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Abstract

In this paper we analyze the limiting behavior of infeasible weighted central
paths in semidefinite programming under the assumption that a strictly comple-
mentary solution exists. We show that the paths associated with the “square
root”symmetrization of the weighted centrality condition are analytic functions of
the barrier parameter p even at p = 0 if and only if the weight matrix is block
diagonal in terms of optimal block partition of variables. This result strengthens
some recent result by Lu and Monteiro establishing the analyticity of the paths as
functions of (/i at p = 0. Moreover, in this paper we study the analytical properties
of the paths associated with the “Cholesky factor”symmetrization. We show that
the paths exhibit the same analytical behavior at . = 0 as the paths corresponding
to the square root symmetrization.

Key words: Semidefinite programming, interior-point methods, weighted central
path, analyticity.
AMS subject classification: 90C51, 90C22

1 Introduction

By S™ we denote the space of all real symmetric n X n matrices, and by 5" and S, the
subsets of positive semidefinite and positive definite matrices, respectively. If X € S,
or X € 8%, we write X = 0 or X > 0, respectively. By L™ we denote the space of all
real lower triangular n x n matrices, and by L and L'} | the subsets of lower triangular
matrices with nonnegative and positive diagonal entries, respectively. For matrices X
and Y in RP*? the standard inner product is defined by X e Y :=tr(X?Y), where tr(.)
denotes the trace of a matrix.
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We consider the following primal-dual pair SDP problems in the standard form

minimize X o C

subject to A’eX by, foralli=1,...,m, (P)

Y

X 0,
and
maximize bl'y
subject to >7*, Aly; +S = C, (D)
S = 0,

where the data consists of C € 5™, b € R™ and A; € S" (i = 1,...,m). The primal
variable is X € S™ and the dual variable consists of (y,S) € R™ x S™.

A primal-dual optimal solution (X,y,S) is called complementary, if XS = 0. A
strictly complementary optimal solution is defined as a complementary optimal solution
(X,y,S) satisfying X +S > 0. Contrary to the case of linear programming, the exis-
tence of a strictly complementary solution is not generally ensured in SDP, even if the
complementary optimal solution exists.

Given fixed W € S% |, Ab € R™ and AC € S™ the weighted central path is implicitly
defined by the following p > 0 parameterized system of nonlinear conditions

AleX =bj+plb;, i=1,...,m, X»0, (1)

> Ay +8=C+uAC, S (2)
i=1

?;(X,8) = uW. (3)

Here ®;(X,S) , j € {1,2.3}, is a symmetrization map ®; : S, x ST, — S" defined by

®,(X,8) = (XS +SX)/2, (4)
Py(X,8) = X:2SX:, (5)
d3(X,8) = Lx!SLx, (6)

where X2 and Lx denote the square root and the lower Cholesky factor of the positive
definite matrix X respectively. That is, X2 and Lx are the unique matrices in 57 , and
L" , such that X>X3 = X and LxLx” = X, respectively. The symmetrization @1,
defined by (4), is the most treated one in SDP and is called the AHO symmetrization.
The symmetrizations ®o and ®3 given by (5) and (6) are also used in SDP and we will
refer to them as to the square root and Cholesky factor symmetrization, respectively.

For each j € {1,2, 3} suitable conditions on (W, AC, Ab) have been established in
Monteiro and Zanjcomo [15] such that the system (1)-(3) has a unique solution p;(u) =
(X(pe),y(p), S(p)) for any p > 0. Hence the mapping p > 0 — p;(p) is well defined and
we refer to it as to the weighted central path associated with the symmetrization ®;.
For brevity, we also call it the AHO (square root, or Cholesky) path.

When (W,AC,Ab) = (I,0,0) the path p;(u), for any j € {1,2,3}, is the usual
central path. The central path is a key concept in the methodology of interior point



methods. The geometric view of the central path is that of an analytic curve which
converges to an optimal solution pair. Its properties and limiting behavior have been
intensively studied and used in the design of algorithms. For the references on early
works dealing with the well-definedness, differentiability and limiting behavior of the
central path in the context of linear programming and the monotone complementarity
see for example [9].

Limiting behavior of the central path in SDP depends on the existence of a strictly
complementary optimal solution. Already the usual proof of the convergence of the
central path by a characterization of the limit point does not work when no strictly
complementary solution exists (see [7]). Nevertheless, it was shown by using some ideas
from algebraic geometry that the central paths in SDP always converges to an optimal
solution [7] and some kinds of partial characterization of the limit point were given
in [8] and [18]. When a strictly complementary solution exists, the central path has the
nice properties known from linear programming: it converges to the so-called analytic
center of the optimal solution set (see [4,11]) and can be analytically extended to a
neighborhood of = 0 [6].

A generalization of the notion of the weighted central path from linear programming
to SDP is a delicate issue. In linear programming, a weighted central path consists of
optimal solutions of certain weighted logarithmic barrier problems, or equivalently, of
solutions of properly perturbed optimality conditions. Since the barrier problems possess
unique optimal solutions, this equivalence yields the well-definedness of the weighted
central path in linear programming. Unfortunately, it seems that in SDP there are
no such barrier problems associated with the perturbed optimality conditions (1) —
(3). Hence the question arises how to prove the existence of solutions to (1) — (3).
This question was resolved by Monteiro and Zanjidcomo [15] (see also [12]) by means of
abstract theory of local homeomorphic maps in nonlinear analysis. As a result, for any
symmetrization ®;, ¢+ = 1,2,3, some conditions on (W, AC, Ab) have been introduced
under which the system (1) — (3) has a unique solution. Similar results, however by a
simpler technique of analytic continuation, have been proved by Preiss and Stoer (only
for the AHO symmetrization) in [16] and by Trnovska in [20].

