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Abstract

In this paper we analyze the limiting behavior of infeasible weighted central
paths in semide�nite programming under the assumption that a strictly comple-
mentary solution exists. We show that the paths associated with the \square
root"symmetrization of the weighted centrality condition are analytic functions of
the barrier parameter � even at � = 0 if and only if the weight matrix is block
diagonal in terms of optimal block partition of variables. This result strengthens
some recent result by Lu and Monteiro establishing the analyticity of the paths as
functions of p� at � = 0. Moreover, in this paper we study the analytical properties
of the paths associated with the \Cholesky factor"symmetrization. We show that
the paths exhibit the same analytical behavior at � = 0 as the paths corresponding
to the square root symmetrization.

Key words: Semide�nite programming, interior-point methods, weighted central
path, analyticity.

AMS subject classi�cation: 90C51, 90C22

1 Introduction

By Sn we denote the space of all real symmetric n�n matrices, and by Sn+ and Sn++ the
subsets of positive semide�nite and positive de�nite matrices, respectively. If X 2 Sn+,
or X 2 Sn++ we write X � 0 or X � 0, respectively. By Ln we denote the space of all
real lower triangular n�n matrices, and by Ln+ and Ln++ the subsets of lower triangular
matrices with nonnegative and positive diagonal entries, respectively. For matrices X
and Y in Rp�q the standard inner product is de�ned by X �Y :=tr(XTY), where tr(:)
denotes the trace of a matrix.
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We consider the following primal-dual pair SDP problems in the standard form

minimize X �C
subject to Ai �X = bi; for all i = 1; : : : ;m; (P )

X � 0;

and
maximize bT y
subject to

Pm
i=1 Aiyi + S = C; (D)

S � 0;

where the data consists of C 2 Sn, b 2 Rm and Ai 2 Sn (i = 1; :::;m). The primal
variable is X 2 Sn and the dual variable consists of (y;S) 2 Rm � Sn.

A primal-dual optimal solution (X; y;S) is called complementary, if XS = 0. A
strictly complementary optimal solution is de�ned as a complementary optimal solution
(X; y;S) satisfying X + S � 0. Contrary to the case of linear programming, the exis-
tence of a strictly complementary solution is not generally ensured in SDP, even if the
complementary optimal solution exists.

Given �xed W 2 Sn++, �b 2 Rm and �C 2 Sn the weighted central path is implicitly
de�ned by the following � > 0 parameterized system of nonlinear conditions

Ai �X = bi + �4bi; i = 1; : : : ;m; X � 0; (1)
mX
i=1

Aiyi + S = C + �4C; S � 0; (2)

�j(X;S) = �W: (3)

Here �j(X;S) , j 2 f1; 2:3g, is a symmetrization map �j : Sn++ � Sn++ ! Sn de�ned by

�1(X;S) = (XS + SX)=2; (4)

�2(X;S) = X
1
2 SX

1
2 ; (5)

�3(X;S) = LX
TSLX; (6)

where X
1
2 and LX denote the square root and the lower Cholesky factor of the positive

de�nite matrix X respectively. That is, X
1
2 and LX are the unique matrices in Sn++ and

Ln++ such that X
1
2 X

1
2 = X and LXLX

T = X, respectively. The symmetrization �1,
de�ned by (4), is the most treated one in SDP and is called the AHO symmetrization.
The symmetrizations �2 and �3 given by (5) and (6) are also used in SDP and we will
refer to them as to the square root and Cholesky factor symmetrization, respectively.

For each j 2 f1; 2; 3g suitable conditions on (W;�C;�b) have been established in
Monteiro and Zanjcomo [15] such that the system (1)-(3) has a unique solution pj(�) =
(X(�); y(�);S(�)) for any � > 0. Hence the mapping � > 0! pj(�) is well de�ned and
we refer to it as to the weighted central path associated with the symmetrization �j .
For brevity, we also call it the AHO (square root, or Cholesky) path.

When (W;�C;�b) = (I; 0; 0) the path pj(�), for any j 2 f1; 2; 3g, is the usual
central path. The central path is a key concept in the methodology of interior point
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methods. The geometric view of the central path is that of an analytic curve which
converges to an optimal solution pair. Its properties and limiting behavior have been
intensively studied and used in the design of algorithms. For the references on early
works dealing with the well-de�nedness, di�erentiability and limiting behavior of the
central path in the context of linear programming and the monotone complementarity
see for example [9].

Limiting behavior of the central path in SDP depends on the existence of a strictly
complementary optimal solution. Already the usual proof of the convergence of the
central path by a characterization of the limit point does not work when no strictly
complementary solution exists (see [7]). Nevertheless, it was shown by using some ideas
from algebraic geometry that the central paths in SDP always converges to an optimal
solution [7] and some kinds of partial characterization of the limit point were given
in [8] and [18]. When a strictly complementary solution exists, the central path has the
nice properties known from linear programming: it converges to the so-called analytic
center of the optimal solution set (see [4, 11]) and can be analytically extended to a
neighborhood of � = 0 [6].

A generalization of the notion of the weighted central path from linear programming
to SDP is a delicate issue. In linear programming, a weighted central path consists of
optimal solutions of certain weighted logarithmic barrier problems, or equivalently, of
solutions of properly perturbed optimality conditions. Since the barrier problems possess
unique optimal solutions, this equivalence yields the well-de�nedness of the weighted
central path in linear programming. Unfortunately, it seems that in SDP there are
no such barrier problems associated with the perturbed optimality conditions (1) �
(3). Hence the question arises how to prove the existence of solutions to (1) � (3).
This question was resolved by Monteiro and Zanj�acomo [15] (see also [12]) by means of
abstract theory of local homeomorphic maps in nonlinear analysis. As a result, for any
symmetrization �i, i = 1; 2; 3, some conditions on (W;�C;�b) have been introduced
under which the system (1) � (3) has a unique solution. Similar results, however by a
simpler technique of analytic continuation, have been proved by Preiss and Stoer (only
for the AHO symmetrization) in [16] and by Trnovsk�a in [20].

Having a well-de�ned weighted central path we can study the properties of these
paths. Some of them have already been described under the assumptions of strict com-
plementarity.

The most appealing properties are exhibited by the paths that are associated with
the AHO symmetrization �1. It was shown independently by Preiss and Stoer in [17]
and Lu and Monteiro in [10] that each AHO path can be extended as an analytic function
of the barrier � to � = 0. From this fact not only the convergence of the AHO path to
an optimal solution follows, but we obtain also the convergence of its derivatives of all
orders.

