
CEJOR (2005) 13:169-188

CEJOR
© Physica-Verlag 2005

On a two-phase minmax method for parameter
estimation of the Cox, Ingersoll, and Ross interest
rate model

D. Sevcovic and A. Urbanova Csajkova *

Dept. of Appl. Mathematics and Statistics, Comenius University, 842 48 Bratislava, Slovak
Republic

Abstract In this paper we investigate a two-phase minmax optimization method
for parameter estimation of the well known Cox, Ingersoll, and Ross one-factor
interest rate model (CIR). In the first optimization phase we determine four CIR
parameters by minimizing the sum of squares of differences of a theoretical CIR
yield curve and real market yield curve data. We show that the minimum is at-
tained on one dimensional curve in the four dimensional CIR parameter space. In
order to find a global minimum we make use of a variant of an evolution strategy
based minimization algorithm. Next we find a global maximum of the likelihood
function restricted to this curve. We also introduce restricted maximum likelihood
and nonlinear R^ ratios measuring quality of estimation of the CIR parameters.
The estimation procedure is extensively tested on the several term structures from
various countries. We compare results of estimation for term structures of inter-
hank offer rates for stable western Europe banking sector to those of transitional
countries like e.g. Central European countries. Quality of prediction capability of
term structures is also discussed.

1 Introduction

In the past decades, term structure models have attracted a lot of attention from
both a theoretical as well as practical point of view. The term structure is a func-
tional dependence between the time to maturity of a discount bond and its present
price. Relevant interest rate models characterize the bond prices (or yields) as a
function of time to maturity, state variables like e.g. instantaneous interest rate as
well as several model parameters.
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Much effort is being spent to calibrate interest rate models. Soon after discov-
ery of the Cox, Ingersoll, and Ross (1985) one-factor interest rate model (CIR) it
has been applied in order to interpret nominal bond prices by Brown and Dybvig
(1986). In the context of interest rate tnodels, the Generalized Method of Mo-
ments for identification of model parameters has been studied by Chan, Karoiyi,
Longstaff and Sanders (1992). Pearson and Sun (1994) have shown failure of pa-
rameter estimation for a two-factor extension of the CIR model applied to portfo-
lios of Treasury bills. Nowman, Saltoglu (2003) have applied Gaussian estimation
methods of Nowman (1997) to continuous time interest rate models. Takahashi and
Sato (2001) developed new methodology for estimation of general class of term
structure models based on the Monte Carlo filtering approach. The method has
been applied to LIBOR term structures and interest rates swaps in the Japanese
market. There are other estimation techniques which become very popular e.g.
QML method or the MCMC methods. Recall that the state space estimation ap-
proach is a combination of the Kalman filtering approach with the Quasi Maxi-
mum Likelihood (QML) estimation of parameters of the interest rate model under
consideration. Geier and Pichler (1999) estimated and tested the state space es-
timation approach for the CIR multi-factor model. In this method the Maximum
Likelihood estimation is based on the knowledge of the transition density of the
state variable which is the instantaneous interest rate in thecaseof one-factor inter-
est rate model. Chen and Scott (2002) applied a non-linear Kalman filter approach
in combination with the QML method for estimation of the CIR model parame-
ters. The approximate maximum likelihood estimator had a significant bias in the
case of separated estimation of four CIR model parameters. Another important es-
timation procedure is based on the so-called MCMC (Markov Chain Monte Carlo)
method. This method is an estimation tool for the non-normal and/or non-linear
state space models. In the Bayesian framework the estimation of parameters starts
with a conditional distribution of parameters (the Gibbs sampling method) or with
a proposal density (the Metropolis-Hastings algorithm). Fruhwirth-Schnatter and
Geier studied the MCMC method for parameter estimation of the CIR multi-factor
model. They estimate the CIR parameters by means of the MCMC method. Notice
that the appropriate choice of the distribution of the parameters is one of the most
important parts of this method. Moreover, the convergence to optimum values in
the case of an inappropriate choice of initial distribution can be time consuming.
Recently, other estimation methods for interest rate models have been proposed by
Rebonato (1999). These methods are based on other interest rate derivatives like
e.g. prices of caps and floors. However, such derivatives are still not available in
some financial markets including most of transitional Central European countries.