Having a well-defined weighted central path we can study the properties of these
paths. Some of them have already been described under the assumptions of strict com-
plementarity.

The most appealing properties are exhibited by the paths that are associated with
the AHO symmetrization ®;. It was shown independently by Preiss and Stoer in [17]
and Lu and Monteiro in [10] that each AHO path can be extended as an analytic function
of the barrier ;1 to g = 0. From this fact not only the convergence of the AHO path to
an optimal solution follows, but we obtain also the convergence of its derivatives of all
orders.

The paths associated with the square root symmetrization ®, were analyzed by Lu
and Monteiro in [9]. It was shown that each square root path can be extended as a
function of /i to p = 0. From this fact the convergence of the paths follows as well,
however, the derivatives only with respect to /i are bounded as p — 0. Moreover,
it was shown in [9] that if the weight matrix W is not block diagonal (in terms of an



optimal block partition) then the first order derivative of the path with respect to p is
not bounded as p — 0. From this it follows that if W is not block diagonal, then the
square root path considered as a function of y is not analytic at 4 = 0. In this paper
we prove that if W is block diagonal, then the associated square root path is analytic
function of y at p = 0.

Moreover, and this is the main goal of the paper, we show that the weighted central
paths associated with the Cholesky factor symmetrization ®3 exhibit the same limiting
behavior as the paths associated with ®3. That is, we show that each Cholesky path
considered as a function of \/u can be analytically extended to 4 = 0 and, the path as
a function of y is analytic at u = 0 if and only if the corresponding weight matrix W is
block diagonal.

To prove the analyticity of the paths we will use the implicit function theorem
technique that was developed by Stoer and Wechs [19] in the context of a linear com-
plementarity problem. This technique was also used by many other researchers (see
2,3,5,6,9,10,17]) in the analysis of the limiting behavior of the central and weighted
central paths in linear and semidefinite programming.

The technique uses the fact that each weighted central path is implicitly defined by
the system of conditions (1-3) involving solely analytic functions. Hence, if the Frechet
derivative of the defining function with respect to (X, y, S) were nonsingular along the
path, then the application of the analytic version of the implicit function theorem would
yield the analyticity of the path. A drawback is however that this is possible only for
> 0 since as p — 0 the Jacobian may vanish. Nevertheless, in many cases the implicit
function can be used. Sometimes a detailed limiting analysis of particular blocks of the
path allows to introduce normalized paths and a normalized system of equations has
nonsingular Jacobian at any limit point.

In this paper we will use this technique twice. First, we will use a normalization
that will yield the analyticity of the paths as functions of /p at 4 = 0. This Phase I
is described in Section 3. Then, under the assumption that the weight matrix is block
diagonal, we introduce a new normalization that will allow to prove the analyticity of
the paths as functions of 4 at ;4 = 0. This Phase II and described in Section 4.

2 Preliminaries

We make the following two assumptions throughout the paper.

Assumption 2.1 A’ (i =1,...,m) are linearly independent.

Assumption 2.2 There exists a strictly complementary optimal solution for (P) and

(D).

Assumption 2.1 is only a technical one, enforcing a one-to-one correspondence between
y and S in the dual feasible pairs (S, y). On the other hand, Assumption 2.2 is restric-
tive, but is commonly used in the analysis of superlinear convergence of interior-point
algorithms. This assumption also plays an crucial role in our analysis. Moreover, the



results of the paper [3] regarding the usual central path indicate that without this as-
sumption the analytical properties of weighted central paths could be very complicated
and difficult to describe.

Define the map A : S — R™ as A(X) = [AleX, ..., A™eX]. Tts adjoint map is A* :
R™ — S™ A*(y) = S_" | Aly;. It can be easily seen that for (X, y,S) € S"x R™x S™ the
following orthogonality property holds: if A(X) =0 and A*(y) +S =0, then X S = 0.

Thanks to Assumption 2.2 we can use the standard procedure (described for example
in [6,9]) yielding an optimal partition of any M € S™ into

M:(%g %x) (7)

where Mp and My are square blocks of dimensions |B| x |B| and |N| x | N|, respectively.
In this partition any optimal solution pair is of the form

. (X O & (0 0
(Vo) e=lhs)

where Xp > 0 and Sy > 0 and for a strictly complementary optimal solution it holds
Xp = 0 and Sy = 0. The usage of this optimal partition is standard in SDP when
analyzing the limiting behavior of paths under strict complementarity (see [6,9-11,17]).
We now describe the conditions for welldefinedness of weighted central paths. For
e € (0,1) denote
M ={WeSh,; :||W-vl|<ev},

where ||.|| means the spectral norm, i.e. |A|| = max{v/X; A is an eigenvalue of ATA}.
It can be easily seen that M, is a convex cone and W &€ M, if and only if

Amaz (W) [/ Amin(W) < (1 4+¢)/(1 —¢).

2

(1) — (3) is solvable for W = Wy and 1 = pg. The existence result concerning the
weighted central paths associated with the symmetrizations ®9 and ®3 defined by (5)
and (6), respectively, is stated in the following proposition.

Let Ab, AC be such, that there exists Wy € M% and po > 0 such that the system

Proposition 2.1 Let p € (0, po) and
-We M%, in the case of ®g;
2

—WEM% or W € D", in the case of ®3.
2

Then there exists a unique solution of the system (1) —(3) denoted by (X (), y(p), S(1)).
Moreover, the path pn — (X(p),y(p), S(u)) is an analytic function for p € (0, o).

