ for all L ∈ Lx} ∪ {0}, x ∈ K,

create a continuous subbundle K × (Cx) of the bundle K × C1 positively invariant
under (F, T ). Moreover, the bundle map (F, GT ) restricted to the bundle K ×
{GCx, x ∈ K} is compact.

In order to prove this claim consider the following subset of S ∩ C1

A := {
Txv

| Txv |
: x ∈ K, v ∈ (C1\{0}) and β(Txv, L) ≥ β(v, T ∗

Fx(L)), for a L ∈ LFx}

We are going to show that A is precompact in X .
Fix any x ∈ K, L ∈ LFx and v ∈ C1 \ {0} such that the inequality in the

definition of A is satisfied. Then

v = e+w = PT ∗

F x
(L)(v) +w,

where e ∈ V0 and w ∈ Anih(T ∗
Fx(L)). Hence

Txv = Txe+ Txw,

where Txw ∈ Anih(L). Therefore

PL(Txv) = PL(Txe).

Thus we can write the inequality in the definition of A as

(4.8) | Txv |≥
| PL(Txv) |

| PT ∗

F x
(L)(v) |

| v |=| PL(Tx

e

| e |
) || v | .

This inequality will be used later on. Now we show that the closure of the set

B = {PL(Tx(e)) : x ∈ K, e ∈ V0 ∩ S, L ∈
⋃

x∈K

Lx}
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is bounded away from zero in X . Since V0∩S is compact and the compact operators
Tx, x ∈ K, create a compact subset in S(C1), the set

⋃
x∈K

Tx(V0 ∩ S)

is a compact subset in int(C1). Therefore, using the compactness of
⋃

x∈K Lx ⊂ L,
the continuity of the function (v, L) 7→ PL(v), we obtain that B is a compact subset
of int(C1) \ {0}. So, there is a positive minimum of the norms of vectors in B
denoted by c > 0. Then in view of (4.8) we have

| Txv |≥ c | v |

for any x ∈ K and v in the definition of the set A. Hence A is a subset of the
following set

(4.9) {
Txv

| Txv |
: v ∈ S, x ∈ K and | Txv |≥ c | v |}.

We claim that this set is precompact.
Indeed, consider any sequence of the unit vectors vn, n = 1, 2, . . . such that

| Txn
vn |≥ c > 0 for some sequence of points xn, n = 1, 2, . . . in K. By compactness

of K and continuous dependence of Tx ∈ L(X, X) on x ∈ K we may also assume,
without loss of generality, that

xn → x and | Txvn − Txn
vn |→ 0 as n → +∞

for some x ∈ K. Therefore, since Tx is a compact operator, there is a subsequence
of natural numbers ni, i = 1, 2, . . . such that the following sequence of vectors
(with the norms not less than c)

(4.10) Txni
vni

, i = 1, 2, . . .

has a limit v ∈ X with the norm greater or equal to c > 0. Thus the normalized
sequence of the vectors in (4.10) converges to v

|v|
.

Since A is a subset of the precompact set in (4.9), A is also precompact. Next
we use this fact to find a number τ0 such that for all τ > τ0 the corresponding sets
Cx, x ∈ K have the required properties in the claim.
By definition of Lx for any x ∈ K and L ∈ Lx there is a L′ in LFx such that

T ∗
FxL′ = L. Hence if v ∈ Anih(L) ∩ C1 then Txv ∈ Anih(L′) ∩ (int(C1) ∪ {0}).
Thus v = 0, implying Anih(L) ∩ S ∩ C1 = ∅. Therefore for any v ∈ S ∩ C1 and
L ∈

⋃
x∈K Lx we have PL(v) 6= 0. Thus the function β(·, ·) is finite and continuous

on (C1 \ {0}) × (
⋃

x∈K Lx). Hence the compactness of cl(A)(⊂ S ∩ C1) gives the
existence of an upper bound τ0 of the set

{β(v, L) : v ∈ A, x ∈ K, L ∈
⋃

x∈K

Lx}.

Now take any τ > τ0 and let Cx, x ∈ K be the corresponding family of sets
from the statement of the claim. Each Cx, x ∈ K is obviously closed because of the
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continuity of the function β(·, ·). These sets are k−cones since they also contain
V0 \ {0} in their interior and they are subsets of the k−cone C1 invariant under
multiplication by all real numbers. We show the positive invariance of K × (Cx)
under (F, T ).
If v ∈ Cx \ {0} for a x ∈ K and L ∈ LFx then we have the alternative

1) β(Txv, L) < β(v, T ∗
Fx(L))

or
2) β(Txv, L) ≥ β(v, T ∗

Fx(L))

In the first case, v ∈ Cx \ {0} implies β(v, T ∗
Fx(L)) ≤ τ , so β(Txv, L) < τ . The

second one tells that

Tx(v)

| Txv |
∈ A,

thus β(Txv, L) ≤ τ . Thus for any v ∈ Cx \ {0} and L ∈ LFx we have obtained
β(Txv, L) ≤ τ , i.e. Txv ∈ CFx.

The continuity of the bundle K × (Cx) follows immediately from the continuity
of the extended function β(·, ·) and of the bundle K×(Lx). It remains to be proven
that the bundle map (F, GT ) restricted to the bundle K × (GCx) is compact. For
this it is sufficient to show that the closure of the set

C := {
Txv

| Txv |
: x ∈ K, v ∈ Cx \ {0}}

is compact.
If we consider v ∈ Cx with | PL(v) |= 1 for some x ∈ K and L ∈ Lx then | v |≤ τ .

Hence, as {Tx, x ∈ K} is a compact family of compact operators in L(X, X) and
K × (Cx) is a continuous bundle, the compactness of C can fail only in the case
when there is a sequence vn ∈ Cxn

with | PLn
(vn) |= 1, xn ∈ K and Ln ∈ Lxn

such
that

| Txn
vn |→ 0 as n → +∞.

In this case, since the set
⋃

x∈K Lx is compact and the function (v, L) 7→ PL(v) is
continuous, we may suppose that the following sequence

PL′

n
(Txn

vn) where T
∗

Fxn
(L′

n) = Ln, n = 1, 2, · · · ,

approaches 0 as n → +∞.
All vectors in this sequence belong to the set B. Indeed as it can be easily seen
from the considerations just before (4.8)

PL′

n
(Txn

vn) = PL′

n
(Txn
(PLn

vn))

implying PL′

n
(Txn

vn) ∈ B. We thus have a contradiction since the closure of B is
separated from zero by the ball of radius c > 0. The proof of Claim 2 is finished.

Now take the bundle of cones K × (Cx) for fixed and sufficiently large τ pro-
vided by Claim 2. Hence the bundle K × (GCx) is invariant under the bundle map
(F, GT ) and

⋃
x∈K GTx(GCx) is a compact subset of GC1. Moreover, the conti-

nuity of the function (v, J) ∈ C1 \ {0} × S(C1) 7→
Jv
|Jv| ∈ S gives that the bundle
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map (F, GT ) is continuous. Therefore applying Proposition 4.3 to the bundle map
(F, GT ) restricted to the bundle K×(GCx) we obtain the first part of the following
claim.

Claim 3. Denote the maximal invariant subbundle for the bundle map (F, GT )
restricted to the bundle K × (GCx) by K × {Vx, x ∈ K}. Then this bundle is
nontrivial and compact. Moreover each Vx, x ∈ K contains only one element
associated with a k−dimensional subspace. The element in each Vx is denoted by
Vx.

The second part of this claim is a consequence of Proposition 4.1. To explain it,
define a real function α : K → R as follows

α(x) = sup{α(E1, E2) : E1, E2 ∈ Vx}, x ∈ K.

The compactness of the bundle K × (Vx) together with the uppersemicontinuity of
α(·, ·) imply the following:
the function α is bounded from above, in the definition of the value of α(x) we can
take the maximum and finally the function α is upper semicontinuous on K.
Hence the function α reaches its supremum on the compact set K, say at a point
x0 ∈ K. Then α(x0) = 0.
Indeed, otherwise we have

0 < α(x0) = α(E1, E2) for some E1 6= E2 ∈ Vx0 .

By the invariance of K × (Vx) under (F, GT ), there are E ′
1 and E′

2 such that

GTF−1x0(E
′
i) = Ei, i = 1, 2.

Hence by Proposition 4.1iii)

α(F−1x0) ≥ α(E′
1, E

′
2) > α(E1, E2) = α(x0) = max

x∈K
α(x)

which is impossible.
Thus α(K) = 0. Therefore Proposition 4.1i) gives a unique Vx for each x ∈ K

such that Vx = {Vx}.

Now use Claim 3 for another τ , say τ ′, which is greater than already fixed τ .
Then we have corresponding bundle of cones K × (C ′

x) and the maximal invariant
subbundle for (F, GT ) restricted to the bundle K×(GC ′

x). We denote this maximal
invariant subbundle byK×(V ′

x). By Claim 3 we know that each V
′
x, x ∈ K contains

just one element. Since K × (GCx) is a subbundle of K × (GC ′
x) the corresponding

maximal invariant subbundles have the same property, i.e. K×(Vx) is a subbundle
of K × (V ′

x). Consequently these bundles coincide because each Vx and V ′
x, x ∈ K

contains only one element. This is going to be used in the proof of ”generalized”
exponential separation stated in the following claim.

Claim 4. Let Vx, x ∈ K be the k−dimensional subspaces from Claim 3. Then
there is a n ∈ N and 0 < γ ′ < 1 such that

(4.11) | T n
x w |≤ γ′ | Tn

x v || w |
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for any x ∈ K, v ∈ Vx ∩ S and w ∈ Anih(L) with L ∈ Lx.

It is sufficient to prove this claim for the vectors w with a fixed norm.
Let τ ′ be a number introduced before the claim. Since τ ′ > τ , the set GCx ⊂

int(GC ′
x) for any x ∈ K. Hence the compactness of the subbundle K × ({Vx}) of

the bundle K × (GCx) implies that there exists a δ > 0 such that for any x ∈ K

{v + w : v ∈ Vx ∩ S, L ∈ Lx, w ∈ Anih(L) ∩ (δB)} ⊂ C ′
x.

Moreover, the number δ > 0 can be chosen so small that for any x ∈ K and any
v, w from the corresponding sets there is an E ∈ GC ′

x such that v + w ∈ E. Now
suppose that the claim is false, where in (4.11) | w |= δ. Then we have infinite
sequences ni ∈ N, xi ∈ K, vi ∈ Vxi

∩ S, Li ∈ Lxi
, wi ∈ Anih(Li) ∩ (δS), Ei ∈

GC′
xi

, i = 1, 2, . . . such that

(4.12)
| Tni

xi
wi |

| Tni
xi vi |

≥
δ

2
,

vi + wi ∈ Ei for all i ∈ N and ni → +∞ as i → ∞.
First note that the denominators in the fractions above are nonzero because of

the injectivity of Tx on Vx for any x ∈ K. The invariance of K × (Lx) under
the bundle map (F−1, T ∗) implies for any Li the existence of L′

i ∈ L such that
T ∗ni

F nixi
(L′

i) = Li. Hence T ni
xi
(wi) ∈ Anih(L′

i), and thus Tni
xi

wi 6∈ int(C1) for all
i ∈ N. This will be used later.
Since K is compact we may suppose that

Fnixi → x as i → ∞ for some x ∈ K.

Then applying Claim 3 to the bundle K×(GC ′
x) in view of Proposition 4.3 we have

(4.13) GT ni

F−ni (F nixi)
(Ei) = GTni

xi
(Ei)→ GVx as i → +∞.

(We also use compactness of the bundle map (F, GT ) restricted to the bundle
K × (GCx).)
Hence, passing to a subsequence, we may assume that there is u ∈ Vx ∩ S with

(4.14)
Tni

xi
(vi + wi)

| Tni
xi (vi + wi) |

→ u

as i → +∞.
Since (4.12) holds, T ni

xi
wi 6= 0 and we can denote for any i ∈ N

w̄i =
Tni

xi
wi

| Tni
xi wi |

and v̄i =
Tni

xi
vi

| Tni
xi wi |

,

where obviously | w̄i |= 1.
Then from (4.14) we obtain
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(4.15)
v̄i + w̄i

| v̄i + w̄i |
→ u ∈ Vx.