The paths associated with the square root symmetrization �2 were analyzed by Lu
and Monteiro in [9]. It was shown that each square root path can be extended as a
function of p� to � = 0. From this fact the convergence of the paths follows as well,
however, the derivatives only with respect to p� are bounded as � ! 0. Moreover,
it was shown in [9] that if the weight matrix W is not block diagonal (in terms of an
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optimal block partition) then the �rst order derivative of the path with respect to � is
not bounded as � ! 0. From this it follows that if W is not block diagonal, then the
square root path considered as a function of � is not analytic at � = 0. In this paper
we prove that if W is block diagonal, then the associated square root path is analytic
function of � at � = 0.

Moreover, and this is the main goal of the paper, we show that the weighted central
paths associated with the Cholesky factor symmetrization �3 exhibit the same limiting
behavior as the paths associated with �2. That is, we show that each Cholesky path
considered as a function of p� can be analytically extended to � = 0 and, the path as
a function of � is analytic at � = 0 if and only if the corresponding weight matrix W is
block diagonal.

To prove the analyticity of the paths we will use the implicit function theorem
technique that was developed by Stoer and Wechs [19] in the context of a linear com-
plementarity problem. This technique was also used by many other researchers (see
[2, 3, 5, 6, 9, 10, 17]) in the analysis of the limiting behavior of the central and weighted
central paths in linear and semide�nite programming.

The technique uses the fact that each weighted central path is implicitly de�ned by
the system of conditions (1-3) involving solely analytic functions. Hence, if the Frechet
derivative of the de�ning function with respect to (X; y;S) were nonsingular along the
path, then the application of the analytic version of the implicit function theorem would
yield the analyticity of the path. A drawback is however that this is possible only for
� > 0 since as �! 0 the Jacobian may vanish. Nevertheless, in many cases the implicit
function can be used. Sometimes a detailed limiting analysis of particular blocks of the
path allows to introduce normalized paths and a normalized system of equations has
nonsingular Jacobian at any limit point.

In this paper we will use this technique twice. First, we will use a normalization
that will yield the analyticity of the paths as functions of p� at � = 0. This Phase I
is described in Section 3. Then, under the assumption that the weight matrix is block
diagonal, we introduce a new normalization that will allow to prove the analyticity of
the paths as functions of � at � = 0. This Phase II and described in Section 4.

2 Preliminaries

We make the following two assumptions throughout the paper.

Assumption 2.1 Ai (i = 1; : : : ;m) are linearly independent.

Assumption 2.2 There exists a strictly complementary optimal solution for (P) and
(D).

Assumption 2.1 is only a technical one, enforcing a one-to-one correspondence between
y and S in the dual feasible pairs (S; y). On the other hand, Assumption 2.2 is restric-
tive, but is commonly used in the analysis of superlinear convergence of interior-point
algorithms. This assumption also plays an crucial role in our analysis. Moreover, the
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results of the paper [3] regarding the usual central path indicate that without this as-
sumption the analytical properties of weighted central paths could be very complicated
and di�cult to describe.

De�ne the map A : Sn ! Rm as A(X) = [A1�X; : : : ;Am�X]. Its adjoint map is A� :
Rm ! Sn, A�(y) =

Pm
i=1 Aiyi. It can be easily seen that for (X; y;S) 2 Sn�Rm�Sn the

following orthogonality property holds: if A(X) = 0 and A�(y) + S = 0, then X �S = 0.
Thanks to Assumption 2.2 we can use the standard procedure (described for example

in [6, 9]) yielding an optimal partition of any M 2 Sn into

M =
�
MB MV
MT
V MN

�
: (7)

where MB and MN are square blocks of dimensions jBj�jBj and jN j�jN j, respectively.
In this partition any optimal solution pair is of the form

X̂ =
�
X̂B 0
0 0

�
; Ŝ =

�
0 0
0 ŜN

�
;

where XB � 0 and SN � 0 and for a strictly complementary optimal solution it holds
XB � 0 and SN � 0. The usage of this optimal partition is standard in SDP when
analyzing the limiting behavior of paths under strict complementarity (see [6,9{11,17]).

We now describe the conditions for wellde�nedness of weighted central paths. For
" 2 (0; 1) denote

M" = fW 2 Sn++; 9� : kW � �Ik < "�g;
where k:k means the spectral norm, i.e. kAk = maxfp�;� is an eigenvalue of ATAg.
It can be easily seen that M" is a convex cone and W 2M" if and only if

�max(W)=�min(W) < (1 + ")=(1� "):
Let 4b;4C be such, that there exists W0 2 M 1p

2
and �0 > 0 such that the system

(1) � (3) is solvable for W = W0 and � = �0. The existence result concerning the
weighted central paths associated with the symmetrizations �2 and �3 de�ned by (5)
and (6), respectively, is stated in the following proposition.

Proposition 2.1 Let � 2 (0; �0i and
- W 2M 1p

2
, in the case of �2;

- W 2M 1p
2

or W 2 Dn
++ in the case of �3.

Then there exists a unique solution of the system (1)�(3) denoted by (X(�); y(�); S(�)).
Moreover, the path �! (X(�); y(�);S(�)) is an analytic function for � 2 (0; �0i.

Proof. The statement for M 1p
2

(and the symmetrizations �2;�3) is a consequence
of Corollary 1 of [15]. The statement for Dn

++ (and the symmetrization �3) is proved in
Theorem 2 of [20] and for �b = 0 and �C = 0 follows from Theorem 1 of [1]. �
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3 Phase I: paths as functions of p�
3.1 Introduction of normalized matrices in phase I

In this section we introduce normalized matrices. To this aim we summarize the results
concerning the asymptotic behavior of the weighted path matrices and its square root
and lower Cholesky factor. We use the customary O� and o� notation for matrix
valued function A : R++ ! Rm�n. Moreover, for A(�) 2 Sn(Ln) we will write A(�) =
�(f(�)) (where f : R++ ! R++) if and only if there exists a constant � > 0 such that
A(�)=f(�) � 1=�I 2 Sn++ and �I �A(�)=f(�) 2 Sn++ (A(�)=f(�) � 1=�I 2 Ln++ and
�I�A(�)=f(�) 2 Ln++).

The statement in Proposition 3.1 was proved for j = 2 in [9] (see Lemma 2.2 and
Lemma 2.3). The statement for j = 3 can be shown analogously, therefore the proof of
the proposition is omitted.