Less attention is however put on possible applications of interest rate models
to financial markets of transitional economies like e.g. Central European countries
including Czech Republic, Slovakia, Poland and Hungary. Furthermore, a compar-
ison to stable Western Europe financial markets has not been done yet. There is a
partial progress in this direction made by Vojtek (2004). He estimated conditional
volatilities by using the Brace, Gatarek, Musiela model (1997) and various types
of GARCH models.
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The purpose of this paper is to investigate a new method for estimation of
model parameters of the CIR one-factor interest rate model. Recal that the CIR
model is a getierai equilibrium model in which the term structure can be obtained
from a solution to the CIR model. Moreover, a solution to the CIR model is given
by an explicit expression. In order to estimate CIR model parameters we intro-
duce a two-phase minmax optimization method. In the first optimization step we
determine four CIR parameters by minimizing sum of squares of differences of
theoretical CIR yield curve and real market yield curve data. To this end, we make
use of a robust optimization method ba.sed on a variant of evolution strategy al-
gorithm. It turns out that the minimum is attained on a one dimensional curve in
the four dimensional CIR parameter space. Next we find a global maximum of
the likelihood function computed over this curve. The argument of the maximum
of such a restricted likelihood function represents the estimator of the CIR model
parameters.

Our estimation method is extensively tested on real market term structures
like e.g. London inter-bank offer rate (USD-LIBOR, EURO-LIBOR), Euro-zone
term structure (EURIBOR) as well as Central European financial markets from
transitional economies like Czech Republic (PRIBOR), Poland (WIBOR), Hun-
gary (BUBOR), and Slovakia (BRIBOR). We also compare and discuss results
of parameter estimation for stable western Europe markets to those of the above
mentioned transitional economies. It turns out that relatively satisfactory results of
estimation can be achieved for EURJBOR, USD-LIBOR, EURO-LIBOR as well
as PRIBOR and WIBOR. On the other hand, the CIR mode! fails to provide a
good estimation of BRIBOR and BUBOR term structures. In order to compare
our method with existing methods (the state space method with Kalman's filtering
or MCMC method) we note that both the state space methtxlology as well as the
MCMC methodology when applied to the CIR model do not utilize the possibility
of reduction of the parameter space dimension. Therefore it is not clear to what val-
ues of a one dimensional curve of optimal CIR parameters these methods converge
to. Moreover, the MCMC method is sensitive to parameter transformations as the
choice of proposal densities depends on the way we represent and/or aggregate
model parameters. The novelty and possible advantage of our method consists in
reduction of the parameter space and the two-phase optimization procedure based
on a robust minimization method (evolution strategies algorithm). There is also no
need for any assumptions made on the distribution of estimated parameters. In con-
trast to Chen and Scott (2002) non-linear Kalman filtering there was no evidence
of a bias in the case of combined parameter estimation of three aggregated CIR
parameters. It could be due our reduction of dimension of the parameter space.

The paper is organized as follows: in Section 2 we recall basic properties of the
Cox, Ingerso!!, and Ross model. Next we show how to transform four CIR model
parameters into essential three aggregated parameters. In Section 3 we propose
a two phase method for parameter estimation of the CIR model. First, we find a
global minimum of the nonlinear cost function. Next we find a maximum of the
likelihood function over a one dimensional curve consisting of global minimizers
of the cost ftinction. We introduce a notion of the restricted maximum likelihood
and nonlinear E^ ratios measuring the quality of the fit. Numerical methods for
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Fig. I Simulation of a mean reverting process driven by (1) with parameters: K = 1, cr
0.2, d - 0.04 within the time interval (0,20).

optimization steps are discussed in Section 4. A special attention is put on the
algorithm for minimization of the cost function following a variant of the evolu-
tion strategy based optimization method. Section 5 is devoted to data description
and parameter estimation results for several European financial markets. We also
present results of a posteriori testing of prediction capability of the CIR model.
Discussion and concluding remarks are presented in Section 6.