By (4.12), | v̄i |≤ 2
δ
for all i ∈ N, hence we have all | v̄i + w̄i | bounded by

1+ 2
δ
. Therefore we can pass to a subsequence, if necessary, such that the sequence

v̄i, i = 1, 2, . . . has a limit v̄ ∈ Vx by the continuity, and the sequence | v̄i + w̄i |
has a limit δ′ ≥ 0. Combining this with (4.15) we obtain

w̄i → δ′u − v̄ ∈ Vx as i → +∞.

But w̄i are unit vectors in the complement of int(C1). So w̄i cannot converge to a
vector in Vx ⊂ int(C1) ∪ {0}. This contradiction proves the claim.

Now it is easy to prove the following claim.

Claim 5. Let K×(Lx) be the bundle from Claim 1. Then each Lx, x ∈ K contains
just one element. This element is denoted by Lx.

Suppose by contradiction that there is a x ∈ K and L 6= L′ from Lx. Choose
u ∈ Anih(L′) \Anih(L) and let be δ be as in the proof of Claim 4. Then u = v+w

where 0 6= v ∈ Vx and 0 6= w ∈ Anih(L). Using (4.11) we have for all sufficiently
large p ∈ N

(4.16)
| Tnp

x w |

| T
np
x v |

< γ′p | w |

| v |
< δ.

(We used here also the fact that Tx(Anih(Lx)) ⊂ Anih(LFx) for any x ∈ K, Lx ∈
Lx following from the invariance of the bundle K × (Lx) under the bundle map
(F−1, T ∗) on K × L.)
Therefore T np

x (v +w) ∈ C ′
x ⊂ C1, and consequently

(4.17) T np+1
x (v + w) ∈ int(C1)

for all sufficiently large p. But the invariance of K × (Lx) under (F
−1, T ∗) implies

T j
x(v+w) 6∈ int(C1) for all j ∈ N, as we saw in the proof of Claim 4. This contradicts
(4.17). Thus we proved Claim 5.

Continuity of the bundle K × (Lx) implies immediately the continuous depen-
dence of Lx on x ∈ K in L as well as the continuity of the bundle of the correspond-
ing k−dimensional vector spaces in X∗ denoted by the same letters. So far we have
obtained continuous bundles K × (Vx) (see Claim 3) and K × (Lx) invariant under
the bundle maps (F, T ) and (F, T ∗), respectively, such that Vx ⊂ int(C1)∪{0} and
Anih(Lx) ∩ int(C1) = ∅. The exponential separation for these invariant bundles
remains to be proved. But this can be done using the estimate (4.16) similarly as
in Lemma 4.1. The proof of Theorem 4.1 is finished.♦
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5. Discrete Ljapunov functionals for perturbations.

In this section we prove Theorem C using Theorems B and A, and Corollary
2.1. First, in Proposition 5.1 below we state the existence of cones suitable for
the construction of a discrete Ljapunov functional for a small C1 perturbations.
This construction is given in Corollary 5.1. Since we do not assume injectivity
or compactness of perturbations we use two more consequences of Proposition 5.1
formulated in Corollaries 5.2-5.3. Then we show how mentioned statements together
with Theorem A imply Theorem C. Before the proof of Proposition 5.1 we derive
two lemmas of their own interest. After that proof we improve the conclusion of
Theorem C and prove Corollary 2.1.

Proposition 5.1. Suppose that the assumptions of Theorem C are satisfied. Then
there are numbers N0, m0 ∈ N, 0 ≤ λ0 < 1, ǫ0 > 0, an open bounded neighborhood
V0 of K0 and a sequence of sets C1 ⊂ int(C2) ∪ {0} ⊂ C2 ⊂ . . .CN0−1 ⊂ int(CN0) ∪
{0} ⊂ CN0 with each Ci a ki-cone such that for any G ∈ C1(V0, X) with

| G − F |V0 |C1(V0,X)< ǫ0

and x, y ∈ V0 the following holds

i) if x − y ∈ Ci \ {0} for an 1 ≤ i ≤ N0 and Gmx, Gmy are defined for a m ≥ m0
then Gmx − Gmy ∈ int(Ci) \ {0}.

ii) if G2m0x, G2m0y are defined, and x−y as well as G2m0x−G2m0y lie in Ci\Ci−1

for an i ∈ {1, 2, . . . , N0}, then Gm0x − Gm0y 6∈ Π. (Here C0 = {0}.)

iii) if Gmx, Gmy are defined with Gmx − Gmy 6∈ CN0 and m ≥ m0 then

| Gmx − Gmy |≤ λm
0 | x − y | .

Moreover we have that

iv) there is a projection P0 of X on kN0-dimensional space and a constant c̃ > 0
such that

CN0 ⊂ {v ∈ X : | (I − P0)v |≤ c̃ | P0v |}.

For the next corollary we put CN0+1 := X and C0 = {0}.

Corollary 5.1. Suppose that the assumptions of Theorem C are satisfied and
N0, m0, λ0, ǫ0,V0 and G are as in Proposition 5.1. Assume that X ⊂ V0 is a
compact set positively invariant under G such that G is injective on X . Then the
function θ defined at each (x, y) ∈ X ×X \ {(x, x) : x ∈ X} by

θ(x, y) := i if x − y ∈ int(Ci) \ int(Ci−1)

is a discrete Ljapunov functional for G on X .

Proof. First, let us note that θ is defined for all (x, y) with distinct x, y ∈ X since
int(Ci) \ int(Ci−1), 1 ≤ i ≤ N0 + 1 is a partition of the set X .
Axiom A1 with µ = m0 follows immediately from the definition of θ and Propo-

sition 5.1i). If the function θ is continuous at the point (x, y) then the statement
of Axiom A3 for (x, y) follows from Axiom A1.
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Now let θ be discontinuous at the point (x, y) ∈ X × X with distinct x, y. We
are going to prove that

(5.1) θ(x′, y′) ≥ θ(x, y)− 1 ≥ θ(Gm0x, Gm0y)

for all x′, y′ sufficiently close to x, y, respectively.
First, let us explain how (5.1) helps to show Axiom A2 and the remaining part

of Axiom A3. Axiom A3 with µ = m0 for the point (x, y) of discontinuity of θ

follows from (5.1) and Axiom A1 immediately. To prove Axiom A2 suppose that θ

is discontinuous at the point (Gm0x, Gm0y). For this point (5.1) gives

θ(Gm0x, Gm0y) > θ(G2m0x, G2m0y).

This together with the already known inequality

θ(x, y) ≥ θ(Gm0x, Gm0y)

proves Axiom A2.
To show (5.1) denote θ(x, y) = i. If x− y lies in the open set int(Ci) \ Ci−1 then

θ is continuous at (x, y). Since (x, y) is the point of discontinuity of θ, x − y ∈
∂Ci−1 ⊂ Ci−1. Hence, i > 1 and by Proposition 5.1i) we have

Gm0x − Gm0y ∈ int(Ci−1).

This yields the inequality on the right hand side of (5.1).
If i > 2 then Ci−2 ⊂ int(Ci−1) implies that

∂Ci−1 ∩ int(Ci−2) = ∅.

This takes place also for i = 2. Hence x−y lies in the open set X \ int(Ci−2) giving
the inequality on the left hand side of (5.1). The proof of the corollary is complete.
♦

Remark 5.1 Actually we have proved that the function θ satisfies the inequality

θ(x′, y′) ≥ θ(Gm0x, Gm0y)

for all x′, y′ sufficiently close to x, y ∈ X , respectively, and if θ is discontinuous this
inequality is strong.

Corollary 5.2. Suppose that the assumptions of Theorem C are satisfied and
N0, m0, λ0, ǫ0,V0 and G are as in Proposition 5.1.
Let x0 be a point in V0 such that the set {Gnx0 : n ≥ 1} is defined. Then this

set is precompact in X.

Proof. Denote xj := Gjx0, c1 := diam(V0). The corollary follows from the fact
that for any η > 0 there is a p0 ∈ N and a finite subset P of N such that

{xn : n ≥ p0} ⊂
⋃
p∈P

B(xp, η),

where B(x, r) denotes a ball in X with center x and radius r. To prove this fact
fix any η > 0. Take p0 such that
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p0 > m0 and λ
p
0c1 < η.

Then if p0 < p < q and

xp − xq 6∈ CN0

we obtain by Proposition 5.1iii) that

(5.2) | xp − xq |≤ λ
p
0 | x0 − xq−p |≤ λ

p
0c1 < η.

If for p0 < p < q we have

xp − xq ∈ CN0 .

then Proposition 5.1iv) gives

(5.3) | xp − xq |≤| (I − P0)(xp − xq) | + | P0(xp − xq) |≤ (c1 + 1) | P0(xp − xq) | .

Since O+(x) is bounded and P0 is a compact operator the set P0(O
+(x)) is pre-

compact in P0(X). Hence there is a finite subset P of the set {p ∈ N : p ≥ p0} such
that

P0(O
+(x)) ⊂

⋃
p∈P

B(P0xp,
η

c1 + 1
).

Therefore , if q ≥ p0, by (5.2) we obtain that

xq − xp ∈ CN0 for all p ∈ P implies | xp − xq |< η, p ∈ P

and by (5.3) we have that

xq − xp 6∈ CN0 for a p ∈ P implies | xp − xq |< η for the same p.

Thus, the set P and the number p0 satisfy the statement of the fact with the number
η fixed above. The corollary is proved. ♦

Corollary 5.3. Suppose that the assumptions of Theorem C are satisfied and
N0, m0, λ0, ǫ0,V0 and G are as in Proposition 5.1.
Let I be a subset of V0 invariant under G. Then the restriction of G to I is

injective and x − y ∈ CN0 for all distinct x, y ∈ I.

Proof. We prove that

(5.4) x − y ∈ CN0 \ {0} for all distinct x, y ∈ I.

This using Proposition 5.1i) gives

Gm0x − Gm0y ∈ int(CN0) \ {0}

yielding injectivity of G on I.
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In order to show (5.4) suppose on the contrary that x − y 6∈ CN0 \ {0}. Since I
is invariant under G there are points xm, ym ∈ I for each m ∈ N such that

Gmxm = x, Gmym = y.

Denote c2 := diam(I). Then by Proposition 5.1iii) we obtain that

| x − y |≤ λm
0 | xm − ym |≤ λm

0 c2, for all m ≥ m0.

Hence, since 0 ≤ λ0 < 1 the distance of x from y is 0 contradicting x 6= y. The
corollary is proved.♦

Proof of Theorem C. Let i0, m0, ǫ0 and V0 be as in Proposition 5.1. Take V := V0
and ǫ := ǫ0. Consider any G ∈ C1(V, X) such that

| G − F |V |< ǫ

and x0 ∈ V with all Gnx0, n ≥ 1 defined and cl{Gnx0, n ≥ 1} ⊂ V.
If ω(x0) is a periodic orbit then the conclusion of Theorem C follows immediately.

Thus assume ω(x0) is not a periodic orbit. Then Gnx0 6= Gmx0 for all n 6= m.
Moreover, applying Corollary 5.3 to ω(x0), which is obviously invariant, we obtain
that G is injective on ω(x0). Hence G is injective on the set cl{Gnx0 : n ≥ 0}.
Denote this set by X . By Corollary 5.2 X is also compact. Therefore by Corollary
5.1 we obtain the discrete Ljapunov functional θ for G on X . Theorem A applied
to this functional and G gives

θ(x, y) = θ(Gnx, Gny) for all distinct x, y ∈ ω(x0) and n ∈ Z.

Hence, by Corollary 5.3 applied to I = ω(x0) and Proposition 5.1ii) we have

(5.5) x − y 6∈ Π for all distinct x, y ∈ ω(x0).