Proposition 3.1 Let j 2 f2; 3g. Then for � 2 (0; �0i su�ciently small the path matri-
ces posses the following asymptotic behavior

X(�) =
�

�(1) O(p�)
O(p�) �(�)

�
; S(�) =

�
�(�) O(p�)
O(p�) �(1)

�
: (8)

Moreover, the square root (in the case j = 2) and the lower Cholesky factor (in the case
j = 3) posses the following asymptotic behavior

Y(�) = [X(�)]
1
2 =

�
�(1) O(p�)
O(p�) �(p�)

�
; L(�) = LX(�) =

�
�(1) 0
O(p�) �(p�)

�
:

(9)

Put � := p� and de�ne the normalized matrices ~X(�); ~S(�) in the following way:

XB(�) = ~XB(�);
XV (�) = � ~XV (�);
XN (�) = �2 ~XN (�);

SB(�) = �2~SB(�);
SV (�) = �~SV (�);
SN (�) = ~SN (�)

(10)

and y(�) = ~y(�). Similarly we can de�ne the matrices ~Y(�) and ~L(�) with the equalities

YB(�) = ~YB(�);
YV (�) = � ~YV (�);
YN (�) = � ~YN (�);

LB(�) = ~LB(�);
LV (�) = �~LV (�);
LN (�) = �~LN (�):

(11)

From Proposition 3.1 it follows that the functions ~X(�); ~S(�), ~Y(�); ~L(�) are bounded
and thanks to Assumption 2.1 also ~y(�) is bounded. Therefore there exists a sequence

f�kg1k=1 ! 0; �k = �2
k; (12)

such that ~X(�k); ~S(�k), ~Y(�k); ~L(�k) converge{and hence there exist limits

limk!1 ~X(�k) =: ~X�; limk!1 ~S(�k) =: ~S�;
limk!1 ~Y(�k) =: ~Y�; limk!1 ~L(�k) =: ~L�
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and limk!1 ~y(�k) =: ~y�. Moreover, it holds that ~X�B; ~X�N ; ~S�B; ~S�N ; ~Y�B; ~Y�N 2 Sn++ and
~L�B; ~L�N 2 Ln++.
The statement in the next lemma was shown in [17] (see proof of the Lemma 3.12) for the
weighted paths associated with AHO-symmetrization. The proof for the case j = 2; 3
can be done similar way and therefore it is omitted.

Lemma 3.1 Let j 2 f2; 3g. Then

~X�V � ~S�V = 0:

The following proposition deals with the asymptotic behavior of the path matrices (and
its square root and lower Cholesky factor, respectively) under the assumption that the
weight matrix is block diagonal.

Proposition 3.2 Let j 2 f2; 3g. If WV = 0, then for � 2 (0; �0i su�ciently small the
path matrices posses the following asymptotic behavior

X(�) =
�

�(1) o(p�)
o(p�) �(�)

�
; S(�) =

�
�(�) o(p�)
o(p�) �(1)

�
; (13)

moreover, the square root (in the case j = 2) and the lower Cholesky factor (in the case
j = 3) posses the following asymptotic behavior

Y(�) = X
1
2 (�) =

�
�(1) o(p�)
o(p�) �(�)

�
; L(�) = LX(�) =

�
�(1) 0
o(p�) �(p�)

�
: (14)

Conversely, if XV (�) = o(p�) and SV (�) = o(p�), then WV = 0.

Proof. Assume j = 2 The equality

Y(�)S(�)Y(�) = �W;

implies
YB(�)SB(�)YV (�) + YV (�)STV (�)YV (�)+

+YB(�)SV (�)YN (�) + YV (�)SN (�)YN (�) = �WV : (15)

If we divide (15) by � and put � = �2
k, we obtain

�k ~YB(�k)~SV (�k) ~YV (�k) + �k ~YV (�k)~STV (�k) ~YV (�k)+

+ ~YB(�k)~SV (�k) ~YN (�k) + ~YV (�k)~SN (�k) ~YN (�k) = WV :

By taking the limit k !1 we have

~Y�B ~S�V ~Y�N + ~Y�V ~S�N ~Y�N = WV : (16)

If XV (�) = o(p�) then ~Y�V = 0, similarly if SV (�) = o(p�) then ~S�V and therefore
WV = 0. Now assume WV = 0. Because ~Y�N � 0, from (16) it follows, that

~Y�B ~S�V + ~Y�V ~S�N = 0: (17)
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From Lemma 3.1 and (17) we obtain that

0 = ~X�V � ~S�V = tr[( ~X�V )T ~S�V ] = tr[( ~Y�V )T ~Y�B ~S�V ] = �tr[( ~Y�V )T ~Y�V ~S�N ]:

Since ~S�N � 0 we have that ~Y�V = 0 and therefore also

~X�V = ~Y�B ~Y�V = 0; ~S�V = �( ~Y�B)� 1
2 ~Y�V ~S�N = 0:

The statement for j = 3 can be shown analogously. �

3.2 Transformation of feasibility conditions in phase I

In order to separate the blocks of the path matrices that posses di�erent types of asymp-
totic behavior, we need to rewrite the equations in (1) and (2).

We �rst apply the optimal partition (de�ned in (7)) to any symmetric n� n matrix
in equations (1) and (2). We obtain:

Ai
B �XB + 2Ai

V �XV + Ai
N �XN = bi + �4bi; i = 1; : : : ;m;Pm

i=1 Ai
Byi + SB = CB + �4CB;Pm

i=1 Ai
V yi + SV = CV + �4CV ;Pm

i=1 Ai
Nyi + SN = CN + �4CN :

(18)

Now, we de�ne the matrices

AB =

264 svec(A1
B)

...
svec(Am

B )

375 ; AV =

264 vec(A1
V )

...
vec(Am

V )

375 ; AN =

264 svec(A1
N )

...
svec(Am

N )

375 ;
where AB 2 Rm� �B, AV 2 Rm� �V , AN 2 Rm� �N and

�B := jBj(jBj+ 1)=2; �V := jBjjN j; �N := jN j(jN j+ 1)=2:

Obviously, �B + �N = �n� jBjjN j. The system (18) has the matrix-vector form

2664 AB 2AV AN 0 0 0 0
0 0 0 (AB)T I �B 0 0
0 0 0 (AV )T 0 I �V 0
0 0 0 (AN )T 0 0 I �N

3775
2666666664
svec(XB)
vec(XV )
svec(XN )

y
svec(SB)
vec(SV )
svec(SN )

3777777775 =

2664 b+ �4b
svec(CB + �4CB)
vec(CV + �4CV )
svec(CN + �4CN )

3775 :
Rewrite the system above once more as

Pv +Qw + Rz = d+ �4d; (19)
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where

P =

2664 AB 0 0
0 ATB 0
0 ATV 0
0 ATN I �N

3775 ; Q =

2664 2AV 0
0 0
0 I �V
0 0

3775 ; R =

2664 AN 0
0 I �B
0 0
0 0

3775 ;

v =

24 svec(XB)
y

svec(SN )

35 ; w =
�
vec(XV )
vec(SV )

�
; z =

�
svec(XN )
svec(SB)

�
and

d =

2664 b
svec(CB)
vec(CV )
svec(CN )

3775 ; 4d =

2664 4b
svec(4CB)
vec(4CV )
svec(4CN )

3775 :
Here I �B, I �V and I �N are identity matrices of dimensions �B � �B, �V � �V and �N � �N ,
respectively.
Denote �n = dim(Sn) = n(n + 1)=2. Then P, Q and R are real matrices of dimensions
(m+ �n)� k1, (m+ �n)� k2 and (m+ �n)� k3, where

k1 = m+ �n� jBjjN j; k2 = 2jBjjN j; k3 = �n� jBjjN j:
The following lemma is a simple consequence of known linear algebra results.