Proof. The statement for M 1 (and the symmetrizations ®9, ®3) is a consequence
2

f
of Corollary 1 of [15]. The statement for D}, (and the symmetrization ®3) is proved in
Theorem 2 of [20] and for Ab =0 and AC = 0 follows from Theorem 1 of [1]. B



3 Phase I: paths as functions of /i

3.1 Introduction of normalized matrices in phase I

In this section we introduce normalized matrices. To this aim we summarize the results
concerning the asymptotic behavior of the weighted path matrices and its square root
and lower Cholesky factor. We use the customary O— and o— notation for matrix
valued function A : Ry — R™*". Moreover, for A(u) € S™(L") we will write A(u) =
O(f(1)) (where f: Ry — Ry ) if and only if there exists a constant o > 0 such that
A(w)/f(1) = 1/aT € 87 and oI — A(u)/f(1) € ST, (A(u)/f(4) — /I € L%, and

ol - A(u)/f(1) € L),
The statement in Proposition 3.1 was proved for j = 2 in [9] (see Lemma 2.2 and

Lemma 2.3). The statement for j = 3 can be shown analogously, therefore the proof of
the proposition is omitted.

Proposition 3.1 Let j € {2,3}. Then for p € (0, po) sufficiently small the path matri-
ces posses the following asymptotic behavior

(e olym oW O
X(“)‘(owm ou) ) S(“)‘(owm o(1) ) ®)

Moreover, the square root (in the case j = 2) and the lower Cholesky factor (in the case
j = 3) posses the following asymptotic behavior

_ 1_( e Oyw _ _( e 0
Y () = [(X(p))z = ( Oyl @(ﬁ) ) L(u) = Lx () = ( O(/i) O(/R) )

Put p := /¢ and define the normalized matrices X(p),S(p) in the following way:
Xp(n) = Xp(p), Sp(n) = p*SB(p),
Xy (1) = pXy(p), Sv () = pSv(p), (10)
Xy (1) = p*Xn(p), Sy (1) =Sn(p)

and y(u) = §(p). Similarly we can define the matrices Y (p) and L(p) with the equalities

Y5(u) = Y5 (p), L(u) = Ly(p),
Yy (p) =pYv(p), Ly () = pLyv (p), (11)
Yn(p) =pYn(p), Ly () = pLn(p)

From Proposition 3.1 it follows that the functions X(p), S(p), Y (p), L(p) are bounded
and thanks to Assumption 2.1 also (p) is bounded. Therefore there exists a sequence

{pe}is = 0, pk = pi, (12)

such that X(pg), S(pr), Y(pr), L(pk) converge—and hence there exist limits

limy o0 X (o) = X*, limy 00 S(pp) =

limy, o0 Y (pr) =1 Y, limy o0 L(pg) =:

*
)

*

= U2



and limg_,00 §(pk) =: §*. Moreover, it holds that X%, X4, S%, S%, Y%, Y5 € S7., and
Ly, Ly € L.

The statement in the next lemma was shown in [17] (see proof of the Lemma 3.12) for the
weighted paths associated with AHO-symmetrization. The proof for the case j = 2,3
can be done similar way and therefore it is omitted.

Lemma 3.1 Let j € {2,3}. Then
X% oSt =0.

The following proposition deals with the asymptotic behavior of the path matrices (and
its square root and lower Cholesky factor, respectively) under the assumption that the
weight matrix is block diagonal.

Proposition 3.2 Let j € {2,3}. If Wy =0, then for p € (0, po) sufficiently small the
path matrices posses the following asymptotic behavior

_ (0 oy (e olym
x=(oom S ) s0=(ovm o0 ) W

moreover, the square root (in the case j = 2) and the lower Cholesky factor (in the case
j = 3) posses the following asymptotic behavior

Yo =Xt = oy G0 ) B =Ex = (0 equm ) 09

Conversely, if Xy (u) = o(\/p) and Sy () = o(\/i), then Wy = 0.
Proof. Assume j = 2 The equality
Y (p)S(w)Y (k) = uW,
implies
Y 5(1)S5(1)Yv (1) + Yy (1)ST (1) Y (1) +

+Y p(p)Sv (W)Y N (1) + Yv(p)Sn ()Y N () = pWy. (15)
If we divide (15) by p and put p = p?, we obtain

prY 5(p)Sv (ok) Yv (or) + oY v (k) ST (01) Yv (01)+

+Y 5(pr)Sv (k)Y n (or) + Yv (1) Sn (k)Y v (o8) = W
By taking the limit k¥ — co we have

Y5SiYh + YiSLYh = Wy (16)

If Xy (u) = o(y/i) then ?}k/ = 0, similarly if Sy (1) = o(\/i) then S*V and therefore
Wy = 0. Now assume Wy = 0. Because Y% >~ 0, from (16) it follows, that

Y5SH + YES, = 0. (17)



From Lemma 3.1 and (17) we obtain that
0=Xj o8} =tr[(X})"S}] = tr[(Y) YiST] = —tr[(Y1) Y8y,
Since g’]‘v > 0 we have that ?;} = 0 and therefore also

X =Y5Yi =0, S, =—(Y3) Y8y =0.

The statement for 7 = 3 can be shown analogously. B

3.2 Transformation of feasibility conditions in phase I

In order to separate the blocks of the path matrices that posses different types of asymp-
totic behavior, we need to rewrite the equations in (1) and (2).

We first apply the optimal partition (defined in (7)) to any symmetric n X n matrix
in equations (1) and (2). We obtain:

AiBoXB—i—QAZ"/oXV'—i—AZ]'VoXN =b; +plb;, i=1,...,m,
2?;1 A’Byz +Sp=Cp —I-MACB,
>ty Ayyi + 8y = Cy + pACy,
Z?il Ayyi +Sy =Cpn + uACy.