Now denote by Π′ a d-dimensional subspace of X such that Π⊕Π′ = X . Further
denote by π the projection ofX on Π′ along Π. Then (5.5) implies that π is injective
map on ω(x0). Hence, since ω(x0) is compact and π is continuous the ω-limit set
of x0 is homeomorphic to the subset π(ω(x0)) in Π

′. The theorem is proved. ♦

For the next two lemmas we assume the following assumption (H):
The map F is a homeomorphism of a compact metric space K, X is a Banach space,
{Tx, x ∈ K} is a family of compact operators in L(X, X) continuously dependent
on x ∈ K. Further C1 ⊂ C2 ⊂ . . . ⊂ Ci ⊂ . . . is a sequence of cones with length
N less or equal ∞ such that each Ci is a ki-cone and ki < ki+1 for i = 1, 2, . . . .
Moreover for any x ∈ K, i = 1, 2, . . . and 0 6= v ∈ Ci there is an open neighborhood
of v in X mapped by Tx into Ci and

Tx(X \ {0}) ∈
N⋃

j=1

Cj \ {0}.

For any fixed i this assumption allow us Theorem B applied to the bundle map
(F, T ) on the bundle K × X . We obtain that there are continuous ki-dimensional
subbundles K×(V i

x) and K×(Li
x) of the bundles K×X and K×X∗, respectively,

invariant under the bundle map (F, T ) on K × X .
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Lemma 5.1. Let the assumption (H) be satisfied and N = +∞. Then for any
0 < λ < 1 there is an i0 ∈ N such that

(5.6) | Txu |≤ λ | u |,

for any x ∈ K and u ∈ Anih(Li0
x ) \ {0}.

Proof: Take any 0 < λ < 1 and suppose that (5.6) is false for each i0 ∈ N. This
means that there is a sequence of points xi ∈ K and ui ∈ Anih(Li

xi
) ∩ S such that

(5.7) | Txi
ui |≥ λ

for all i ∈ N.
Since K is compact we can find a convergent subsequence of the sequence xi.

Let x ∈ K be its limit. Then, since the corresponding sequence of operator Txi

converges to the compact operator Tx and ui ∈ S for all i ∈ N, passing to further
subsequences we achieve that Txi

ui has a limit u ∈ X . Thus, in addition to (5.7),
we may suppose without loss of generality that xi → x ∈ K and Txi

ui → u ∈ X as
i → +∞. By (5.7), obviously | u |≥ λ > 0, and, by the assumptions of Theorem C,
we have Txu ∈ Cj0 \ {0} for a j0 ∈ N.
Using the same procedure as in the part a) of Section 4 we can find other ki−

cones C ′
i such that T 2y (C

′
i \ {0}) ⊂ Ci \ {0} ⊂ int(C ′

i) \ {0} for any y ∈ K, i ∈ N

and C′
i ⊂ C′

i−1 for all i > 1. Since we also have Ty(Ci) ⊂ Ci for all y ∈ K and
i ∈ N we can use Lemma 4.1 for the vector bundle (F, T ) and the cones Ci, C

′
i

and any fixed 1 ∈ N. Therefore the dual invariant bundles for the ki−dimensional
continuous separation for (F, T ) along K associated to the ki−cone Ci are the same
as corresponding bundles for ki−dimensional continuous separation for (F 2, T 2)
along K associated to the ki−cone C ′

i. This follows using Lemma 4.1 as in the
proof of Theorem B . So Li

y ∩C′
i = {0} for any y ∈ K, i ∈ N, and hence ui 6∈ C′

i for

all i ∈ N. Thus for any i ∈ N we have T 2xi
ui 6∈ C′

i by the positive invariance of each

bundle K × (Li
x) under the bundle map (F

2, T 2). Since C ′
j0

⊂ C′
i for all i ≥ j0, we

have

T 2xi
ui 6∈ C′

j0
.

But since T 2xi
ui approaches Txu ∈ Cj0 \ {0} ⊂ int(C ′

j0
) as i → +∞ we obtain a

contradiction. The lemma is proved.♦

Up to the end of this section we say that a vector subbundle of a vector bundle
K ×Y is compact iff the Grassmanian analog of the vector subbundle is a compact
bundle of sets (cf. the definition ii) before the Proposition 4.3).

Lemma 5.2. Let the assumption (H) be satisfied. Then V i
x ⊂ V i+1

x , Li
x ⊂ Li+1

x

for all x ∈ K, 1 ≤ i < N. Moreover

(V i+1
x ∩ Anih(Li

x))⊕ V i
x = V i+1

x for all x ∈ K, 1 ≤ i < N

and each bundle K × (V i+1
x ∩ Anih(Li

x)), 1 ≤ i < N is a compact subbundle of
K × X invariant under the bundle map (F, T ) on K × X.
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Proof. Fix 1 ≤ i < N . Let us note that the bundles K × (V i
x), K × (V i+1

x ) are
continuous bundles with fixed dimension for each of them. Hence, they are also
compact. The same property of the dual bundles K × (Li

x), K × (Li+1
x ) implies

that the bundles K × (Anih(Li
x)), K × (Anih(Li+1

x )) are continuous.
First we show that V i

x ⊂ V i+1
x for all x ∈ K. Suppose on the contrary that

there is a x ∈ K and u ∈ V i
x such that u 6∈ V i+1

x . Write u := v + w with
v ∈ V i+1

x , 0 6= w ∈ Anih(Li+1
x ). Since the bundle K × (V i+1

x ) is invariant under
the bundle map (F, T ) on K × X there are un ∈ V i

F−nx
, n ∈ N such that

u = Tn
F−nxun.

Write

un := vn + wn with vn ∈ V i+1
F−nx

, wn ∈ Anih(Li+1
F−nx

).

The positive invariance of the bundles K × (V i
x) and K × (Anih(Li

x)) under the
bundle map (F, T ) on K × X together with the uniqueness of the decomposition
u = v + w gives

Tn
F−nxwn = w, Tn

F−nxvn = v.

We claim that there is a c > 0 such that

(5.8) | wn |≤ c | vn | .

Otherwise there is an infinite sequence nj , j = 1, 2, . . . such that

(5.9)
|vnj

|

|wnj
| → 0 as i → ∞.

Since K × (V i+1
x ) is a compact bundle, passing to a subsequence if necessary, we

obtain that

F−nj x → x0 and
unj

|unj
| → u0 ∈ V i

x0
as j → ∞.

Write the last sequence of unit vectors in the following way

unj

| unj
|
=

vnj
+ wnj

| vnj
+ wnj

|
=

vnj

|wnj
| +

wnj

|wnj
|

|
vnj

|wnj
| +

wnj

|wnj
| |

→ u0 ∈ V i
x0

.

Thus, using (5.9) we obtain that the sequence

wnj

|wnj
|
∈ Anih(Li+1

F
−nj x
) has the limit u0.

Hence, by continuity of the bundle K × Anih(Li+1
x ) we have

u0 ∈ Anih(Li+1
x0
) \ {0},

consequently u0 6∈ Ci+1. Since Ci ⊂ Ci+1, u0 6∈ Ci. But u0 ∈ V i
x0

⊂ Ci. This
contradiction proves (5.8).
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Now letM > 0, 0 < γ < 1 be constants for the exponential separation for (F, T )
along K associated with the ki+1-cone Ci+1. Then using (5.8) we obtain that

|w|
|v|

≤ Mγn |wnj
|

|vnj
|
≤ Mγnjc → 0 as j → +∞.

This contradicts w 6= 0 and proves V i+1
x ⊂ V i

x , x ∈ K.
In order to prove Li

x ⊂ Li+1
x for fixed x ∈ K, assume the opposite. So, there is

an u ∈ Anih(Li+1
x ) such that u = v + w with v ∈ V i

x , w ∈ Anih(Li
x) and v 6= 0.

Consider

un = Tn
x u = Tn

x v + Tn
x w := vn + wn, n ∈ N.

By the invariance of K×(V i
x) under (F, T ) each vn, n ≥ 1 is nonzero. Compactness

of K × (V i
x) gives a sequence nj , j = 1, 2, . . . and x0 ∈ K, v0 6= 0 such that

(5.10)
vnj

|vnj
|
→ v0 ∈ V i

x0
as j → +∞.

By the exponential separation for (F, T ) associated with Ci we have

|wnj
|

|vnj
|
→ 0 as j → ∞.

Hence, using (5.10), positive invariance and continuity of the bundleK×(Anih(Li
x))

we obtain that

Anih(Li
F

nj x) ∋
unj

| unj
|
→ v0 ∈ V i

x0
∩ Anih(Li+1

x0
).

But, Anih(Li+1
x0
)∩Ci+1 = {0} and V i

x0
⊂ Ci, which together with Ci ⊂ Ci+1 imply

v0 = 0. This contradicts | v0 |= 1 and proves Li+1
x ⊂ Li

x, x ∈ K.
Now denote K × (V i+1

x ∩Anih(Li
x)) := K × (W i

x). Since the bundle K × (V i+1
x )

is compact and the bundle K × (Anih(Li
x)) is continuous the bundle K × (W i

x) is
compact. For each x ∈ K we also have Anih(Li+1

x )⊕ V i+1
x = Anih(Li

x)⊕ V i
x = X

and the inclusions Anih(Li+1
x ) ⊂ Anih(Li

x), V i
x ⊂ V i+1

x . HenceW i
x⊕V i

x = V i+1
x for

all x ∈ K. Therefore each W i
x has the dimension ki+1−ki. By the above inclusions

and the positive invariance of the bundles K × (V i+1
x ) and K × (Anih(Li

x)) under
(F, T ) we also have Tx(W

i
x) ⊂ W i

Fx for all x ∈ K. Since each Tx is injective on V i+1
x

and dim(W i
x) = dim(W i

Fx) we obtain Tx(W
i
x) = W i

Fx. Thus the bundle K × (W i
x)

is invariant under (F, T ) on K × X , completing the proof of the lemma. ♦

Proof of Proposition 5.1. Suppose that the assumptions of Theorem C are satisfied
for a compact set K0 in a Banach space X , a map F0, a d−codimensional space
Π, a nested family of ki cones Ci, i = 1, 2, . . . and a family of operators {T(x,y) :
x, y ∈ K0} .
First we are going to use Theorem B and Lemmas 5.1, 5.2 for K := K0 × K0,

the map F given by the formula

F (x, y) = (F0x, F0y), (x, y) ∈ K;
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{T(x,y) : (x, y) ∈ K}-the family of compact operators in L(X, X); C1 ⊂ C2 ⊂ . . . ⊂
Ci ⊂ . . . the nested family of ki-cones with ki+1 > ki for all 1 ≤ i < N , CN = X

and Π- d−codimensional plane in X .
By the assumptions of the theorem we have

(5.11) T(x,y)(Ci) ∩ (Ci \ Ci−1) ∩Π = ∅ for any (x, y) ∈ K, i = 1, 2, . . . ,

(5.12) F0x − F0y = T(x,y)(x − y) for all (x, y) ∈ K

and for any 0 6= v ∈ X there is an j ∈ N such that

(5.13) T(x,y)v ∈ Cj \ {0}.

Since K0 is an invariant subset for the continuous map F0, the function F is con-
tinuous and surjective. Applying (5.13) to x, y, v such that 0 6= v = x−y we obtain
that F0 is injective on K0 due to the formula (5.12), Hence F is a homeomorphism
of K. We have shown that all the assumptions of Theorem B for the bundle map
(F, T ) and each ki-cone Ci, i = 1, 2, . . . are satisfied as well as all the assumptions
of Lemma 5.2 and Lemma 5.1 if N =∞.
By Theorem B we have for each i = 1, 2, . . . continuous bundles K×(V i

(x,y)), K×

(Li
(x,y)) and constants Mi > 0, 0 < γi < 1 for the corresponding exponential

separations. Denote by P i
(x,y) the projection of X on V i

(x,y) along Anih(Li
(x,y))

for each (x, y) ∈ K, i = 1, 2, . . . . By Qi
(x,y) we denote the projection Qi

(x,y) :=

I − P i
(x,y). Denote also V 0(x,y) = {0}, L0(x,y) = {0}, P 0(x,y) = 0, Q0(x,y) = I for all

(x, y) ∈ K. If N = ∞ apply Lemma 5.1 for fixed 0 < λ1 < 1. Then there is an
i0 ∈ N such that

(5.14) if P i0
(x,y)u = 0 then | T(x,y)u |≤ λ1 | u | .

Denote N0 := N if N < ∞ and N0 := i0 if N =∞. Further define for 1 ≤ i ≤ N0,
s ≥ 0 the sets

Ci(s) :=
⋃

(x,y)∈K

{v ∈ X :| Qi
(x,y)v |≤ s | P i

(x,y)v |}

Di(s) :=
⋃

(x,y)∈K

{v ∈ X :| P i
(x,y)v |≤ s | Qi

(x,y)v |}.