Lemma 3.2 Let A be an (l�m) matrix, rank(A) = s. Then there exists a nonsingular
(l � l) matrix M such that

MA =
�

M1A
M2A

�
=
�

M1A
0

�
;

where M1 is s� l. Moreover rank(M1A) = s.

Let
s := rank(P) � minfk1;m+ �ng = k1: (20)

Now from Lemma 3.2 it follows that there exists a nonsingular (m+ �n)� (m+ �n) matrix
M such that

MP =
�

M1P
M2P

�
=
�

M1P
0

�
;

where M1 is of dimension s � (m + �n) and M2 is of dimension (m + �n � s) � (m +
�n). Moreover rank(M1P) = s. By multiplying (19) by M from the left we obtain an
equivalent system

M1Pv + M1Qw + M1Rz = M1(d+ �4d);
M2Qw + M2Rz = M2(d+ �4d): (21)
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Now let
t� s := rank(M2Q) � minfm+ �n� s; k2g: (22)

Then again, Lemma 3.2 implies that there exists a nonsingular (m+ �n� s)� (m+ �n� s)
matrix N such that

NM2Q =
�

N1M2Q
N2M2Q

�
=
�

N1M2Q
0

�
;

where N1, N2 have dimensions (t� s)� (m+ �n� s) and (m+ �n� t)� (m+ �n� s) and
rank(N1M2Q) = t� s. Therefore, the system (21) is equivalent to

M1Pv + M1Qw + M1Rz = M1(d+ �4d);
N1M2Qw + N1M2Rz = N1M2(d+ �4d);

N2M2Rz = N2M2(d+ �4d):

If we denote M1P = ~P1, M1Q = ~Q1, M1R = ~R1, N1M2Q = ~Q2, N1M2R = ~R2 and
N2M2R = ~R3, then the last system can be rewritten in the form

~P1v + ~Q1w + ~R1z = ~d1 + �4 ~d1;
~Q2w + ~R2z = ~d2 + �4 ~d2;

~R3z = ~d3 + �4 ~d3:
(23)

It is well-known that if A is n�m matrix and n � m, then the map x 7! Ax is surjective
if and only if rank(A) = n. This fact, together with relations (20), (22) and Assumption
2.1 can be used to prove the following lemma.

Lemma 3.3 The linear maps

v 7! ~P1v; w 7! ~Q2w; z 7! ~R3z

are surjective.

Proposition 3.3 Let

4v =

24 svec(4XB)
4y

svec(4SN )

35 ; 4w =
�
vec(4XV )
vec(4SV )

�
;4z =

�
svec(4XN )
svec(4SB)

�
:

(a) If
~P14v = 0; ~Q24w = 0; ~R34z = 0;

then
4XB � 4SB = 0; 4XV � 4SV = 0; 4XN � 4SN = 0:

(b) If
~P14v = 0; ~Q24w + ~R24z = 0; ~R34z = 0;

then
4XB � 4SB = 0; 4XN � 4SN = 0:

Moreover, if 4XN = 0 and 4SB = 0, then 4XV � 4SV = 0.
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Proof. (a) Because of the surjectivity of ~Q2 (stated in Lemma 3.3) we have that there
exist matrices V1;V2 of dimension jBj � jN j such that

~Q2

�
vec(V1)
vec(V2)

�
+ ~R2

�
svec(4XN )
svec(4SB)

�
= 0: (24)

Similarly, because of the surjectivity of ~P1 we have, that there exist symmetric matrices
U1;U2 of dimensions jBj � jBj and jN j � jN j and a vector u 2 Rm such that

~P1

24 svec(U1)
u

svec(U2)

35+ ~Q1

�
vec(V1)
vec(V2)

�
+ ~R1

�
svec(4XN )
svec(4SB)

�
= 0: (25)

The equations (24); (25) together with the equation ~R34z = 0 are equivalent to

P
24 svec(U1)

u
svec(U2)

35+Q
�
vec(V1)
vec(V2)

�
+ R

�
svec(4XN )
svec(4SB)

�
= 0:

which is the same as

A
��

U1 V1
VT

1 4XN

��
= 0; A�(u) +

� 4SB V2
VT

2 U2

�
= 0: (26)

The assumption

~P14v = ~P1

24 svec(4XB)
4y

svec(4SN )

35 = 0

is equivalent to

A
�� 4XB 0

0 0

��
= 0; A�(4y) +

�
0 0
0 4SN

�
= 0: (27)

From (26) and (27) it follows that�
U1 V1
VT

1 4XN

�
�
�

0 0
0 4SN

�
= 4XN � 4SN = 0

and � 4SB V2
VT

2 U2

�
�
� 4XB 0

0 0

�
= 4XB � 4SB = 0

due to the orthogonality property. Finally we have to show that 4SV �4XV = 0. From
the surjectivity of ~P1 (see Lemma 3.3) we have that there exist symmetric matrices
V3;V4 of dimensions jBj � jBj and jN j � jN j and a vector v 2 Rm such that

~P1

24 svecV3
v

svecV4

35+ ~Q1

�
vec4XV
vec4SV

�
+ ~R1

�
0
0

�
= 0:

11



This equation, together with ~Q24w + ~R30 = 0; ~R30 = 0 implies

P
24 svec(V3)

v
svec(V4)

35+Q
�
vec(4XV )
vec(4SV )

�
+ R

�
0
0

�
= 0:

The equation above can be rewritten as

A
��

V3 4XV4XT
V 0

��
= 0; A�(v) +

�
0 4SV4STV V4

�
= 0:

The orthogonality property implies�
V3 4XV4XT

V 0

�
�
�

0 4SV4STV V4

�
= 0

and hence 4XV � 4SV = 0.
(b) Because of the surjectivity of ~P1 we have, that there exist symmetric matrices

W1;W2 of dimensions jBj � jBj and jN j � jN j and a vector w 2 Rm such that

~P1

24 svec(W1)
w

svec(W2)

35+ ~Q1

�
vec(4XV )
vec(4SV )

�
+ ~R1

�
svec(4XN )
svec(4SB)

�
= 0: (28)

The equation (28) together with ~Q24w + ~R24z = 0; ~R34z = 0 is equivalent to

P
24 svec(W1)

u
svec(W2)

35+Q
�
vec(4XV )
vec(4SV )

�
+ R

�
svec(4XN )
svec(4SB)