(18)

Now, we define the matrices
svec(AL)
Ap = : , Ay =
svec(A})

vec(A},) svec(Ak)

: > Ay = : s
vec(AT}) svec(AR})
where Ag € RmXB, Ay € RmXV, Ay € R™N and

B:=|B|(|B|+1)/2, V:=|B|IN|, N:=|N|(N|+1)/2.

Obviously, B + N = i — | B||N|. The system (18) has the matrix-vector form

[ svec(Xp) ]
vec(Xy)
Ap 2Ay Ay 0 0 0 O svee(Xy) b+ pAb
0 0 0 (Agp)T Iz 0 0 N svec(Cp + nACp)
o 0 0 A»)T 0 Iy 0 Svegs ) vee(Cy + pACy)
T _ B
0 0 0 (Axy)* 0 0 Iy vec(Sy) svec(Cy + pACy)
| svec(Sy)

Rewrite the system above once more as

Pv+ Qw + Rz = d + p/\d,



where

Ap 0 0 28y 0 Ay 0
o AL o o o o 1;
F=lo az o 95 o 1 |" B5| 0 o |}

0 AL Ig 0 0 0 0

svee(Xp) vec(Xy ) svec(Xy)
v v ’ | vec(Sy) |’ | svec(Sp)

svec(Sy)
and
b Ab
svec(Cp) | svec(ACp)

d vec(Cy) |’ Ad = vec(ACy)

svec(Cn) svec(ACy)

Here I, Iy and Iy are identity matrices of dimensions B x B, V x V and N x N,
respectively.

Denote n = dim(S™) = n(n + 1)/2. Then P, Q and R are real matrices of dimensions
(m+n) X ki, (m+n) x ke and (m + 1) X k3, where

ki =m+n — |B||N|, ko = 2|B||N|, ks =n — |B||N|.
The following lemma is a simple consequence of known linear algebra results.

Lemma 3.2 Let A be an (I x m) matriz, rank(A) = s. Then there exists a nonsingular
(I x 1) matriz M such that

- [52]-%]

M,A 0
where My is s x [. Moreover rank(M;A) = s.

Let
s :=rank(P) < min{k;,m + n} = ki. (20)

Now from Lemma 3.2 it follows that there exists a nonsingular (m+7) x (m+ ) matrix
M such that
[MPT] [ MP
e e =[N0 ]
where M is of dimension s X (m 4+ n) and My is of dimension (m + 7 — s) X (m +
n). Moreover rank(M;P) = s. By multiplying (19) by M from the left we obtain an
equivalent system

MiPv 4+ M1Qw + MRz = Ml(d + ILLAd),

M,Qu + MRz = Ma(d + pAd). (21)



Now let
t —s:=rank(M2Q) < min{m + n — s, ka2 }. (22)

Then again, Lemma 3.2 implies that there exists a nonsingular (m+n—s) x (m+n—s)
matrix N such that

| N MQ | | NiMRQ
NM,Q = |:N2M2@:| B [ 0 ]7

where N1, Ny have dimensions (t — s) X (m+7—s) and (m+ 7 —#) X (m+ 7 —s) and
rank(N1MyQ) = t — s. Therefore, the system (21) is equivalent to

MiPv+ MQw + MRz = M; (d + MAd),
Nle@’w + NlMgRZ = Nle(d + MAd%
NoMsRz = NQMZ(d + /j,Ad)

If we denotg Mﬂp = fEDl, Ml(@ == @1, MlR = Rl, N1M2@ == @2, N1M2R = RQ and
NoMsR = Rg3, then the last system can be rewritten in the form

I@lv + @1111 + 12&12 = Czl + MACzl,
Qow +Roz = dp + pldy, (23)
Rgz = d3 + ,uAdg.

It is well-known that if A is n xm matrix and n < m, then the map ¢ — Az is surjective
if and ouly if rank(A) = n. This fact, together with relations (20), (22) and Assumption
2.1 can be used to prove the following lemma.

Lemma 3.3 The linear maps
vi—= P, w— Quw, 2z~ R3z
are surjective.

Proposition 3.3 Let
svec(AXp)

£ = Ay , Bw= [ Zii((i}gv)) ] B2 = [ Zicc((i}sgv)) ] :
svec(ASy) v B
(a) If B ) B
]P)1A1) = 0, QQA'LU = 07 RP,AZ = 07
then
AXpeASp =0, AXyeASy =0, AXyeASy=0.
(b) If ) N N N
PiAv =0, QAw+RoAz=0, R3Az=0,
then

AXB.ASBZO, AXN.ASNZO.
Moreover, if AXy =0 and ASp =0, then AXy ¢ ASy = 0.

10



Proof. (a) Because of the surjectivity of Qo (stated in Lemma 3.3) we have that there
exist matrices Vi, Vg of dimension |B| x |N| such that

% vty |+ s | o @

Similarly, because of the surjectivity of P; we have, that there exist symmetric matrices
U1, U; of dimensions |B| x |B| and |N| x |[N| and a vector u € R™ such that

svec(Uy)
P u 5. | vee(Vi) 5 | svec(AXw) | _
" svec(Uy) o [ vec(Vy) ] R [ svec(ASp) ] 0. (25)

The equations (24), (25) together with the equation R3Az = 0 are equivalent to

svec(U1) ‘o [ vec(V1) ] Tk [ svec(AXy) ] _ o

i U
svec(Us) vec(Vy) svec(ASp)

which is the same as

A<[gl} A‘QND=0, A*@)+[§ZTB Ez]:o. (26)
The assumption
svec(AXp)
fP)lA’U == Epl Ay =0
svec(ASy)

is equivalent to

AXp 07\ \ 0o o ]_
A([5550)) =o wiane [0 0 =0 e
From (26) and (27) it follows that