Note that if 0 ≤ s1 < s2 and 1 ≤ i ≤ N0 then Ci(s1) ⊂ Ci(s2) as well as Di(s1) ⊂
Di(s2). We are going to show that for a small interval of values s the above sets
are ki-cones and vectors from Ci(s) satisfy some estimates.
Let us notice that for each 1 ≤ i ≤ N0 the bundles K × (V i

(x,y)), K × (Li
(x,y)) are

compact and the following relations are satisfied
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(5.15)

Ci(0) =
⋃

(x,y)∈K

V i
(x,y) ⊂ Ci, Di(0)∩Ci =

⋃
(x,y)∈K

Anih(Li
(x,y))∩Ci = {0}, 1 ≤ i ≤ N0.

Therefore there is a 1 ≥ δ0 > 0 such that

(5.16) Ci(s) ∩ Di(s) = {0} for all 0 ≤ s ≤ δ0 and all 1 ≤ i ≤ N0.

Each Ci(s), 0 < s ≤ δ0, 1 ≤ i ≤ N0 is a ki-cone. Let us show it.
Because of (5.15) it is sufficient to prove that λCi(s) = Ci(s) for all λ ∈ R \ {0},

which is obvious, and Ci(s) is a closed subset of X . This closedness follows from the
fact that {P i

(x,y), Q
i
(x,y) : (x, y) ∈ K} is a compact set of continuous projections of

X .
Another consequence of (5.16) is the following inclusion

(5.17) Ci(s) ⊂ Ci(δ0) ⊂ {v ∈ X : | Qi
(x,y)v |≤ 1

δ0
| P i
(x,y)v |}

valid for all 0 < s ≤ δ0, 1 ≤ i ≤ N0 and (x, y) ∈ K.
Now define the sets

W i
z(s) := {u ∈ X :| Qi

zu+ P i−1
z u |≤ s | Qi−1

z P i
zu |}, z ∈ K, 1 ≤ i ≤ N0, 0 ≤ s,

Wi(s) :=
⋃

z∈K

W i
z(s), 0 ≤ s, 1 ≤ i ≤ N0.

Note that for all 1 ≤ i ≤ N0 and z ∈ K we have

W i
z(0) = V i

z ∩ Anih(Li−1
z ) ⊂ (Ci \ Ci−1) ∪ {0}

and if 0 ≤ s1 < s2 then W i
z(s1) ⊂ W i

z(s2) as well as Wi(s1) ⊂ Wi
z(s2). For the

proof of statement ii) we need the existence of δ1 such that

(5.18) Π ∩ Wi(δ1) = {0} for all 1 ≤ i ≤ N0,

and

(5.19)
{u ∈ X : | P i−1

(x,y)u |≤ s | Qi−1
(x,y)u |, | Qi

(x,y)u |≤ s | P i
(x,y)u |, (x, y) ∈ K} ⊂ Wi(

2s
1−s
)

for all 0 ≤ s < 1, 1 ≤ i ≤ N0.
The equality (5.18) follows from the compactness each of the bundle K × (V i

z ∩
Anih(Li−1

z )), 1 ≤ i ≤ N0 and the fact that K × (V i
z ∩Anih(Li−1

z )∩Π) = K × ({0})
for all 1 ≤ i ≤ N0. This fact is an immediate consequence of (5.11) and the
invariance of all bundles K×(V i

z ∩Anih(Li−1
z )) under (F, T ) on K×X (cf. Lemma

5.2). To show (5.19) take any u from the set on the left hand side in (5.19). Write
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u in the form u = w1 + w2 + v where w1 ∈ Anih(Li
z), w2 ∈ V i

z ∩ Anih(Li−1
z ) and

v ∈ V i−1
z . Then we have

| v |≤ s | w1 + w2 |≤ s | w1 | +s | w2 | and | w1 |≤ s | w2 + v |≤ s | w2 | +s | v |.

Hence, adding the resulting inequalities we obtain that

| w1 + v |≤| w1 | + | v |≤
2s

1− s
| w2 | .

This proves (5.19).
Now denote

τ = max(sup{| Tz |L(X,X): z ∈ K}, 1)

̺ = max(sup{| Qi+1
z |L(X,X)| P i

z |L(X,X): 1 ≤ i ≤ N0, z ∈ K}, 1).

Take 0 < δ such that δ < δ0 and
2δ
1−δ

< δ1, and if N =∞ we also require that

(5.20) λ0 := 2δ +
δτ + λ1

1− δ
< 1

Our choice of the sequence of cones C1, C2, . . . , CN0 is given by

Ci := Ci((2̺)
i−N0δ), 1 ≤ i ≤ N0.

Let us show that Lemma 5.2 and the definition of this sequence implies that

C1 ⊂ int(C2) ∪ {0} ⊂ C2 ⊂ . . . ⊂ CN0−1 ⊂ int(CN0) ∪ {0} ⊂ CN0

and we already know that each Ci, 1 ≤ i ≤ N0 is a ki-cone. Let 1 ≤ i < N0 and
v ∈ Ci((2̺)

i−N0δ). Then there is a z ∈ K such that

| P i
zv | (2̺)i−N0δ ≥| Qi

zv | .

Due to Lemma 5.2 we have

Qi+1
z v = Qi+1

z Qi
zv and P i

zv = P i
zP

i+1
z v for all z ∈ K, v ∈ X and 1 ≥ i < N0.

Therefore

| Qi+1
z v |=| Qi+1

z Qi
zv |≤| Qi+1

z |L(X,X)| Qi
zv |≤| Qi+1

z |L(X,X) (2̺)
i−N0δ | P i

zv |

=| Qi+1
z |L(X,X) (2̺)

i−N0δ | P i
zP

i+1
z v |≤| Qi+1

z |L(X,X)| P i
z |L(X,X) (2̺)

i−N0δ | P i+1
z v |

≤ ̺(2̺)i−N0δ | P i+1
z v |< (2̺)i+1−N0δ | P i+1

z v | .
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Hence v ∈ Ci+1((2̺)i+1−N0δ).
Now we are going to obtain estimates needed to establish statements i)-iii).
Denote

M = max{Mi : 1 ≤ i ≤ N0}, γ = max{γi : 1 ≤ i ≤ N0} and c = 1
δ
.

Obviously 0 < γ < 1. Then there is a m1 ∈ N such that

(5.21) cMγm ≤ (8̺)−N0δ for all m ≥ m1.

This using the exponential separations means that we have

(5.22)
if | Qi

(x,y)v |≤ c | P i
(x,y)v | then | Qi

(F m
0

x,F m
0

y)T
m
(x,y)v |≤ (8̺)−N0δ | P i

(F m
0

x,F m
0

y)T
m
(x,y)v |

for all m ≥ m1, (x, y) ∈ K, v ∈ X, 1 ≤ i ≤ N0. Note that this estimate together
with (5.17) and (5.12) shows statement i) for F0, x, y ∈ K0.
The key estimate to show statement iii) is the following

(5.23) if | P N0
(x,y)u |≤ δ | QN0

(x,y)u | then | T(x,y)y |≤ (λ0 − 2δ) | u |,

where (x, y) ∈ K, u ∈ X . Let us show it. Write u = P N0
(x,y)u+QN0

(x,y)u := v + w. If

| v |≤ δ | w | then by (5.14) and (5.20) we have

| T(x,y)(v + w) |≤| T(x,y) || v | +λ1 | w |≤| T(x,y) | δ | w | +λ1 | w |≤

| T(x,y) | δ + λ1

1− δ
((1− δ) | w |) ≤ (λ0 − 2δ)((1− δ) | w |) ≤ (λ0 − 2δ) | v + w | .

Thus (5.23) is established.
Choose m0 such that

(5.24) m0 > m1 and (λ0 − δ)m−m1(δ + τ)m1 ≤ λm
0 for all m ≥ m0.

Our next aim is to prove the following statement:

There is an ǫ1 > 0 such that if z ∈ K and a family of operators T ′
n ∈ L(X, X), 1 ≤

n ≤ 2m0 satisfy

| T ′
n − TF nz |L(X,X)< ǫ1 for all 1 ≤ n ≤ 2m0

then

j) T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1(Ci \ {0}) ⊂ int(Ci) \ {0} for all m0 ≤ m ≤ 2m0, 1 ≤ i ≤ N0.
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jj) if u and T ′
2m0

◦ T ′
2m0−1 ◦ · · · ◦ T ′

1u lie in Ci \ Ci−1 for an 1 ≤ i ≤ N0 then
Tm0

◦ Tm0−1 ◦ · · · ◦ T ′
1u 6∈ Π.

jjj) if u 6∈ CN0 and T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u 6∈ CN0 for an m0 ≤ m ≤ 2m0 then

| T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u |≤ λm

0 | u | .

In order to prove this statement denote for each z ∈ K and 1 ≤ i ≤ N0 the sets

Ci
z(s) = {u ∈ X : | Qi

zu |≤ s | P i
zu |}

Di
z(s) = {u ∈ X : | P i

zu |≤ s | Qi
zu |}

From (5.22), in this notation, we obtain that

Tm
z (C

i
z(c)) ⊂ Ci

F mz((8̺)
−N0δ) for all z ∈ K, 1 ≤ i ≤ N0, m1 ≤ m ≤ 2m0

Hence, we can find ǫ1 > 0 such that 0 < ǫ1 < δ and for all z ∈ K and families of
operators T ′

1, T2, . . . , T
′
2m0
in L(X, X) with

(5.25) | T ′
n − TF nz |L(X,X)< ǫ1 for all 1 ≤ n ≤ 2m0

we have

(5.26) T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1(C

i
z(c) \ {0}) ⊂ Ci

F mz((4̺)
−N0δ) \ {0},

for all m1 ≤ m ≤ 2m0, 1 ≤ i ≤ N0.
Now, let

T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u 6∈ CN0

F mz((4̺)
−N0δ) for some z ∈ K, m0 ≤ m ≤ 2m0, 1 ≤ i ≤ N0

and T ′
1, T2, . . . , T

′
2m0
be as in (5.25). Hence, by (5.26) we have

T ′
n ◦ T ′

n−1 ◦ · · · ◦ T ′
1u 6∈ Ci

F nz(c) for all 1 ≤ n ≤ m − m1.

Since c ≥ 1
δ
, due to the definitions of the sets Ci

z(s), Di
z(s) we also have that

X \ Ci
F nz(c) ⊂ Di

F nz(δ) \ {0}, 1 ≤ n ≤ m − m1.

Thus,

(5.27)
if T ′

m ◦ T ′
m−1 ◦ · · · ◦ T ′

1u 6∈ Ci
F mz((4̺)

−N0δ)

for some z ∈ K, m0 ≤ m ≤ 2m0, 1 ≤ i ≤ N0 then

T ′
n ◦ T ′

n−1 ◦ · · · ◦ T ′
1u ∈ X \ Ci

F nz(c) ⊂ Di
F nz(δ) {0} for all 1 ≤ n ≤ m − m1.
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Hence, using (5.26) and the fact that m0 ≤ 2m0 − m1 we obtain that

if u ∈ Ci
z(c) and T ′

2m0
◦ T ′
2m0−1 ◦ · · · ◦ T ′

1u ∈ Ci
F 2m0z

(c) \ Ci−1
F 2m0z

((4̺)−N0δ)

for some z ∈ K, 1 ≤ i ≤ N0 then

Tm0
◦ Tm0−1 ◦ · · · ◦ T ′

1u ∈ Ci
F m0z((4̺)

−N0δ) ∩ Di−1
F m0z(δ).

Therefore using (5.19) for s = δ and the estimate 2δ
1−δ

≤ δ1 we also have by (5.18)
that

Ci
F m0z((4̺)

−N0δ)∩Di−1
F m0z(δ)\{0} ⊂ Ci

F m0z(δ)∩Di−1
F m0z(δ)\{0} ⊂ Wi(

2δ

1− δ
)\{0} ⊂ Wi(δ1)\{0}.