�
= 0:

which is the same as

A
��

W1 4XV4XT
V 4XN

��
= 0; A�(u) +

� 4SB 4SV4STV W2

�
= 0: (29)

The equalities 4XB �4SB = 0, 4XN �4SN = 0 can be proved similarly as in the case
(a). Assume 4SB = 0 and 4XN = 0. The orthogonality property and (29) yield

0 =
�

W1 4XV4XT
V 4XN

�
�
� 4SB 4SV4STV W2

�
=

= W1 � 4SB + 24XV � 4SV +4XN �W2 = 24XV � 4SV :

�

12



3.3 Normalization of feasibility conditions in phase I

De�ne

~v(�) =

24 svec( ~XB(�))
~y(�)

svec(~SN (�))

35 ; ~w(�) =
�
vec( ~XV (�))
vec(~SV (�))

�
; ~z(�) =

�
svec( ~XN (�))
svec(~SB(�))

�
;

(where ~y(�) = y(�)). By inserting the normalized matrices into the system (23) we
obtain

~P1~v(�) + �~Q1 ~w(�) + �2 ~R1~z(�) = ~d1 + �24 ~d1;
�~Q2 ~w(�) + �2 ~R2~z(�) = ~d2 + �24 ~d2;

�2 ~R3~z(�) = ~d3 + �24 ~d3:
(30)

Inserting � = �k, ~X(�) = ~X(�k), ~y(�) = ~y(�k) and ~S(�) = ~S(�k) into the system (30)
and letting �k ! 0 we �nd that ~d2 = 0; ~d3 = 0.
De�ne the map 	 in the following way:

	( ~X; ~y; ~S; �) =

24 ~P1~v + �~Q1 ~w + �2 ~R1~z � ~d1 + �24 ~d1
~Q2 ~w + �~R2~z � �4 ~d2

~R3~z �4 ~d3

35 ; (31)

where

~v =

24 svec( ~XB)
~y

svec(~SN )

35 ; ~w =
�
vec( ~XV )
vec(~SV )

�
; ~z =

�
svec( ~XN )
svec(~SB)

�
:

It can be easily seen, that the Fr�echet derivative of 	 is

D	( ~X�; ~y�; ~S�; 0)[4 ~X;4~y;4~S] =

24 ~P14~v
~Q24 ~w
~R34~z

35 ;
where

4~v =

24 svec(4 ~XB)
4~y

svec(4~SN )

35 ; 4 ~w =
�
vec(4 ~XV )
vec(4~SV )

�
; 4~z =

�
svec(4 ~XN )
svec(4~SB)

�
:

3.4 Analyticity of the paths as functions of p� at � = 0

Proposition 3.4 Let j 2 f2; 3g. Then the weighted path (X(�); y(�);S(�)) is an ana-
lytic function of � = p� for all � � 0 (su�ciently small).

Proof. The statement for j = 2 was proved in [9] (see Theorem 3.3). We now prove the
statement for j = 3, i.e. for the Cholesky paths. We �x a weight W fromM 1p

2
or Dn

++.
Then the associated weighted central path satis�es (3) and (6)

LX(�)TSLX(�) = �W

13



which can be rewritten equivalently as the pair

L(�)TS(�)L(�) = �W;
L(�)TL(�) = X(�): (32)

Setting the normalized matrices ~X(�); ~S(�); ~L(�) de�ned in (10) and (11) into (32) and
dividing some block equation by �2 we obtain

~L(�)T ~S(�)~L(�) = W
~L(�)~L(�)T = ~X(�)

�
(33)

which holds for any � = p� > 0 su�ciently small. Considering (33) along the sequence
f�kg de�ned in (12) and taking the limits �k ! 0 we obtain that

(~L�)T ~S�~L� = W;
~L�(~L�)T = ~X�: (34)

Recall that ~L� 2 Ln++ and ~S�; ~X� � 0.
De�ne the map ~F 3 : Sn �Ln �Rm � Sn �R! Rm � Sn � Sn � Sn in the following

way:

~F 3( ~X; ~L; ~y; ~S; �) =

24 	( ~X; ~y; ~S; �)
~LT ~S~L�W
~L~LT � ~X

35 ;
where 	 is de�ned by (31). Obviously ~F 3 is an analytic function of ( ~X; ~L; ~y; ~S; �).
Moreover, for � > 0 (su�ciently small) it holds

~F 3( ~X(�); ~L(�); ~y(�); ~S(�); �) = 0

and
~F 3( ~X�; ~L�; ~y�; ~S�; 0) = 0:

Here it is important that for any � > 0 su�ciently small, ( ~X(�); ~L(�); ~y(�); ~S(�)) is
the unique solution to ~F 3( ~X; ~L; ~y; ~S; �) = 0 on an open set Sn++ � Ln++ � Rm � Sn++.
Moreover, ( ~X�; ~L�; ~y�; ~S�) 2 Sn++ � Ln++ � Rm � Sn++. Note that the uniqueness is a
consequence of the uniqueness declared in Proposition 2.1.

The Fr�echet derivative of ~F 3 with respect to ( ~X; ~L; ~y; ~S) at the point ( ~X�; ~L�; ~y�; ~S�; 0)
is the linear map given as

D ~F 3( ~X�; ~L�; ~y�; ~S�; 0)[4 ~X;4~L;4~y;4~S] =

=

24 D	( ~X�; ~y�; ~S�; 0)[4 ~X;4~y;4~S]
4~L~S�(~L�)T + ~L�4~S(~L�)T + ~L�~S�(4~L)T

(4~L)T ~L� + (~L�)T4~L�4 ~X

35 :
We now show that D ~F 3( ~X�; ~L�; ~y�; ~S�; 0) is a nonsingular linear map. To this aim we
assume

D ~F 3( ~X�; ~L�; ~y�; ~S�; 0)[4 ~X;4~L;4~y;4~S] = 0:

14



From Proposition 3.3 we have that 4 ~X � 4~S = 0. Due to (34), the nonsingularity of
D ~F 3 for the case W 2 M 1p

2
follows from Lemma 2.4 of [14] and for W 2 Dn

++ was
shown in [20] (see the proof of Theorem 1).