U Vi o 0 7 3
o % 1] 0 ] axyensy -

and
ASp Vy . AXp 0
vl U, 0 0
due to the orthogonality property. Finally we have to show that ASy e AXy = 0. From

the surjectivity of P; (see Lemma 3.3) we have that there exist symmetric matrices
V3, V4 of dimensions |B| x |B| and |N| x |N| and a vector v € R™ such that

]:AXBOASB:O

svecVs

~ ~ AX ~ 0

B +@1[j§ASV]+R1[ ]:o.
svecVy v

11



This equation, together with Qe Aw + R30 = 0, R30 = 0 implies

el o)

The equation above can be rewritten as

V3 AXV _ * 0 ASV —
([ T w2

The orthogonality property implies

[V?, AXV].[ 0 ASV]_O
AXT 0 AST vy

and hence AXy ¢ ASy = 0. )
(b) Because of the surjectivity of P; we have, that there exist symmetric matrices
W1, W5 of dimensions |B| x |B| and |N| x |N| and a vector w € R™ such that

| svec(Wy) T ovee o
. sveczé]WQ) O [ vec((i}scx‘//)) ] R [ svec((i}ég)) ] = 0. (28)

The equation (28) together with QuAw + ReAz = 0, R3Az = 0 is equivalent to

[ | ol e )

which is the same as

W, AXy 1) . ASp ASy | _

The equalities AXpe ASp =0, AXy e ASy = 0 can be proved similarly as in the case
(a). Assume ASp =0 and AXy = 0. The orthogonality property and (29) yield

0_[ W, AXV].[ASB ASV]
AXL AXy ASL W,

=W;eASp +2AXy e ASy + AXy e Wy =2AX, o ASy,.

12



3.3 Normalization of feasibility conditions in phase I

Define
svec(Xp(p)) S <
. N - vee(Xy(p)) . svec(Xn(p))
o(p) = (p) , w(p) = = . 2(p) = = :
svec(Sy(p)) [ vec(Sv (p)) ] [ svec(Sg(p)) ]

P15(p) + pQuid(p) + p*RuZ(p) = di + p*Ady,
pQa(p) + p°RaZ(p) = da+ p°Ady, (30)
pQRgg(p) = d3 + pZAdg.

Inserting p = pr, X(p) = X(px), 7(p) = G(px) and S(p) = S(py) into the system (30)
and letting pr — 0 we find that do = 0,d3 = 0.
Define the map ¥ in the following way:

]ibl’[) + p@l’dl + pfﬂélé - d~1~—|- pQACZ1

U(X,7,8,p) = Qo + pRoZ — pAdy : (31)
R3z — Ads
where N
. SWCSXB) - vec(Xy) . svec(X )
v - T (Sy) |’ 7= svec(Sp) |
svec(Sy) veasv B

It can be easily seen, that the Fréchet derivative of ¥ is

) ) ) i Py AD
DU(X*,§*,8%,0)[AX, Ay, AS] = | Qwird |,
R3AZ
where
- svec(A~XB) . vec(AXy) . svec(AXy)
AD = Ay , A= AS ) | ANZ = AS s
svec(ASy) vec(ASy svec(ASp

3.4 Analyticity of the paths as functions of \/;i at ;1 =0

Proposition 3.4 Let j € {2,3}. Then the weighted path (X(u),y(p),S(p)) is an ana-
lytic function of p = \/p for all p > 0 (sufficiently small).

Proof. The statement for j = 2 was proved in [9] (see Theorem 3.3). We now prove the
statement for j = 3, i.e. for the Cholesky paths. We fix a weight W from M% or D% .

2
Then the associated weighted central path satisfies (3) and (6)

Lx(p)"SLx (1) = uW

13



which can be rewritten equivalently as the pair

L(1)"S (1) L(k) = uW.
L()L (1) — X(1). (32)

Setting the normalized matrices X (p),S(p), L(p) defined in (10) and (11) into (32) and
dividing some block equation by p? we obtain

LTS = W
L()L(p)T = X(m} (33)

which holds for any p = \/p > 0 sufficiently small. Considering (33) along the sequence
{pr} defined in (12) and taking the limits py — 0 we obtain that

(]Z*)TS*]:* — W,
Recall that L* € L%, and S* X* = 0.
Define the map F3 : 8" x L™ x R™ x 8" x R — R™ x 5" x 8™ x §™ in the following
way:
o ¥ (X, 7,8, p)
F3X,L,,8,p)= | LISL-W |,
LL” - X

where U is defined by (31). Obviously 3 is an analytic function of (X,L,#,S,p).
Moreover, for p > 0 (sufficiently small) it holds

F*(X(p), L(p),5(p), S(p), p) = 0

and
F3(X*,L*,§*,8%,0) = 0.

Here it is important that for any p > 0 sufficiently small, (X(p), L(p), 5(p),S(p)) is
the unique solution to F3(X,L,§,S,p) = 0 on an open set Sty x L, x R™ x S,
Moreover, (X*7L*,g ,S*) € ST, x L, x R™ x S%,. Note that the uniqueness is a
consequence of the uniqueness declared in Proposition 2.1.

The Fréchet derivative of F3 with respect to (X, L, 7, S) at the point (X*, L*, §*, §*,0)
is the linear map given as

DF3(X*,L*,j*,S*,0)[AX, AL, Aj, AS] =

DY (X*,7*,8%, 0)[AX, Ag, AS]
= ALS*(L*E +~L*AS~(L*)T~+ L*S*(AL)"
(AL)TL + (L)AL — AX

We now show that DF3(X* L*, §* S* ,0) is a nonsingular linear map. To this aim we
assume

DE3(X* L*, ", 8, 0)[AX, AL, Aj, AS] = 0.