Hence the equality (5.18) gives Tm0
◦ Tm0−1 ◦ · · · ◦ T ′

1u does not lie in Π. Thus we
have obtained that

(5.28)
if u ∈ Ci

z(c) and T ′
2m0

◦ T ′
2m0−1 ◦ · · · ◦ T ′

1u ∈ Ci
F 2m0z

(c) \ Ci−1
F 2m0z

((4̺)−N0δ)

for some z ∈ K, 1 ≤ i ≤ N0 then

Tm0
◦ Tm0−1 ◦ · · · ◦ T ′

1u 6∈ Π.

Now, using (5.27) for i = N0, (5.23) and the fact that ǫ1 < δ we obtain that

if T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u 6∈ CN0

F mz((4̺)
−N0δ) for some z ∈ K, u ∈ X and a m0 ≤ m ≤ 2m0

then

| T ′
n ◦ T ′

n−1 ◦ · · · ◦ T ′
1u |≤ (λ0 − δ)n | u | for all 1 ≤ n ≤ m − m1.

From this by (5.24) and m ≥ m0 we obtain

| T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u |≤ (λ0 − δ)m−m1(τ + ǫ1)

m1 | u |

≤ (λ0 − δ)m−m1(τ + δ)m0 | u |≤ λm
0 | u | .

Thus we have

(5.29)

if T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u 6∈ CN0

F mz((4̺)
−N0δ)

for some z ∈ K, u ∈ X and a m0 ≤ m ≤ 2m0 then

| T ′
m ◦ T ′

m−1 ◦ · · · ◦ T ′
1u |≤ λm

0 | u |.

By (5.17) we have

(5.30)
Ci ⊂ Ci

z(c) and Ci
z((4̺)

−N0δ) \ {0} ⊂ int(Ci) for all z ∈ K and 1 ≤ i ≤ N0.
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Hence, (5.26), (5.28) and (5.29) imply the statements j),jj) and jjj), respectively.
Now we find V0 and ǫ0 > 0 needed for the statement of the proposition.
Define for any U ⊂ U0 and G ∈ C1(U , X) the family of the operators {T ′

(x,y) :

(x, y) ∈ U × U} as follows

T ′
(x,y) = T(x,y) + (

∫ 1

0

(DG − DF0)(sx+ (1− s)y) ds) ∈ L(X, X), (x, y) ∈ K.

Obviously

(5.31) T ′
(x,y)(x − y) = Gx − Gy, x, y ∈ U ,

and if | G − F0 |U |C1(U,X)< ǫ then

| T ′
(x,y) − T(x,y) |L(X,X)< ǫ.

Now it is easy to find an open neighborhood V0 of K0 and ǫ > 0 such that for
any G ∈ C1(V0, X) with

| G − F0 |V0 |C1(V0,X)< ǫ0

we obtain that if (Gmx, Gmy) ∈ V0 × V0 is defined for a (x, y) ∈ V0 × V0 and a
m0 ≤ m ≤ 2m0 then there is a z ∈ K such that

| T ′
(Gnx,Gny) − TF nz |≤ ǫ1 for all 1 ≤ n ≤ m.

Hence, using (5.31) from statements j),jj) and jjj) we obtain statements i),ii) and
iii), respectively, for m0 ≤ m ≤ 2m0. Using repeatedly statements i),iii) for m =
m0, . . . , 2m0 we obtain these statements for all m ≥ m0.
We showed all properties of the sequence of cones C1, . . . , CN0 except of Propo-

sition 5.1iv). Therefore take z0 ∈ K. By (5.17) we have

CN0 ⊂ CN0
z0
(
1

δ
).

Hence, as P0 we can take P N0
z0
and c̃ := 1

δ
. The proof of the proposition is

complete.♦

In the proofs of the next corollary and Corollary 2.1 we use the notation from
the previous proof. Next corollary states that homeomorphism of ω-limit sets into
R

d from Theorem C is even Lipschitz imbedding of these sets to R
d. Here we say

that a map from a subset in a metric space into another metric space is a Lipschitz
imbedding iff this map is Lipschitz, injective and its inverse from its range is also
Lipschitz map.

Corollary 5.4. Let the assumption of Theorem C be satisfied. Then there exist an
open neighborhood of K0 denoted by V and an ǫ > 0 such that for any G ∈ C1(V, X)
with

| F |V −G |C1(V,X)< ǫ
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any projection of X along Π on a transversal d-dimensional space to Π is a Lipschitz
imbedding of the ω−limit set for G of any point x0 ∈ V, with all Gnx0, n ∈ N

defined and cl({Gnx0 : n ∈ N} ⊂ V.

Proof. Let Π′ be a d-dimensional subspace of X such that Π⊕Π′ = X . Denote by
π the projection of X to Π′ along Π. We also define the sets

πs = {u ∈ X : | (I − π)u |≤ s | πu |}.

Note that π0 = Π. In the proof of Proposition 5.1 we can find δ1 in (5.18) so small
that the following holds

πδ1 ∩Wi(δ1) = {0} for all 1 ≤ i ≤ N0.

Then modifying in the above proof, if necessary, chosen constants δ, m1, m0, ǫ0
and neighborhood V0, the next stronger version of statement ii) of Proposition 5.1
holds

ii)’ if Gm0x, Gm0y are defined and x − y as well as G2m0x−G2m0y lie in Ci \ Ci−1

for an i ∈ {1, 2, . . . , N0} then Gm0x − Gm0y 6∈ πδ1 .

From the proof of Theorem C we know that either ω(x0) is a periodic orbit or each
distinct x, y ∈ ω(x0) admits an 1 ≤ i ≤ N0 such that

(5.32) Gnx − Gny ∈ Ci \ Ci−1 for all n ∈ N.

Note that it is easy to see using Proposition 5.1i) that if ω(x0) is a periodic orbit
then (5.32) is satisfied. Thus, from (5.32) using ii)’ we obtain that

x − y ∈ πδ1 for all distinct x, y ∈ ω(x0).

This together with π ∈ L(X, X) means that π is a Lipschitz imbedding of ω(x0) to
d-dimensional space Π′. ♦

Proof of Corollary 2.1. Denote by X+ and X− the two open halfspaces of X

separated by Π. Recall that for all 1 ≤ i ≤ N0 the bundle K× (V i
z ∩Anih(Li−1

z )) is
invariant under the bundle map (F, T ) on K×X and (K×(V i

z ∩Anih(Li−1
z ))∩Π) =

K × ({0}). Hence, by assumption (A) of the corollary we obtain that

if u ∈ V i
z ∩ Anih(Li−1

z )) ∩ X± then Tnu ∈ X± for all 1 ≤ n, 1 ≤ i ≤ N0

Hence, choosing in (5.25) ǫ1 > 0 smaller if necessary, the following stronger
version of (5.28) combined with (5.30) takes place

if u ∈ Ci \ Ci−1 ∩ X± and T ′
2m0

◦ T ′
2m0−1

◦ · · · ◦ T ′
1u ∈ Ci \ Ci−1 for an 1 ≤ i ≤ N0

then Tm0
◦ Tm0−1 ◦ · · · ◦ T ′

1u ∈ X±.

Hence we obtain that

if u and T ′
3m0

◦ T ′
3m0−1

◦ · · · ◦ T ′
1u lie in Ci \ Ci−1 for an 1 ≤ i ≤ N0
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then

T ′
n ◦ T ′

n−1 ◦ · · · ◦ T ′
1u ∈ X+(or X−) for all m0 ≤ n ≤ 2m0.

Then proceeding as in the proof of Proposition 5.1 we find V0 and ǫ0 > 0 such that
in addition to statements i)-iv) of Proposition 5.1 we obtain the following statement

v) if G3m0x, G3m0y are defined and both x− y, G3m0x−G3m0y lie in Ci \ Ci−1 for
an 1 ≤ i ≤ N0 then Gnx − Gny ∈ X+(or X−) for all m0 ≤ n ≤ 2m0.

Now, take any map G from an ǫ0-neighborhood in C1(V0, X) of F0 |V0 . By
Proposition 5.1i) we have that for any distinct x, y ∈ V0 with all Gnx, Gny, n ≥ 1
defined there is an n0 ∈ N such that
either

(5.33) Gnx − Gny 6∈ CN0 for all n ≥ n0

or

(5.34) Gnx − Gny ∈ Ci \ Ci−1 for all n ≥ n0 and an i ∈ {1, 2, . . .N0}.

In case (5.33) Proposition 5.1iii) implies that Gnx − Gny converges exponentially
to {0}. In case (5.34) using repeated applying of v) we obtain that the sequence
Gnx − Gny, n = 1, 2, . . . eventually lie in one of the halfspaces X+ or X−.
In order to show the second part of the corollary take any x0 ∈ V, with all

Gnx0, n ∈ N defined and cl({Gnx0 : n ∈ N}) ⊂ V. Then by Corollary 5.2 we know
that the set {Gnx0 : n ∈ N} is precompact. Thus ω(x0) is nonempty. If x0 = Gx0
then we are done. Thus let Gx0 6= x0. Then apply the first part of the corollary
to x = x0 and y = Gx0. Hence, we obtain that | Gnx0 − Gn+1x0 | exponentially
tends to 0 or the sequence Gnx0 − Gn+1x0 eventually lie in one of the halfspaces
X+ (or X−). The former possibility clearly imply that Gnx0 converges to a point
as n → ∞. The latter one yields for all sufficiently large n < m that Gnx0−Gmx0
lie in X+ (or X−). Hence, ω(x0) is a single point. The proof is complete. ♦
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6. Proofs of Corollaries 2.2-2.4.

Proof of Corollary 2.2: By Theorem B we have that the vector bundle (S1, T
1)

admits a k−dimensional continuous separation along K associated to the k−cone
C. For x ∈ X let Vx ⊂ X , Lx ⊂ X∗ be the subspaces of this separation. Let
M and γ be constants from the exponential separation for (S1, T

1). Using Lemma
4.1 we obtain that the bundles K × (Vx) and K × (Lx) are invariant under the
bundle maps (St, T

t) for all rational t > 0. Hence by the continuity of the function
t −→ T t

x : (0,+∞)→ L(X, X) for all x ∈ K we obtain that the equalities

T t
xVx = VStx, T ∗t

x LStx = Lx, x ∈ K

hold also for all irrational t > 0.
It remains to prove the exponential separation. Denote c1 = sup{| T t

x |L(X,X):
x ∈ K, t ∈ [1, 2]}. Since each Vx is a k−dimensional space and K × (Vx) is an
invariant bundle for all bundle maps (St, T

t), for each x ∈ K and t ≥ 1 there is a
constant c2 such that

| v |≤ c2 | T t
xv | for all v ∈ Vx.

Since K × (Vx) is a continuous bundle and the map (x, t) 7→ T t
x : K × (0,+∞) →

L(X, X) is continuous we can make the constant c2 independent on x ∈ K and
t ∈ [1, 2].
Denote [t] the integer part of t and {t} := t− [t]. Using the exponential estimate

for (S1, T
1) we obtain that for all x ∈ K, w ∈ Anih(Lx), v ∈ Vx, t ≥ 1 one has

| T t
xw |=| T [t−1]+1+{t}

x w |≤ c1Mγ[t]−1 | T [t]−1x v |

≤ c1Mγ[t]−1c2 | T [t]+{t}
x |≤ (c1c2Mγ−2)γt | T t

xv | .

This verifies the needed exponential estimate and completes the proof of Corollary
2.2.♦

For the proof of the next two corollaries we need the following semiflow analog
of Proposition 5.1. Recall also the definition of sets πs. Let Π

′ be a linear subspace
of X transversal to Π and let π be the projection of X to this space along Π. Then
we have sets

πs = {u ∈ X : | (I − π)u |≤ s | πu |}, s ≥ 0.