Having the nonsingularity ofD ~F 3 we are ready to apply the implicit function theorem
to ~F 3( ~X; ~L; ~y; ~S; �) = 0 at the point ( ~X�; ~L�; ~y�; ~S�; 0). We obtain that there exist
neighborhoods I and U of � = 0 and ( ~X�; ~L�; ~y�; ~S�) respectively and an analytic function

(X̂; L̂; ŷ; Ŝ) : I ! U
such that

(X̂(0); L̂(0); ŷ(0); Ŝ(0)) = ( ~X�; ~L�; ~y�; ~S�)
and

~F 3(X̂(�); L̂(�); ŷ(�); Ŝ(�); �) = 0 8� 2 I: (35)

Since ( ~X�; ~L�; ~y�; ~S�) belongs to the open set Sn++ � Ln++ � Rm � Sn++ we can restrict
the neighborhoods U and I if necessary in such a way that U � Sn++�Ln++�Rm�Sn++.
Now both ( ~X(�); ~L(�); ~y(�); ~S(�)) and (X̂(�); L̂(�); ŷ(�); Ŝ(�)) are solutions to (35) for
� > 0 and whence ( ~X(�); ~L(�); ~y(�); ~S(�)) = (X̂(�); L̂(�); ŷ(�); Ŝ(�)) at any � 2 I \
(0;1) by the uniqueness of solutions on Sn++ � Ln++ � Rm � Sn++. Thus the function
( ~X(�); ~L(�); ~y(�); ~S(�)) is analytically extendable to � = 0 by prescription

( ~X(0); ~L(0); ~y(0); ~S(0)) = (X̂(0); L̂(0); ŷ(0); Ŝ(0)) = ( ~X�; ~L�; ~y�; ~S�):

Due to (10) also the function (X(�);L(�); y(�);S(�)) is analytically extendable to � = 0.
�

4 Phase II: paths as functions of �

4.1 Introduction of new normalized matrices in phase II

Lemma 4.1 Let j 2 f2; 3g be arbitrary and assume WV = 0. Then

XV (�) = O(�); SV (�) = O(�):

Moreover, if j = 2, then YV (�) = O(�) and if j = 3, then LV (�) = O(�):

Proof. Since lim�!0( ~XV (�); ~SV (�)) = (0; 0), the Taylor series expansions of ~XV (�),
~SV (�), which are analytic functions of � for � � 0 su�ciently small, have the form

~XV (�) = �
1X
i=0

Pi�i; ~SV (�) = �
1X
i=0

Qi�i:

This implies
XV (�) = � ~XV (�) = �O(�) = O(�2) = O(�): (36)

Similarly, it can be shown that SV (�) = O(�):
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Moreover, assume j = 2. It holds

XV (�) = YB(�)YV (�) + YV (�)YN (�):

From the asymptotic behavior given in Proposition 3.1 (YB(�) = �(1)) it follows that
YB(�)�1 = O(1). Therefore we have

kYV (�)kF = kYB(�)�1XV (�)�YB(�)�1YV (�)YN (�)kF �
� kYB(�)�1XV (�)kF + kYB(�)�1YV (�)YN (�)kF = O(�)

where the last equality follows from (36) and Proposition 3.1.
Finally, if j = 3, by XV (�) = LB(�)LV (�) and the asymptotic behavior XV (�) =

O(�) and LB(�) = �(1) we obtain LV (�) = O(�). �

From now we will assume that WV = 0.

From Lemma 4.1 it follows that the path matrices posses the following asymptotic
behavior:

X(�) =
�

�(1) O(�)
O(�) �(�)

�
; S(�) =

�
�(�) O(�)
O(�) �(1)

�
: (37)

Moreover, for L(�) = LX(�) and Y(�) = [X(�)]
1
2 we obtain

L(�) =
�

�(1) 0
O(�) �(p�)

�
; Y(�) =

�
�(1) O(�)
O(�) �(p�)

�
: (38)

This asymptotic behavior naturally implies the following de�nition new normalized ma-
trices:

�X(�) :=
�

XB(�) XV (�)=�
XV (�)T =� XN (�)=�

�
; �S(�) =

�
SB(�)=� SV (�)=�
SV (�)T =� SN (�)

�
and

�L(�) :=
�

LB(�) 0
LV (�)T =� LN (�)=p�

�
; �Y(�) :=

�
YB(�) YV (�)=�

YV (�)T =� YN (�)=p�
�
:

4.2 Normalization of feasibility conditions in phase II

De�ne

�v =

24 svec( �XB)
�y

svec(�SN )

35 ; �w =
�
vec( �XV )
vec(�SV )

�
; �z =

�
svec( �XN )
svec(�SB)

�
and rewrite the system (23) using the new normalized matrices:

~P1�v + �~Q1 �w + �~R1�z = ~d1 + �4 ~d1;
�~Q2 �w + �~R2�z = ~d2 + �4 ~d2;

�~R3�z = ~d3 + �4 ~d3:
(39)
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From the asymptotic behavior given in (37) it follows that

�X(�) = O(1); �S(�) = O(1)

and therefore for any sequence f�kg ! 0 the matrices �X(�k); �S(�k) and also the associ-
ated vector y(�k) = �y(�k) are bounded, so we may assume that the limit

lim
k!1( �X(�k); �y(�k); �S(�k)) = ( �X�; �y�; �S�)

exists. Inserting � = �k, �X = �X(�k), �y = �y(�k), �S = �S(�k) into the system (39) and
letting k !1 we obtain that ~d2 = 0 and ~d3 = 0. Hence the system (39) has the form

~P1�v + �~Q1 �w + �~R1�z = ~d1 + �4 ~d1;
~Q2 �w + ~R2�z = 4 ~d2;

~R3�z = 4 ~d3:

De�ne the map �	 in the following way

�	( �X; �y; �S; �) =

24 ~P1�v + �~Q1 �w + �~R1�z � ~d1 + �4 ~d1
~Q2 �w + ~R2�z �4 ~d2

~R3�z �4 ~d3

35 : (40)

The Fr�echet derivative of �	 with respect to variables ( �X; �y; �S) at the point ( �X�; �y�; �S�; 0)
is

D �	( �X�; �y�; �S�; 0)[4 �X;4�y;4�S] =

24 ~P14�v
~Q24 �w + ~R24�z

~R34�z

35
where

4�v =

24 svec(4 �XB)
4�y

svec(4�SN )

35 ; 4 �w =
�
vec(4 �XV )
vec(4�SV )

�
; 4�z =

�
svec(4 �XN )
svec(4�SB)

�
:

4.3 Nonsingularity of the Fr�echet derivatives in phase II

In this section we de�ne new normalized maps associated with the both symmetrizations
�2 and �3. Under the assumption that the weight matrix is block diagonal we show
that these maps are nonsingular at the limit point which will be useful to prove the
analyticity of the paths as a function of � at this point.