14



From Proposition 3.3 we have that AX o AS = 0. Due to (34), the nonsingularity of
DF? for the case W € M 1 follows from Lemma 2.4 of [14] and for W € D" was

shown in [20] (see the proof\gf Theorem 1).

Having the nonsingularity of DF? we are ready to apply the implicit function theorem
to F3(X,L,7,S,p) = 0 at the point (X’k L*, 7", S*,0). We obtain that there exist
neighborhoods Z and U of p = 0 and (X*, L*, §*, S*) respectively and an analytic function

A~ A

(X,L,4,8): T = U
such that i X R o .
(X(0),L(0),9(0),8(0)) = (X*,L", 5", 87)
and
F3(X(p),L(p), 9(p),S(p),p) =0 VpeL (35)

Since (X*,L*,j*,S*) belongs to the open set St x L, x R™ x S, we can restrict
the nelghborhoods U and Z if necessary 1n such a way that & C S | X L} | x R™ x S .

Now both (X(p), f;(p)ig(p),Né(p)) and (X (p),f/(g),g(p),S(p)) are solutions to (35) for

p > 0 and whence (X(p),L(p),7(p),S(p)) = (X(p), L(p),(p),S(p)) at any p € T
(0,00) by the uniqueness of solutions on S, x L%, x R™ x S% . Thus the function

(X(p), L(p),5(p),S(p)) is analytically extendable to p = 0 by prescription
(X(0), (0),5(0),5(0)) = (X(0), L(0),3(0), 8(0)) = (X*, 1", §", §").
Due to (10) also the function (X (p), L(p), y(p), S(p)) is analytically extendable to p = 0.
]
4 Phase II: paths as functions of u

4.1 Introduction of new normalized matrices in phase II

Lemma 4.1 Let j € {2,3} be arbitrary and assume Wy = 0. Then
Xy (1) = O(n), Sv(p) = O(p).
Moreover, if 5 =2, then Yy (u) = O(u) and if j = 3, then Ly (u) = O(u).

_ Proof. Since lim,_o(Xy (), Sv(p)) = (0,0), the Taylor series expansions of Xy (p),
Sy (p), which are analytic functions of p for p > 0 sufficiently small, have the form

Xv(p) =pY Pip',  Svip)=p>_ Qip'.
i=0 1=0

This implies .
Xy (1) = pXv(p) = pO(p) = O(p*) = O(p). (36)
Similarly, it can be shown that Sy (1) = O(u).
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Moreover, assume 7 = 2. It holds

Xy () =Yp(u)Yy(u) + Yy () Y (u).

From the asymptotic behavior given in Proposition 3.1 (Ypg(u) = ©(1)) it follows that
Yp(p)~! = O(1). Therefore we have

1Yy ()llr = 11Y ()7 Xy (1) = Y)Yy (1) Y ()] r <

< Ys(w) " Xy (@llr + 1Y) Yv () Yy (u)llr = O(u)
where the last equality follows from (36) and Proposition 3.1.
Finally, if j = 3, by Xy () = Lp(u)Ly (1) and the asymptotic behavior Xy (u) =
O(u) and Lg(p) = ©(1) we obtain Ly () = O(p). B

From now we will assume that Wy = 0.

From Lemma 4.1 it follows that the path matrices posses the following asymptotic

behavior:
_( 6(1) O _{ 6(p) O
xw = o0 o0 ) 50 =(o0 o ) (37)
Moreover, for L(u) = Lx(,) and Y (u) = [X(,u)]% we obtain
_( ©@1) 0 _( 6@1) Oy
L(“)‘(ow) @wm)’ Y(”)_<O(u) @wm)' (38)

This asymptotic behavior naturally implies the following definition new normalized ma-
trices:

(Y Xp(p) Xv(p)/p s\ [ Se(w)/p  Sv(uw)/u
X{w) '—(va)% XNw)/u)’ S(“)‘(svm)% S () )

and
i — (s 0 s — [ YBw)  Yv(p)/p
L= (i tns ) Y9 (et vaeii )
4.2 Normalization of feasibility conditions in phase II
Define 2
o svec; B) . [ vec():(\/) ] 5 [ svec():(N) ]
svec(Sy) 7 vee(Sv) | svec(Sp)

—~~

and rewrite the system (23) using the new normalized matrices:

Pyo+ u@ﬂﬁ + ,uIlef = 6%1 + NACZh
pQow + pRoz = dy + pdy, (39)
IUR?,E = d3 + /j,Adg
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From the asymptotic behavior given in (37) it follows that
X(p) =0(1),  S(u)=0(1)

and therefore for any sequence {uy} — 0 the matrices X(uy), S(ux) and also the associ-
ated vector y(ux) = §(ux) are bounded, so we may assume that the limit

exists. Inserting pu = g, X :~X(,uk), v = y(pk), S = S(ug) into the system (39) and
letting kK — 0o we obtain that do = 0 and d3 = 0. Hence the system (39) has the form

P, + M@;U_f + /ﬂ?lf = d + pdy,
Qow + Roz = Ads,
R3z = Ads.
Define the map ¥ in the following way
- P15+ pQud + pRiZ — dy + pAdy
\Ij(Xa Y, Sa /1’) = Q2/II)~+ R22 _~Ad2 . (40)
R3z — Ads

The Fréchet derivative of U with respect to variables (X, 7, S) at the point (X*,7*,S*,0)
is

P AT
DU(X*, 7, S*, 0)[AX, Aj, AS] = | QuAw + RyAZ
RsAZ
where
Aj — SDGC(AA,XB) Ay — vee(AXy) Az — svec(AX )
v y ’ w= vec(ASy) |7 z= svec(ASp)

svec(ASy)

4.3 Nonsingularity of the Fréchet derivatives in phase II

In this section we define new normalized maps associated with the both symmetrizations
®y and 3. Under the assumption that the weight matrix is block diagonal we show
that these maps are nonsingular at the limit point which will be useful to prove the
analyticity of the paths as a function of u at this point.