Proposition 6.1. Suppose that the assumptions of Corollary 2.3 are satisfied.
Then there are numbers T0 ∈ R, N0 ∈ N, 0 ≤ λ < 1, δ1 > 0, ǫ0 > 0, an
bounded open neighborhood V0 of K0 and a sequence of sets C1 ⊂ int(C2) ∪ {0} ⊂
C2 ⊂ . . .CN0−1 ⊂ int(CN0) ∪ {0} ⊂ CN0 with each Ci a ki-cone such that for any
continuous semiflow S′

t on V0 with S′
t ∈ C1(V0, X), t ∈ [ 12 , 1] and

| St |V0 −S′
t |C1(V0,X)< ǫ for all

1

2
≤ t ≤ 1

and x, y ∈ V0 the following holds
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i) if x − y ∈ Ci \ {0} for an 1 ≤ i ≤ N0 and S′
tx, S′

ty are defined for a t ≥ T0 then
S′

tx − S′
ty ∈ int(Ci).

ii) if S′
2T0

x, S′
2T0

y are defined and x − y as well as S ′
2T0

x − S′
2T0

y lie in Ci \ Ci−1

for an i ∈ {1, 2, . . . , N0} then S′
T0

x − S′
T0

y 6∈ πδ1. (Here C0 = {0}.)

iii) if S′
tx, S′

ty are defined with S′
tx − S′

ty 6∈ CN0 and t ≥ T0 then

(6.1) | S′
tx − S′

ty |≤ λt | x − y | .

Moreover we have that

iv) there is a projection P0 of X on kN0-dimensional space and a constant c̃ > 0
such that

CN0 ⊂ {v ∈ X : | (I − P0)v |≤ c̃ | P0v |}.

Proof. The proposition follows from Corollary 2.2 by the same way as Proposition
5.1 was proved using Theorem B with just one exception. Here statement ii) is
stronger then that of Proposition 5.1. Its proof is similar to the proof of ii)’ in the
proof of Corollary 5.4. ♦

Having the above statement, Corollaries 2.3 and 2.4 do not require special proofs.
Let us briefly discuss it. Corollary 2.3 follows from this proposition and a semiflow
analog of Theorem A similarly as Theorem C was proved using Theorem A. The
semiflow analog of Theorem A could be proved by replacing discrete maps G by
semiflows. Proposition 6.1 provide sufficient information to produce more general
abstract zero number, as it is introduced in [FM-P], which does not change arguing
of the proof of a Poincaré-Bendixson Theorem in [FM-P]. We give here proofs of
these corollaries based on Proposition 6.1 and Theorem C. In the proof of Corollary
2.4 we use also the conclusion of Corollary 2.3. Note that from the next two proofs
and a semiflow analog of Theorem A, one can reconstruct a proof of Poincaré -
Bendixson Theorem in the unperturbed case of Corollary 2.4, not using Theorems
B and C.

Proof of Corollary 2.3 Take any continuous semiflow S ′
t satisfying (6.1) and any

x0 ∈ V0 for which the closure of its positive orbit lies entirely in V0. The semiorbit
of x0 with respect to the semiflow S ′

t is precompact. Indeed, this is a continous
time analog of the precompactness of semiorbits for maps proved in Corollary 5.2.
Namely, it follows from two facts contained in Proposition 6.1. The first one is the
exponential contraction of the difference of two points on a trajectory when time
increases until their difference does not lie in CN0 (see Proposition 6.1iii)). Due to
Proposition 6.1iv) the second fact says that P0 is a Lipschitz imbedding to finite
dimensional space P0(X) of any sets for which the difference of any two points lie
in CN0 . The detailed proof follows the lines of the proof of Corollary 5.2 proved
by Proposition 5.1iii)-iv).
Note that Proposition 6.1 implies that the map S ′

t for any t ∈ [ 12 , 1] satisfies the

conclusions of Proposition 5.1 for a m0 > T0
t
. Since Theorem C is the consequence

of Proposition 5.1 and Theorem A, we conclude that the ω-limit set of x0 with
respect to any S′

t, t ∈ [ 12 , 1] is homeomorphic to a subset in R
d. Hence, the corollary
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follows from the next lemma. This lemma is proved in [Ak] (Ch.6, Proposition 3a)).
Nevertheless we give here its proof for the convenience of the reader.

Lemma 6.1. Let X be a compact metric space and St a continuous semiflow on
X . Then for any x0 ∈ X and 0 < τ < 1 there is a t0 ∈ [τ, 1] such that the ω−limit
set of x0 for the semiflow St coincides with the ω−limit set of x0 for the map St0 .

Proof of Lemma 6.1. Denote the ω−limit set of x0 for the semiflow St by ω(x0)
and and for the map Sτ , τ > 0 by ω(Sτ , x0). Since X is compact, so is the set
ω(x0). Hence, there is a countable dense subset {xn, n ∈ N} in ω(x0). For each
xn, n = 1, 2, . . . there is a sequence of positive numbers tn

i , i = 1, 2, . . . such that

(6.2) limi→∞ tni = 0 and limi→∞ Stn
i
x0 = xn.

We show that the following set

G = {τ ∈ R
+ : ω(x0) = ω(Sτ , x0)}

is residual in R
+. Define the sets

GnNǫ := {τ : there are i > N and l > N such that | lτ − tn
i |< ǫ}.

We claim that the following set

G′ :=
⋂

n∈N

⋂
N∈N

⋂
ǫ= 1

2
, 1
3
,...

GnNǫ

is a subset of G. Let us show it. Take any τ ∈ G ′. Then for all n there are increasing
sequences ik, lk, k = 1, 2, . . . such that | lkτ − tnik

|→ 0 as k → ∞. Then by the
uniform continuity of the map t 7→ Stx0 : [0,+∞)→ X we have

| Slkτx0 − Stn
ik

x0 |=| S|lkτ−tn
ik

|yk − yk |→ 0 as k → ∞,

where yk = Stn
ik

x0. Hence by (6.2) we have Slkτx0 → xn as k → +∞. Thus, we

conclude that

ω(x0) = cl{xn : n ∈ N} ⊂ cl(ω(Sτ , x0)) = ω(Sτ , x0) ⊂ ω(x0),

i.e. ω(x0) = ω(Sτ , x0).
We show that each GnNǫ is open and dense in R

+ implying that G is a residual
subset of R

+. The openness of the set GnNǫ is clear. To prove its density consider
any interval [τ1, τ2] with 0 < τ1 < τ2. Then there is a T > 0 such that

(6.3) [T,∞) ⊂
⋃

l>N

l[τ1, τ2]

implying that [τ1, τ2] contains a point from GnNǫ. The inclusion (6.3) follows from
the fact that

lτ1 < (l + 1)τ1 < lτ2 < (l + 1)τ2 for all sufficiently large l
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yielding in particular that for those l we have that the set l[τ1, τ2]∪ (l+1)[τ1, τ2] is
an interval. The lemma is proved. ♦

Proof of Corollary 2.4. We use here Proposition 6.1 for d=2. Take ǫ = ǫ0, V = V0.
Further take any continuous semiflow S ′

t satisfying (6.1) and any x0 ∈ V for which
the closure of its positive orbit lies entirely in V. Recall from the proof of Corollary
2.4 that the semiorbit of x0 is precompact and the ω-limit set of x0 coincide with
the ω-limit set of x0 with respect to a map S′

t0
for a t0 ∈ [ 1

2
, 1]. By Proposition

5.1 we can use Corollary 5.4 for S ′
t0
and x0. Hence, π is a Lipschitz imbedding

of ω(x0) to R
2. Moreover, recall that the discrete Ljapunov functional for S ′

t0
on

cl({S′
t0

n
x0 : n ∈ N}) given by Corollary 5.1 is constant and not greater than N0 on

all sequences S′
t0

n
x − S′

t0

n
y, n ∈ Z where x, y are any distinct points from ω(x0).

Since ω(x0) is connected this implies by Proposition 5.1i) applied to the map S ′
t0

that there is an i ∈ {1, 2, . . .N0} such that

(6.4) x − y lies in the open set int(Ci) \ Ci−1 for all distinct x, y ∈ ω(x0).

Hence, using statement j) from the proof of Proposition 5.1 applied to T ′
n =

DS′
t0

n
(x), n = 1, 2, . . . , m0, x ∈ ω(x0) we obtain also that

(6.5)
if d

dt
S′

tx |t=0 6= 0 then d
dt

S′
tx |t=0= DS′

t0

m d
dt

S′
t |t=−m0t0∈ int(Ci) \ Ci−1 for all x ∈ ω(x0).

Note also that the map S′
t0
is injective on ω(x0) (cf. Corollary 5.3) implying that

if y ∈ ω(x0) and its semiorbit is not an equilibrium or periodic orbit then the map
t 7→ S′

ty : (0,+∞)→ X is injective.

Lemma 6.2. The ω-limit set of x0 with respect to the semiflow S ′
t is a single

periodic orbit or a subset of equilibria or there is a T1 > 0 such that the map π is
Lipschitz imbedding of the set cl({S ′

tx0 : t ≥ T1} to R
2.

Before we give the proof of the above lemma we complete the proof of the
corollary. If ω(x0) is a single periodic orbit or a subset of equilibria we are done. If
ω(x0) is not a set of equilibria or a single periodic orbit we can apply Lemma 6.2.
Thus we have T1 > 0 such that the map π : cl({S′

tx0 : t ≥ T1} → R
2 is a Lipschitz

imbedding. Since the flow S′
t is regularizing, we obtain a continuous vector field

g(y) on the set π(cl({S′
tx0 : t ≥ T1}) ⊂ R

2 by taking

g(y) := π( d
dt

S′
ty) =

d
dt

π(S′
ty) for all y ∈ cl({S′

tx0 : t ≥ T1}.

Therefore we can apply to the semiflow π◦S ′
t on π(cl({S′

tx0 : t ≥ T1}) the standard
Poincaré-Bendixson Theorem in the plane. Indeed, the proof of this theorem uses
only the fact that given semiflow on the closure of an orbit in the plane has the
regularizing property (see also the proof of Proposition 1 in [FM-P]). Hence, since
π is a homeomorphism from ω(x0) onto π(ω(x0)) the PB property of x0 for the
semiflow S′

t is proved.♦

Proof of Lemma 6.2. First we prove that if ω(x0) is not a set of periodic orbits
then there is a T2 > 0 such that
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(6.6) x − y ∈ int(Ci) \ Ci−1 for all distinct x, y ∈ cl({S′
tx0 : t ≥ T2}.

We consider any equilibrium also as periodic orbit.
In order to prove this statement, suppose on the contradiction that ω(x0) is not

a of periodic orbits and (6.6) is not satisfied for any T2. Then by (6.4) we may
assume that there are sequences tn, δn > 0, n ∈ N such that tn → +∞ as n → ∞
and
either
a) S′

tn
x0 − S′

tn+δn
x0 6∈ int(Ci) for all n ∈ N,

or
b) S′

tn
x0 − S′

tn+δn
x0 ∈ Ci−1 for all n ∈ N.

In case b) Proposition 6.1 and S ′
t1

x0−St1+δ1x0 ∈ Ci−1 imply that S′
tx0−St+δ1x0 ∈

Ci−1 for all t > t1 + T0. Due to (6.4) and the closedness of Ci−1 we obtain that
y − Sδ1y == for all y ∈ ω(x0). This contradicts the asumption on ω(x0) not to be
a set of periodic orbits.
In case a) we may suppose that the sequence δn has a limit s in R ∪ {+∞}. To

prove that a) leads to the contradiction we distinguish three cases s = 0, 0 < s < ∞
and s = +∞

1. s = 0. Since ω(x0) is not a subset of equilibria there is a y ∈ ω(x0) such
that the derivative of the trajectory through y is nonzero, i.e. d

dt
S′

ty |t=0 6= 0. Since
y ∈ ω(x0), we can pass to the subsequence, if necessary, such that there is a sequence
of positive numbers sn < tn − T0, n = 1, 2, . . . with the property Ssn

x0 → y as
n → ∞. By Proposition 6.1i) we also have that S ′

sn+δn
x0 − S′

sn
x0 6∈ int(Ci) for all

n ∈ N. Hence, by the regularizing property of S ′
t we have

lim
n→∞

S′
sn+δn

x0 − S′
sn

x0

δn

=
d

dt
S′

ty |t=0 6∈ int(Ci).

This contradicts (6.5) and the existence of the nonzero derivation d
dt

S′
ty |t=0.

2. 0 < s < +∞. Since ω(x0) is not a set of periodic orbits there is an y ∈ ω(x0)
such that the map t 7→ S′

ty : [0,+∞) → X is injective. Then we can pass to a
subsequence sn, n = 1, 2, . . . , if necessary, such that sn < tn −T0 for all n ∈ N and
S′

sn
x0 converges to y as n → ∞. Hence, by Proposition 6.1i) we have that

lim
n→∞

(S′
sn

x0 − S′
sn+δn

x0) = y − Ssy 6∈ int(Ci).