Firstly, we will consider the condition

X
1
2 SX

1
2 = �W

given in (3), which can be equivalently rewritten as the pair

YSY = �W;
Y2 = X:

17



The block form of this equalities is:

YBSBYB + YV STV YB + YBSV YT
V + YV SNYT

V = �WB;
YBSBYV + YV STV YV + YBSV YN + YV SNYN = 0;

YT
V SBYV + YNSTV YV + YT

V SV YN + YNSNYN = �WN ;
Y2
B + YV YT

V = XB;
YBYV + YV YN = XV ;

Y2 + YT
V YV = XN :

Because (X(�);Y(�); y(�);S(�)) satis�es the system above for � > 0 (su�ciently small),
we have that the triple ( �X(�); �Y(�); �y(�); �S(�)) satis�es

�YB(�)�SB(�) �YB(�) + � �YV (�)�SV (�)T �YB(�)
+� �YB(�)�SV (�) �YV (�)T + � �YV (�)�SN (�) �YV (�)T = WB;p� �YB(�)�SB(�) �YV (�) + �p� �YV (�)�SV (�)T �YV (�)+

�YB(�)�SV (�) �YN (�) + �YV (�)�SN (�) �YN (�) = 0;
�2 �YV (�)T �SB(�) �YV (�) + � �YN (�)�SV (�)T �YV (�)+

� �YV (�)T �SV (�) �YN (�) + �YN (�)�SN (�) �YN (�) = WN ;
�YB(�)2 + �2 �YV (�) �YV (�)T = �XB(�);

�YB(�) �YV (�) +p� �YV (�) �YN (�) = �XV (�);
�YN (�)2 + � �YV (�)T �YV (�) = �XN (�);

(41)

From (37) and (38) it follows that for any sequence f�kg ! 0 the sequence

( �X(�k); �Y(�k); �y(�k); �S(�k))

is bounded, so we may assume that the limit

lim
k!1( �X(�k); �Y(�k); �y(�k); �S(�k)) = ( �X�; �Y�; �y�; �S�)

exists. De�ne the map �F 2 in the following way

�F 2( �X; �Y; �y; �S; �) =

2666666664

�	( �X; �y; �S; �)
�YB �SB �YB + � �YV �STV �YB + � �YB �SV �YT

V + � �YV �SN �YT
V �WBp� �YB �SB �YV + �p� �YV �STV �YV + �YB �SV �YN + �YV �SN �YN

�2 �YT
V

�SB �YV + � �YN �STV �YV + � �YT
V

�SV �YN + �YN �SN �YN �WN
�Y2
B + �2 �YV �YT

V � �XB
�YB �YV +p� �YV �YN � �XV

�Y2
N + � �YT

V
�YV � �XN

3777777775 ;
where �	 is de�ned in (40). For � > 0 su�ciently small it holds that

�F 2( �X(�); �Y(�); �y(�); �S(�); �) = 0 (42)

and
�F 2( �X�; �Y�; �y�; �S�; 0) = 0: (43)
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The Fr�echet derivative of �F 2 with respect to ( �X; �Y; �y; �S) at the point ( �X�; �Y�; �y�; �S�; 0)
is the linear map given by

D �F 2( �X�; �Y�; �y�; �S�; 0)[4 �X;4 �Y;4�y;4�S] =2666666664
D��(( �X�; �y�; �S�; 0)[4 �X;4�y;4�S]

4 �YB �S�B �Y�B + �Y�B4�SB �Y�B + �Y�B �S�B4 �YB4 �YB �S�V �Y�N + �Y�B4�SV �Y�N + �Y�B �S�V4 �YN +4 �YV �S�N �Y�N + �Y�V4�SN �Y�N + �Y�V �S�N4 �YN4 �YN �S�N �Y�N + �Y�N4�SN �Y�N + �Y�N �S�N4 �YN4 �YB �Y�B + �Y�B4 �YB �4 �XB4 �YB �Y�V + �Y�B4 �YV �4 �XV4 �YN �Y�N + �Y�N4 �YN �4 �XN

3777777775
Lemma 4.2 D �F 2( �X�; �Y�; �y�; �S�; 0)[4 �X;4 �Y;4�y;4�S] is a nonsingular linear map.

Proof. Assume

D �F 2( �X�; �Y�; �y�; �S�; 0)[4 �X;4 �Y;4�y;4�S] = 0: (44)

We will show that [4 �X;4 �Y;4�y;4�S] = [0; 0; 0; 0]: If we put � = �k in the system (41),
then by taking the limit k !1 we obtain that

�Y�B �S�B �Y�B = WB; �Y�N �S�N �Y�N = WN : (45)

Because W 2 M 1p
2
, we have also that WB 2 M 1p

2
and WN 2 M 1p

2
. From the �rst

equation of (44) and Proposition 3.3 (b) we have that

4 �XB � 4�SB = 0; 4 �XN � 4�SN = 0: (46)

It follows from the proof of Lemma 2.3 of [13] that 4 �XB = 0, 4 �XN = 0, 4 �YB = 0,
4 �YN = 0, 4�SB = 0, 4�SN = 0. These equalities together with (44) imply

�Y�B4�SV �Y�N +4 �YV �S�N �Y�N = 0; �Y�B4 �YV �4 �XV = 0

or, since �Y�N � 0,

�Y�B4�SV +4 �YV �S�N = 0; �Y�B4 �YV = 4 �XV :

From Proposition 3.3 (b) we now have that 4 �XV � 4�SV = 0, which, together with the
equalities above, yields

0 = �4 �XV � 4�SV = �tr(4 �XT
V4�SV ) = �tr(4 �YT

V
�Y�B4�SV ) =

= tr(4 �YT
V

�Y�B( �Y�B)�14 �YV �S�N ) = tr(4 �YV �S�N4 �YT
V ):

The matrix in the last brace is positive semide�nite and hence from positive de�nitness
of �S�N it follows that 4 �YV = 0. Therefore also 4 �XV = 4�SV = 0. Assumption (A1)
gives 4�y = 0. �
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Now we will use the same procedure to show the nonsingularity of the normalized
map associated with �3. Consider the last condition from the system (1)� (3):

LX
TSLX = �W:

It can be equivalently replaced by the pair

LTSL = �W;
LLT = X;

which can be rewritten in the following block form:

LTBSBLB + LV STV LB + LTBSTV LTV + LV SNLTV = �WB;
LTBSV LN + LV SNLN = 0;

LTNSNLN = �WN ;
LBLTB = XB;
LBLV = XV ;

LNLTN + LTV LV = XN :

Because (X(�);L(�); y(�);S(�)) satis�es the system above for � > 0 (su�ciently small),
we have that the triple ( �X(�); �L(�); �y(�); �S(�)) satis�es

�LB(�)T �SB(�)�LB(�) + ��LV (�)�SV (�)T �LB(�)+
��LB(�)T �SV (�)T �LV (�)T + ��LV (�)�SN (�)�LV (�)T = WB;

�LB(�)T �SV (�)�LN (�) + �LV (�)�SN (�)�LN (�) = 0;
�LN (�)T �SN (�)�LN (�) = �WN ;

�LB(�)�LB(�)T = XB(�);
�LB(�)�LV (�) = XV (�);

�LN (�)�LN (�)T + ��LV (�)T �LV (�) = XN (�):