Firstly, we will consider the condition

X28X2 = W
given in (3), which can be equivalently rewritten as the pair

YSY = W,
Y2 =X.
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The block form of this equalities is:

YsSsYp+YySU Y+ YsSvY] + Yy SyY] = uWa,
Y5SYy +YvSTYy + YSy YN + YySnYy =0,
Y SeYv + YNSLYy + YISy YNy + YNSNY N = uWy,
Y3+ Yy YL =Xp,

YeYy+YyYy =Xy,

Y2+ YLYy =Xy.

Because (X(n), Y (1), y(p), S(p)) satisties the system above for p > 0 (sufficiently small),
we have that the triple (X(u), Y (1), %(1t), S(11)) satisfies

Y5(1)Ss(1)Y (1) + uYv(w)Sy ()Y 5(1)
+uY 5 (1)Sv (1) Yv ()" + Y v (1)Sn () Yv ()" = W,
fYB( )SB()Y v (1) + /Y v (1) Sy ()T Y v (1) +
Yp(1)Sv (1) YN () + Yv(p)Sn(p) YN (1) =0,
12Yy ()" Sp(u)Yv (1) + 1Y n (1)Sv ()" Yy (1) + (41)
1Y v ()TSv(p ) ~(p )+YN(M)SN(M)_N(M)=WN,
B()? + Yy () Yy ()" = Xp(u),
YB( )Y v( )+va( )Y N (p) = Xv (),
Yn () + Yy () Yy () = Xn(p),

From (37) and (38) it follows that for any sequence {uy} — 0 the sequence

(X(ptr), Y (), 9 ()5 S (i)

is bounded, so we may assume that the limit

k—o00
exists. Define the map F? in the following way

( ¥(X,y,S, 1)

YBSBYB +qusTYB+/LYBSVY +/LY\/SNY —Wpg
VEYBSEYy + ,U\/TVSVYV +YBSvYn+YySnYn
F*(X,Y,4,8,p0) = | 12YESEYy + pYNSTYy + p YISy YN + YNSnYn - Wy |,

YZ +/L2YvYT XB
YB_YV + \/_—Y_VYN — Xy
L Y3 +uYLYy — Xy

where U is defined in (40). For p > 0 sufficiently small it holds that
FX(X (1), Y (1), 5(1), S (1), 1) = 0 (42)

and o B
FX(X*,Y*, 4*,8%,0) = 0. (43)
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The Fréchet derivative of F2 with respect to (X,Y,#,S) at the point (X*, Y*,y*,S*,0)
is the linear map given by

DE(X*, ¥, 5%, 8%, 0)[AK, AY, Ag, AS] =

DR((X*, 77,5, 0)[AK, Ag, AF
AYpSLY5 + Y5 ASBY* YLSLAY .
AV S5 + V5 ASy Yo + Y580 ATy 4 AV Y83 Vs + Y1 ASyYY + V583 AV
AYNS YN -I-Y ASNY +Y S AYN
AY Y3+ Y5AY 5 — AXp
AY5Yi +YRAYy — AXy
AYNYR[ + Y}(VAYN - AXN

Lemma 4.2 DF?(X* Y*, §*,8* 0)[AX, AY, Ay, AS] is a nonsingular linear map.
Proof. Assume
DF*(X*,Y*, 4*,8%,0)[AX, AY, Ay, AS] = 0. (44)

We will show that [AX, AY, Ay, AS] = [0,0,0,0]. If we put 4 = py, in the system (41),
then by taking the limit £ — co we obtain that

VpSpVE=Wa,  YiSy¥y= Wi (45)

Because W € M L we have also that Wg € M1 and Wy € M 3 From the first

V2

equation of (44) and Proposition 3.3 (b) we have that
AXBOASBZO, AXNOASNZO. (46)

It follows from the proof of Lemma 2.3 of [13] that AXp =0, AXy =0, AYp =0,
AY N =0, ASp =0, ASy = 0. These equalities together with (44) imply

or, since Y% > 0,
Y*BASV + AY‘/STV =0, Y*BAYV = AXV

From Proposition 3.3 (b) we now have that AXy ¢ ASy = 0, which, together with the
equalities above, yields

0=—-AXy e ASy = —tr(AXTASy) = —tr(AYLY5ASy) =
= tr(AYLY 5(Y5) LAY YSY) = tr(AYy Sy AYT).

The matrix in the last brace is positive semidefinite and hence from positive definitness
of 8% it follows that AYy = 0. Therefore also AXy = ASy = 0. Assumption (Al)
gives Ay =0.
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Now we will use the same procedure to show the nonsingularity of the normalized
map associated with ®3. Consider the last condition from the system (1) — (3):

Lx'SLx = uW.
It can be equivalently replaced by the pair

LTSL = uW,
LL” =X,

which can be rewritten in the following block form:

L%SgLp + LySTLp + LELSTLY + LySyL] = uWp,
LESyLy +LySyLy =0,
LY SnLy = pWy,
LLL = Xp,
LpLy = Xy,
LyLL +LILy = Xy.