This contradicts (6.4).

3. s = +∞. By Proposition 6.1i) we may suppose that all x0−S′
δn

x0, n = 1, 2, . . .
does not lie in int(Ci) and moreover, passing to a subsequence if necessary, S

′
δn

x0
converge to a y ∈ ω(x0) as n → ∞. Since tn → ∞ Proposition 6.1i) implies
also that S′

tx0 − S′
δn+tx0 do not lie in int(Ci) for all sufficiently large n. Hence

S′
tx0 − S′

ty 6∈ int(Ci) for all t ≥ 0. Thus using (6.4) and precompactnes of the
semiorbits of x0 and of y we obtain that

lim
t→+∞

(S′
tx0 − S′

ty) = 0.
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This means that ω(x0) = ω(y). Since ω(x0) is not a single periodic orbit the map
t 7→ S′

ty : [0,+∞) → X is injective. We know that π is a Lipschitz imbedding of
ω(x0) as well as cl({S′

ty : t ≥ 0} to R2. Hence, the map t 7→ π(S′
ty) : [0,+∞)→ R2

is also injective. Therefore πy does not lie in the ω-limit set of πy with respect to
the semiflow π ◦ S′

t given by the vector field π( d
dt

S′
ty) on the set cl({S′

ty : t ≥ 0}.
Since π |ω(x0) is a homeomorphism from ω(x0) to its image we have y 6∈ ω(y)
contradicting y ∈ ω(x0) = ω(y).
Thus the lemma is proved if ω(x0) containes at least one nonperiodic orbit.

To finish the proof of the lemma it is sufficient to show that ω(x0) consisting of
periodic orbits not all being equilibria is a single periodic orbit. Therefore suppose
on the contrary that ω(x0) containes at least one nontrivial periodic orbit and no
nonperiodic orbits. Then due to connectivity of ω(x0) and continuity of the function
x 7→ S′

tx : ω(x0) → ω(x0) we obtain infinitely many different periodic orbits not
being eqilibria in ω(x0). Hence, the semiflow π ◦ S′

t defined on π(ω(x0)) ⊂ R
2

containes theree nontrivial periodic orbits p1, p2, p3 such that the orbits p2 and p3
lie in different components of R

2 \ p1. This contradicts the fact that π(ω(x0)) \ p1
is contained only in one of the components of R

2 \ p1. To show this fact consider
a point y ∈ ω(x0) not lying on the periodic orbit p ∈ ω(x0) with π(p) = p1. Since
y ∈ ω(x0) there ie an sequence tn, n = 1, 2, with tn+1 − tn > T0, n ∈ BbbN and
Stn

x0 → y as n → ∞. Moreover, because of (6.4) we may suppose that

S′
tn

x0 − z ∈ int(Ci) \ Ci−1 for all z ∈ p and n ∈ BbbN.

Hence

S′
tm

x0 − S′
tm−tn

z ∈ int(Ci) \ Ci−1 for all M > n,

Since tm → ∞ as m → ∞, Proposition 6.1i) and ii) gives

S′
tx0 − z 6∈ Π for all z ∈ p and t > T0.

Therefore connected sets π(p) and π({S ′
tx0 : t > T0}) do not intersect. This proves

the fact above completing the proof of the lemma. ♦
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7. Proofs of Theorems 1.1 and 1.2.

We prove Theorem 1.1 and 1.2 using Theorem C for d = 2 and Corollary 2.4,
respectively.
Throughout this section the dot in u(t, ·) represents the space variable ξ. Let

u(t, ·), v(t, ·), t ≥ 0 be two global solutions in the sense of [He1] of the equation
(1.1). Then their difference w(t, ·) := u(t, ·)− v(t, ·) satisfies the following equation

(7.1) wt = wξξ + a(t, ξ)w+ b(t, ξ)wξ, t > 0, ξ ∈ S1

with

a(t, ξ) =

∫ 1

0

∂

∂u
f(t, su(t, ξ) + (1− s)v(t, ξ), suξ(t, ξ) + (1− s)vξ(t, ξ)) ds

b(t, ξ) =

∫ 1

0

∂

∂p
f(t, su(t, ξ) + (1− s)v(t, ξ), suξ(t, ξ) + (1− s)vξ(t, ξ)) ds

The derivation uξ(t, ·) satisfy (7.1) with u(t, ·) = v(t, ·).
Now we review two consequences of results in [He1] and [An2] for the equation

(7.1).
By [He1] we obtain that equation (7.1) generates the family of compact operators

T (t, s) ∈ L(X, X), t > s ≥ 0 with the following properties:

a) if w(t, ·) is any solution of (7.1) then

w(t, ·) = T (t, s)w(s, ·), t > s ≥ 0

b) T (t, s)T (s, r) = T (t, r) for all t > s > r ≥ 0.
c) limt→s T (t, 0) = T (s, 0) in L(X, X) for all s > 0.
d) for any fixed t and s the operators T (t, s) are change continuously in L(X, X)
when u(0, ·) and v(0, ·) are varied in X .

Let z(u) denote the number, possibly infinite, of zeros of a function u ∈ X . Fix
an arbitrary point ξ0 ∈ S1. Denote by π the following map

u(·) −→ (u(ξ0), uξ(ξ0)) : X → R
2.

This map is linear and continuous since X →֒ C1(S1).
Now let w(t, ·), t > 0 be a global solution of (7.1) with a(·, ·), b(·, ·) being C1 on

(0,∞)× S1. Then using [An2] we obtain that

α) if w(0, ·) 6= 0 then z(w(t, ·)) is finite for each t > 0.
β) z(w(t, ·)) ≤ z(w(s, ·) for any t > s ≥ 0.
γ) if w(t0, ·) has a multiple zero for a t0 > 0 then

z(w(t0 − ǫ, ·)) ≥ z(w(t0 + ǫ, ·)) + 2
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for any 0 < ǫ < t0.

The last statement γ), in other words says that at a multiple zero of a solution
the zero number of the solution decrease at least by two, it is the consequence of
Theorem B in [An2] and the fact that each ξ ∈ S1 is an interior point of S1.
We also use the following consequence of α) and γ)

δ) if w(0, ·) 6= 0 then for any s > 0 there are only finitely many time instances t > s

such that w(t, ·) has a multiple zero on S1.

Let B be the ball from the assumptions of Theorems 1.1 and 1.2. It is well
known (see [He1]) that the semiflow St defined by (1.1), where the nonlinearity is
independent of t, is a continuous regularizing semiflow on B. If the nonlinearity of
(1.1) is 1-periodic in t then the time-one map F defined by (1.1) lies in C1(B, X).
Now let x and y be from B. Then by the assumptions of Theorems 1.1 and 1.2

there are global solutions of (1.1) with u(0, ·) = x and v(0, ·) = y. Denote by T t
(x,y)

the operator T (t, 0) corresponding to the solutions u(t, ·), v(t, ·). Then using a)-d)
we obtain that

1) if f does not depend on t then

Stx − Sty = T t
(x,y)(x − y), x, y ∈ B, t > 0

and if f is 1-periodic in t then

Fx − Fy = T 1(x,y)(x − y), x, y ∈ B

2) the function (x, y, t) −→ T t
(x,y) : B × B × (0,∞)→ L(X, X) is continuous with

the range in the set of compact operators; and if f does not depend on t, for any
x, y ∈ B, t, s > 0 we have

T t+s
(x,y) = T t

(Ssx,Ssy)T
s
(x,y)

Now we define a family of ki-cones as follows

Ci := cl{u(·) ∈ X : u(·) has only simple zeros and z(u(·)) ≤ 2i}

We also put C0 = {0}.
Take any i ∈ N. Let us show that Ci is (2i+ 1)-cone.
First identify any function w(·) ∈ X with a 2π-periodic function w(·) ∈ C1(R).

Then functions un(t, ξ) = e−n2tcos nξ, vn(t, ξ) = e−n2tsin nξ solve the equation

(7.2) wt = wξξ , ξ ∈ [0, 2π], t ∈ R

w(t, 0) = w(t, 2π)

wξ(t, 0) = wξ(t, 2π)

Now define the 2i+ 1-dimensional subspace

V0 = span{ul(0, ·), vl(0, ·) : 0 ≤ l ≤ i}
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and the 2i+ 1-codimensional subspace of X

L0 := cl(span{ul(0, ·), vl(0, ·) : l > i}).

We have V0 ⊂ Ci and L0 ∩ Ci = {0}. Indeed, for any w(·) ∈ X we can write its
Fourier series as follows

w(·) = a0 +

∞∑
n=1

anun(0, ·) + bnvn(0, ·).

If w(·) ∈ V0 is nonconstant there is the last nonzero pair of numbers among
(an, bn), n = 1, 2, . . . , say for n = m. Obviously m ≤ i. Then the function

w(t, ξ) = a0 +
∑m
1 ale

−l2tcos lξ + ble
−l2tsin lξ is the solution of (7.2) with the

properties

(7.3) w(0, ·) = w(·) and lim
t→−∞

em2tw(t, ·) = amcos mξ + bmsin mξ

Since amcos mξ + bmsin mξ = c · sin (mξ + d) for some c 6= 0, d ∈ R, this function
has exactly 2m zeros and all of them simple. Hence by (7.3) we have z(w(t, ·)) = 2m
for all (−t) sufficiently large. Thus by property β) above, the zero number of w(·)
is not greater than 2m. Since w(t, ·) → w(0, ·) when t → 0, by β) and δ) we have
w(·) ∈ Ci.
If 0 6= w(·) ∈ L0 then there is the first nonzero pair among (an, bn), n = 1, 2, . . . ,

denoted again by (am, bm), with m > i. Let w(t, ·), t ≥ 0 be the solution of (7.3)
with w(0, ·) = w(·) and suppose, on the contrary, that w(·) ∈ Ci. Then by δ) and
β) we have

(7.4) z(w(t, ·)) ≤ 2i for all t > 0

(see also statement 4) below). But

lim
t→∞

em2tw(t, ·) = amum(0, ·) + bmvm(0, ·)

implying that

z(w(t, ·)) = 2m > 2i

for all t sufficiently large. This contradicts (7.4).
Since also Ci is closed and λCi = Ci for any λ ∈ R \ {0} we conclude that Ci is

2i+ 1-cone.

Now, by α) we have that

3) for any w ∈ X \ {0}, t > 0, (x, y) ∈ B × B

T t
(x,y)w ∈ Cj

for a j ∈ N.
Next we prove the following statement
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4) for any (x, y) ∈ B × B, t > 0, i ∈ N and w ∈ Ci \ {0} there is a neighborhood
W of w such that

T t
(x,y)w

′ ∈ Ci \ {0} for all w′ ∈ W.

From δ) we obtain a t0 ∈ (0, t) such that T t0
(x,y)w has only simple zeros. Since

w ∈ Ci there are functions wj ∈ X, j = 1, 2, . . . each with at most 2i zeros such

that wj → w as j → ∞. By β) each function T t0
(x,y)wj has at most 2i zeros. Hence,

since T t0
(x,y)wj converges to the function T t0

(x,y)w with only simple zeros, this latter

function has at most 2i zeros. Since these zeros are all simple, there is an open
neighborhood W of w such that all functions from the set T t0

(x,y)(W) has the same

number of zeros. So by β) we obtain that T t0
(x,y)(W) is contained in Ci.

Denote Π = π−1(0). Note that Π consists of functions that have a multiple zero
at ξ0. Since π ∈ L(X, R2) is surjective Π is 2-codimensional subspace in X . We
prove that γ) and δ) imply

5) if T t0
(x,y)w ∈ (Ci \ Ci−1) ∩ Π for t0 > 0, (x, y) ∈ B × B, w ∈ X, i ∈ N then

w 6∈ Ci.

Indeed, suppose on the contrary that w ∈ Ci. Hence, since T t0
(x,y)w lies in an open

set X \ Ci−1, we obtain using δ), that there is an arbitrarily small η > 0 such that

T
t0+η

(x,y)w has exactly 2i zeros, all simple. Therefore by γ) we have that T
t0−η

(x,y)w has

at least 2i+2 zeros. This together with δ) implies that there is an 0 < η1 < t0 such

that the function T
t0−η1
(x,y) w has at least 2i+2 zeros and all simple, and consequently

does not lie in Ci. This contradicts β) and w ∈ Ci.