(47)

From (37) and (37) it follows that for any sequence f�kg ! 0 the sequence

( �X(�k); �L(�k); �y(�k); �S(�k))

is bounded, so we may assume that the limit

lim
k!1( �X(�k); �L(�k); �y(�k); �S(�k)) = ( �X�; �L�; �y�; �S�)

exists. De�ne the map �F 3 in the following way

�F 3( �X; �L; �y; �S; �) =

2666666664

�	( �X; �y; �S; �)
�LTB �SB �LB + ��LV �STV �LB + ��LTB �STV �LTV + ��LV �SN �LTV �WB

�LTB �SV �LN + �LV �SN �LN
�LTN �SN �LN � �WN

�LB �LTB �XB
�LB �LV �XV

�LN �LTN + ��LTV �LV �XN

3777777775
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where �	 is de�ned by (40). For � > 0 su�ciently small it holds, that
�F 3( �X(�); �L(�); �y(�); �S(�); �) = 0 (48)

and
�F 3( �X�; �L�; �y�; �S�; 0) = 0: (49)

The Fr�echet derivative of �F 3 with respect to ( �X; �L; �y; �S) at the point �X�; �L�; �y�; �S�; 0)
is the linear map given by

D �F 3( �X�; �L�; �y�; �S�; 0)[4 �X;4�L;4�y;4�S] =2666666664
D��(( �X�; �y�; �S�; 0)[4 �X;4�y;4�S]

4�LTB �S�B �L�B + (�L�B)T4�SB �L�B + (�L�B)T �S�B4�LB4�LB �S�V �L�N + (�L�B)T4�SV �L�N + (�L�B)T �S�V4�LN +4�LV �S�N �L�N + (�L�V )T4�SN �L�N + (�L�V )T �S�N4�LN4�LN �S�N �L�N + (�L�N )T4�SN �L�N + (�L�N )T �S�N4�LN4�LB(�L�B)T + �L�B4�LTB �4 �XB4�LB �L�V + �L�B4�LV �4 �XV4�LN (�L�N )T + �L�N4�LN �4 �XN

3777777775
Lemma 4.3 D �F 3( �X�; �L�; �y�; �S�; 0)[4 �X;4�L;4�y;4�S] is a nonsingular linear map.

Proof. Assume

D �F 3( �X�; �L�; �y�; �S�; 0)[4 �X;4�L;4�y;4�S] = 0: (50)

We will show that [4 �X;4�L;4�y;4�S] = [0; 0; 0; 0]: If we put � = �k in the system (47),
then by taking the limit k !1 we obtain that

(�L�B)T �S�B �LB = WB; (�L�N )T �S�N �LN = WN : (51)

Since if W 2 M 1p
2
, we have also that WB 2 M 1p

2
and WN 2 M 1p

2
. Similarly, if

W 2 Dn
++, then the blocks WB;WN are also positive diagonal matrices. From the �rst

equation of (50) and Proposition 3.3 (b) we have that

4 �XB � 4�SB = 0; 4 �XN � 4�SN = 0: (52)

By applying Lemma 2.4 of [14] in the case of W 2M 1p
2

or Theorem 1 of [20] in the case

W 2 Dn
++ we obtain that 4 �XB = 4 �XN = 0, 4�LB = 4�LN = 0, 4�SB = 4�SN = 0.

These equalities, together with (50) imply

(�L�B)T4�SV �L�N +4�LV �S�N �L�N = 0; �L�B4�LV �4 �XV = 0

or, since �L�N 2 Ln++,

(�L�B)T4�SV +4�LV �S�N = 0; �L�B4�LV = 4 �XV :

From Proposition 3.3 (b) we now have that 4 �XV � 4�SV = 0, which together with the
equalities above yield

0 = �4 �XV � 4�SV = �tr(4 �XT
V4�SV ) = �tr(4�LTV (�L�B)T4�SV ) =

= tr(4�LTV (�L�B)T (�L�B)�T4�LV �S�N ) = tr(4�LV �S�N4�LTV ):
Because the matrix in the last brace is positive semide�nite and �S�N � 0 we have that
4�LV = 0. Therefore also 4 �XV = 4�SV = 0. Assumption 2.1 gives 4�y = 0. �

21



4.4 Analyticity of the paths as functions of � at � = 0

Lemma 4.4 Let j 2 f2; 3g and assume WV 6= 0. Then dXV (�)
d� and dSV (�)

d� are not
bounded as �! 0.

Proof. Compute

dXV (�)
d�

=
d[� ~XV (�)]

d�
=
d�
d�

~XV (�) + �
d ~XV (�)
d�

=
1
2

"
~XV (�)
�

+
d ~XV (�)
d�

#
: (53)

Since ~XV (�) is an analytic function of � at � = 0 (see the proof of Proposition 3.4),
d ~XV (�)
d� is bounded as �! 0. Hence if dXV (�)

d� were bounded (as �! 0), then from (53)
we would have that lim�!0 ~XV (�) = 0: But this would imply WV = 0 (see Proposition
3.2), which would contradict to the assumption. The statement for dSV (�)

d� can be proved
similarly. �

Proposition 4.1 Let j 2 f2; 3g. Then the associated weighted path (X(�); y(�);S(�))
is an analytic function of � for all � � 0 if and only if WV = 0.

Proof. Assume WV = 0. From (42), (43) and Lemma 4.2 it follows that the implicit
function theorem can be applied to get the analyticity of the square root path. By similar
arguments as in Proposition 3.4 we obtain that the function ( �X(�); �Y(�); �y(�); �S(�)) is
analytically extendable to � = 0 by prescription

( �X(�); �Y(�); �y(�); �S(�)) = ( �X�; �Y�; �y�; �S�):
Therefore also the path function (X(�); y(�);S(�)) associated with the symmetrization
�2 is analytically extendable to � = 0.
Analogously, from (48), (49) and Lemma 4.3 we obtain for the Cholesky path that the
function ( �X(�); �L(�); �y(�); �S(�)) can be analytically extended to � = 0 by prescription

( �X(0); �L(0); �y(0); �S(0)) = ( �X�; �L�; �y�; �S�):
Therefore also the path function (X(�); y(�);S(�)) associated with the symmetrization
�3 is analytically extendable to � = 0.

The reverse implication follows from Lemma 4.4 and properties of analytic functions.
�

5 Conclusion

Let us mention that some kind of weighted central paths associated with a Cholesky
factor symmetrization was introduced and analyzed by Chua in [1, 2] where in [2] the
analyticity of the paths as functions of � at � = 0 was established. The concept of
the weighted central path, as introduced in [1], coincides with the concept treating in
this paper when the weight matrix is diagonal. Whence, in the case of diagonal weight
matrix, the results of this paper are in agreement with those from [2].
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