Because (X(u), L{p), y(1), S(p)) satisfies the system above for ¢ > 0 (sufficiently small),
we have that the triple (X(u), L(p), 7(1), S(p)) satisfies

L) 'Sp(p)Lp(p) + pLy (1) )
pLp ()T Sv (1) Ly ()™ + pLv (1)S v (1) Ly (1)
Ly (1)"Sv ()L (

v
Ly (u)''S N(p) = pW, (47)

From (37) and (37) it follows that for any sequence {u;} — 0 the sequence

(X (), L), y(en), S ()

is bounded, so we may assume that the limit

k—o0

exists. Define the map F*3 in the following way

oYXy Sy o
LLSpLp + pLyS{Lp + pLLSTLY + uLySyLi — Wg
LgSVLN + Ly SyLy
Fg(xai‘vgv Svl‘l’) = i‘ﬁng‘N - ,U/WN
LpLl - Xp
LyLy — Xy
]T.JN]TJE + H]T-Jgfl‘/ - XN
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where W is defined by (40). For p > 0 sufficiently small it holds, that

and

F3(X*,L*,5*,8",0) = (49)
The Fréchet derivative of F3 with respect to (X L,y S) at the point X* L*, 7*, S*,0)
is the linear map given by

DF¥(X*,L*,5*,5",0)[AX, AL, Ag, AS] =
D¥((X*,5%,58%, 0)[AX, Ag, AS]
ALLS3LY + (L* )T ASpLY, + (L) "S5ALp
ALSHLY + (LB)TASVL}“V +(Ly)"Sy ALy + ALy Sy Ly + (Li)"ASNLy + (L) TSy ALy
ALNSYLy + (Ly)T ASNLy + (Ly) Sy ALy
ALg(L5)T + L5ALTL — AXp
ALpLY + L5 ALy — AKXy
ALN (LT + L5 ALy — AXy

Lemma 4.3 DF3(X* L*, y*,S* 0)[AX, AL, Ay, AS] is a nonsingular linear map.

Proof. Assume

DF3(X* L*, 7, 8%, 0)[AX, AL, Ag, AS] = 0. (50)

We will show that [AX, AL, A, AS] = [0,0,0,0]. If we put p = py in the system (47),
then by taking the limit £ — co we obtain that

(Lp)'SpLp=Wp,  (Ly)"SyLy =Wy (51)
Since if W € M}, we have also that W € M 3 and Wy € M\lﬁ Similarly, if

W € D%, then the blocks W, Wy are also posfmve diagonal matrices. From the first
equation of (50) and Proposition 3.3 (b) we have that
AXpeASp =0, AXyeASy=0. (52)
By applying Lemma 2.4 of [14] in the case of W € M Qo Theorem 1 of [20] in the case
— — — 2 — — —
W € Di+ we obtain that AXp = AXy =0, ALg = ALy =0, ASg = ASy = 0.
These equalities, together with (50) imply

(L)TASy Ly + ALy SyLYy =0,  LLAL, — AXy =0
or, since f;*N eLy,,
(Ly)TASy + ALySy =0,  LyALpy = AXy.

From Proposition 3.3 (b) we now have that AXy e ASy = 0, which together with the
equalities above yield

0=—-AXy e ASy = —tr(AXTASy) = —tr(ALL (L) TASy) =
= tr(ALL (L)1 (L) TALySY) = tr(ALySYALL).

Because the matrix in the last brace is positive semidefinite and g}‘v > 0 we have that
ALy = 0. Therefore also AXy = ASy = 0. Assumption 2.1 gives Ag = 0. B

21




4.4 Analyticity of the paths as functions of y at ¢ =10

Lemma 4.4 Let j € {2,3} and assume Wy # 0. Then dX#(“) and dS“{iﬂ(“) are not
bounded as p — 0.

Proof. Compute

dXC;;(M) _ d[@;;(ﬂ)] _ va(p) 4

dXy(p) 1 [Xv(p) L Xv(p)

=3 5 ] (53)

Since Xy (p) is an analytic function of p at p = 0 (see the proof of Proposition 3.4),

d)(#(p) is bounded as p — 0. Hence if d)(#(li) were bounded (as g — 0), then from (53)
we would have that lim,_o Xv(p) = 0. But this would imply Wy = 0 (see Proposition
dSv (1)

3.2), which would contradict to the assumption. The statement for i can be proved
similarly. l

Proposition 4.1 Let j € {2,3}. Then the associated weighted path (X(u),y(©),S(1))
is an analytic function of u for oll > 0 if and only if Wy = 0.

Proof. Assume Wy = 0. From (42), (43) and Lemma 4.2 it follows that the implicit
function theorem can be applied to get the analyticity of the square root path. By similar

arguments as in Proposition 3.4 we obtain that the function (X (), Y (1), 7(¢), S(p)) is
analytically extendable to i = 0 by prescription

(X(1), Y (1), 9(p), (1)) = (X7, Y™, 5, 8%).

Therefore also the path function (X(u),y(u), S(u)) associated with the symmetrization
®y is analytically extendable to p = 0.

Analogously, from (48), (49) and Lemma 4.3 we obtain for the Cholesky path that the
function (X (1), L(u), 4(1), S(1)) can be analytically extended to u = 0 by prescription

(X(0),L(0),5(0),8(0)) = (X*,L", 7", 8).

Therefore also the path function (X(u),y(u), S(u)) associated with the symmetrization
®3 is analytically extendable to p = 0.

The reverse implication follows from Lemma 4.4 and properties of analytic functions.
|

5 Conclusion

Let us mention that some kind of weighted central paths associated with a Cholesky
factor symmetrization was introduced and analyzed by Chua in [1,2] where in [2] the
analyticity of the paths as functions of y at u = 0 was established. The concept of
the weighted central path, as introduced in [1], coincides with the concept treating in
this paper when the weight matrix is diagonal. Whence, in the case of diagonal weight
matrix, the results of this paper are in agreement with those from [2].
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