As K0 in Theorem C and Corrolary 2.4 we take

A1 =
⋂

N∈N

cl(
⋃

n≥N

Fn(B)) and A2 =
⋂

T>0

cl(
⋃
t≥T

St(B)),

respectively. These sets are attractors for dynamical systems F and St, respectively
(see [Ha]). Obviously

A1 ⊂ cl(F N (B)) ⊂ cl(F N0(B)), N ≥ N0,

A2 ⊂ cl(ST (B)) ⊂ cl(ST0(B)), T ≥ T0,

where N0 and T0 are as in the dissipativity assumption (D) of Theorems 1.1 and
1.2. Hence, since the maps F and St, t > 0 are compact by [He1], the sets A1 and
A2 are compact invariant subsets in B for F and St, respectively.
Now it is easy to check that statements 1)-5) above together with the above

choice of X, St, F, U0 := B, Π, K0 and Ci, i ∈ N satisfy the assumptions of
Theorem C with d = 2 and Corollary 2.4. Therefore there are open neighborhoods
Vi of Ai and ǫi > 0, i = 1, 2 such that for any map G ∈ C1(V1, X) and any
regularizing continuous semiflow S ′

t ∈ C1(V2, X), t > 0 with

(7.5) | G − F |C1(B,X)< ǫ1 and sup
t∈[ 1

2
,1]

| S′
t − St |C1(B,X)< ǫ2
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the ω-limit set of any point x0 ∈ B for the map G is embedded into the plane and
the ω-limit set of any point x0 ∈ B for the semiflow S′

t has the PB property.
Now take any open neighborhoods V ′

i, Wi of Ai such that Wi ⊂ cl(Wi) ⊂ V ′
i

⊂ cl(V ′
i) ⊂ Vi, i = 1, 2. Recall that A1 and A2 are intersections of nested compact

sets of cl(F n(B)), n > N0 and cl(ST (B)), T > T0, respectively. Therefore there
are N1 > N0 and T1 > T0 such that cl(F N1(B)) ⊂ W1 and cl(ST1(B)) ⊂ W2.
Hence we can make ǫi, i = 1, 2 smaller, if necessary, such that whenever a map G

and a continuous semiflow S′
t has the property

(7.6) | G − F |C0(B1,X)< ǫ1, sup
t∈[ 1

2
,1]

| S′
t − St |C0(B1,X)< ǫ2

then

cl(GN (B)) ⊂ V ′
1 for all N1 ≤ N ≤ 2N1 and

cl(S′
T (B)) ⊂ V ′

2 for all T1 ≤ T ≤ 2T1.

Hence we also have

(7.7) cl(
⋃

n≥N1

Gn(B)) ⊂ V1,

(7.8) cl(
⋃

t≥T1

S′
t(B)) ⊂ V2

for G and S′
t as above.

Now take any map G : X → X with its restriction to B being in C1(B, X) and
any C1 semiflow S′

t, t > 0 such that

sup
x∈B1

| Gx − Fx |, sup
x∈B

| DG(x)− DF (x) |< ǫ1

and

sup
x∈B2

| S′
tx − St |X , sup

x∈B

| DS′
t(x)− DSt(x) |L(X,X)< ǫ2,

where B1 and B2 are defined in Theorem 1.1 and Theorem 1.2 , respectively. We
also take any x0 ∈ B. Note that positive trajectories of S ′

t with precompact orbits
are uniformly continuous due to the regularizing property of the semiflow S ′

t. Ob-
viously (7.6) is satisfied for the restrictions of such G and S ′

t to the respective sets
Bi. Therefore by (7.7) and (7.8) we have that

G |nB (G
N1x0) ∈ V1, n ≥ 1 and S′

t |B (S
′
T1

x0) ∈ V2, t > 0.

Moreover, since the restrictions of G and S ′
t to the respective Vi satisfy (7.5) the

conclusions of Theorems 1.1 and 1.2 hold for the map G and the semiflow S ′
t. This

completes the proofs of Theorems 1.1 and 1.2.
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8. Other applications.

In this section we prove convergence to equilibria for C1 small perturbations of
dissipative period maps given by equation (8.1) below, and a Poincaré-Bendixson
Theorem for C1 small perturbations of monotone cyclic feedback equations.
Consider the equation

(8.1) ut = uξξ + f(t, ξ, u, uξ), ξ ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t > 0,

where f ∈ C2 is 1-periodic in t. Let X be a fractional power space associated with
the operator u 7→ −uξξ : H2(0, 1) ∩ H10 (0, 1)→ L2(0, 1) that satisfy the following
embedding relation

X →֒ C1([0, 1]).

We are interested in solutions of (8.1) starting in an open set B in X . We impose
the following dissipativity condition on (8.1)

(D)
there is a T0 > 0 such that for any u0 ∈ cl(B) the solution of (8.1)

with u(0, ·) = u0 is global and u(t, ·) ∈ B for all t > T0.

Let F : X → X be the time-one map for equation (8.1). Then F |B∈ C1(B, X), as
follows from [He1].

Theorem 8.1. Assume (D) . Let F be the Poincaré map for (1.1) and denote by

B1 the set
⋃N0

n=1 Fn(B) for a N0 > T0. Then there is an ǫ > 0 such that for any
map G : X → X with

sup
x∈B1

| Gx − Fx |, sup
x∈B

| DG(x)− DF (x) |< ǫ

the ω-limit set of any point x0 ∈ B for G is a single point.

Proof. Let u(t, ·), v(t, ·), t ≥ 0 be solutions of (8.1) starting from x ∈ B and y ∈ B,
respectively. Their difference w(t, ·) satisfies equation (7.1) with Dirichlet boundary
conditions. For any (x, y) ∈ B × B we associate, as in the proof of Theorems 1.1
and 1.2, the compact operator T 1(x,y).

Let φ ∈ X and z(φ) denote number of zeros of the function φ in the open interval
(0, 1). For w(t, ·) from [He1] and [An] we obtain the analogous statements of a)-d)
and α) − δ) from the previous section with just two exceptions. Denote by π the
map

u(·) 7→ uξ(0) : X → R,

and let Π = π−1(0). The formulation of γ) has to be replaced here as follows
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if w(t0, ·) has a mutiple zero on [0, 1] for a t0 > 0 then for 0 < η < t0 we have

z(w(t0 − η, ·)) ≥ z(w(t0 + η, ·)) + 1.

The immediate consequence of this is the following statement

(A’) if z(w(t1, ·)) = z(w(t2, ·)) for 0 < t1 < t2 then π(w(t1, ·)) π(w(t2, ·)) ≥ 0.

Define the sets

Ci = cl{φ ∈ X : φ has no multiple zero and the number of zeros in (0,1) is less than i}.

Similarly as in the proof above, using the analogs of α)− δ) for the equation

ut = uξξ, ξ ∈ [0, 1]

with Dirichlet boundary conditions we obtain that each Ci, i ∈ N is a i−cone.
Using the analogs of a)-d) and α)− δ) we obtain here the analogs of statements

1)- 5) with just one exception. Here we do not consider f not depending on t (cf.
statement 2) in Section 7).
Statement (A’) imply assumption (A) in Corollary 2.1 for the family of operators

{T 1(x,y) : (x, y) ∈ B × B}. Now the theorem follows from Corollary 2.1 using the

same arguments by which Theorem 1.1 was proved.♦

The conclusion of the above theorem is proved in the unperturbed case in [BPS].
In [CP] a different approach is proposed to show the same kind of the result.
Another possible application of our abstract results are monotone feedback delay

equations considered in [M-P]. It seems feasible to obtain for C1 small perturbation
of nonlinearities of these equations in the periodically forced case imbedding of ω-
limit sets for the period map into the plane or a Poincaré-Bendixson Theorem in
the autonomous case.

Now consider systems of the form

(8.2)
d

dt
ui = f i(ui, ui−1), i = 1, 2, . . . , n (mod n).

We assume the nonlinearity f = (f 1, f2, . . . , fn) is defined on a nonempty open set
O ∈ R

n with the property that each coordinate projection Oi ⊂ R
2 of O onto the

(xi, xi−1) plane is convex and that f i ∈ C1(Oi). The following assumption makes
from (8.2) a monotone cyclic feedback system (see [M-PSm])

(8.3)

δi ∂f i(ui,ui−1)
∂ui−1

> 0 for some δi ∈ {−1,+1} and all (ui, ui−1) ∈ Oi, 1 ≤ i ≤ n.

The product
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σ = δ1δ2 . . . δn

characterizes the entire system as one with negative feedback (σ = −1) or positive
feedback (σ = +1). For such systems the Poincaré-Bendixson Theorem is proved
in [M-PSm].
Define the function N (see [M-PSm]), taking values in {0, 1, 2, . . . , n}, by

N(v) = card{i : δivivi−1 < 0}

on the set N = {v ∈ R : vi 6= 0, 1 ≤ i ≤ n}. If σ = −1 then N takes only
odd values and only even values if σ = +1. Note that Proposition 1.1 in [M-PSm]
implies analogs of statements α)− δ) from the previous section.
Further we consider only the case σ = −1. The other one is analogous. Then

the sets

Ck := cl({v ∈ N : N(v) ≤ k})

are (2k − 1)-cones for all k with 2k − 1 ≤ n. This follows similarly as in the proof
of Theorems 1.1 and 1.2. considering the system d

dt
u1 = −un,

d
dt

ui = ui−1 for all
1 < i ≤ n and using monotonicity of the function N on solutions of this system
(see Proposition 1.1 in [M-PSm]). Obviously R

n is a n−cone. We are interested in
solutions emanating in a bounded open set B ⊂ cl(B) ⊂ O. Impose the following
dissipativity condition on solutions of (8.2)

(D)
there is a T0 > 0 such that for any u0 ∈ cl(B) the solution of (8.2)

with u(0, ·) = u0 is global and u(t, ·) ∈ B for all t > T0.

Using Proposition 1.1 in [MP-Sm] and standard properties of differential equa-
tions generating by smooth vector fields in R

n we can verify, analogously as in the
proof of Theorem 1.2, all the assumptions of Corollary 2.4 for K0-the attractor
of (8.2) in B. Hence by the same way as we proved Theorem 1.2 we obtain the
following theorem.

Theorem 8.2. Let St, t > 0 be the semiflow defined by equation (8.2) on the
set B1 := {u(t, u0) : t ≥ 0, u0 ∈ B}. Assume (8.3) and (D). Then there is
an ǫ > 0 such that for any regularizing semiflow S ′

t continuous on B1 with S′
t ∈

C1(B, X), t ∈ [ 12 , 1] and

| St |B1 −S′
t |C0(B1,X), | St |B −S′

t |C1(B,X)< ǫ for all
1

2
≤ t ≤ 1

the ω− limit set of any x0 ∈ B, for which the closure of its positive orbit lies entirely
in B, consists of either a single periodic orbit or equilibria and their connecting
orbits.

Note that Gedeon in [Ge] proved chaos for equations (8.2) with f in arbitrarily
small C0 neighborhood of a subclass of nonlinearities in (8.2) giving monotone
cyclic negative feedback systems.

Remark 8.1 a) It is possible to improve Theorem 1.1 in the following way. Chain
reccurent sets of maps G are imbedded into R

2. This enables to say that ω− limit
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sets for asymptotically 1-periodic in t nonlinearities f in equation (1.1) are subsets
of the product of homoeomorphic image of a compact set in the plane and the
interval (see also [CP] for the corresponding result under the Dirichlet boundary
conditions). We will prove it in a forthcoming paper.
b) If dissipative smooth semiflows or maps satisfy a cone condition then they admit
an inertial manifold (see [M-PSe]). Strong cone conditions even imply C1 smooth-
ness of these manifolds. As it is seen from the proofs of Theorems 1.1 and 1.2 a
cone condition is provided for semiflows as well as period maps given by (1.1) which
is strengthen by Theorem B. In [Te] we prove the existence of these (C1) manifolds
for general dissipative equations of type (1.1) with various boundary conditions (for
previous results see [Br], [CL], [Kw], [Mk]).
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