2 Cox, Ingersoll, and Ross interest rate model

The Cox, IngersoU. and Ross interest rate model is derived from a basic assump-
tion made on the form of a stochastic process driving the instantaneous interest rate
rt,t e [0 ,r] . In the CIR model we assume the instantaneous interest rate (short
rale) satisfies the following mean reverting process of the Orstein-Uhlenbeck type:

drt = K[B - Tt)dt -I- ay/ndwt (1)

where {wt, t > 0} denotes the standard Wiener process. Positive constants K, B
and a denote the adjustment speed of reversion, the long term interest rate and
volatility factor of the process, respectively. The term a'^r is then local variance
of the real interest rate process. In Figure 1 we plot sample data obtained from a
simulation of equation (1). In the CIR theory the price P - P{t, T, r) of a zero
coupon bond is assumed to be a function of the present time ( € [0, T], expiration
time T > 0 and the present value of the short interest rate r = rt. Recall that
the crucial step in derivation of any one-factor model, including CIR model in
particular, consists in construction of a risk-less portfolio containing two bonds
with different maturities. Next, as a consequence of the Ito lemma, one obtains a
backward parabolic partial differential equation for the price of the zero coupon
bond P = P{t, T, r) of the form:

dp 1 2
-or te , r > 0 . (2)

The parameter A G IR represents the so-called market price of risk (see Kwok
(1998)). A solution P to (2) is subject to the terminal condition P{T, T,r] = I
for any r > 0. It is well known (see e.g. Kwok (1998)) that PDB (2) with such a
terminal condition admits an explicit solution in the form:

P{T - r = T - [0,T], (3)
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where

/ \ ) ^ , ^ , Mr) = (Vr^^M) (4)

and77 - ./{K

2.J Essential CIR parameters. Parameter space reduction.

As it has been already pointed out by Pearson and Sun (1994) the adjustment speed
K and the risk premium A appears in (4) only in summation K + X. This is why four
CIR parameters can be reduced to three essential parameters fully describing the
behavior of the functions A, B. In what follows, we present an idea how to reduce
the four dimensional parameter space into essential three aggregated parameters.
It consists in introducing the following new parameters:

= e \ i^ '-, g=—- 5)
27/ D-2

where 77 = ^^{K -\- A)̂  + 2(T^. Conversely, the original CIR parameters K, CT, 9, A
can be expressed in terms of ;3, ^, g as follows:

- 0 , ^ - ^ •

Let us denote V = (0,oo)^ x E C f* and I? = (0,1) x (0,1) x IR C E^. Then
the transformation T .V -^ I? defined as in (5), i.e. T(K,CT, 0, A) = (/?,{,^), is a
smooth mapping and, for any (/?, ̂ , g) G /?, the preimage

^" ' ( /3 ,^ ,^) = {(KX,(TA,^A,A) G IK\ A e J } , j = ( - o o , - ( 2 e -

is a smooth one-dimensional A-parameterized curve in X> c K*. Here

2 K , ) . (6)

It is worth to emphasize that the vaiue of the volatility a\ is independent of A.
In terms of new variables ffy^^g, the functions A{T),B{T) can be expressed as
follows:

In the sequel, we will use the notation Aj = A{TJ) and Bj = B{TJ) where TI <
T2 < ... < Tm Stand for maturities of bonds forming the yield curve. We put
TO = 0 .

Summarizing, in the CIR model the price of bonds and, consequently, the cor-
responding yield curve depends only on three transformed parameters 0, ^ and g
defined as in (5).

Although the analysis of the Vasicek one-factor interest rate model (see e.g.
Kwok (1998)) is not a subject of this paper it should be noted that a similar para-
meter reduction can be also done for this modei. The reader is referred to SevCoviC
and Urbanovi (2004) for details.
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3 Two-phase minmax optimization method for estimation of the CIR model
parameters

In this section we discuss the core of the method for estimation of the CIR model
parameters. The method consists of two steps. In the first step we identify one di-
mensional curve ofthe CIR parameters by minimizing the cost functional. Loosely
speaking, it mimics least squares approach in linear regression methods. However,
it is worthwhile to emphasize that the proposed minimization problem is highly
nonlinear and as such it requires special treatment from both qualitative as well as
numerical point of view. Having identified the curve of global minimizers of the
cost functional we proceed by the second step - maximization of the likelihood
function restricted to that curve. The global maximum is attained in a unique point
- a desired estimator of the CIR model parameters. A short research announce-
ment containing a brief description of this method and preliminary and incomplete
calibration results have been presented by the authors in [27].

At the end of this section we furthermore introduce a notion of the restricted
maximum likelihood ratio (MLR) and nonlinear R^ ratio measuring quality of
estimation of CIR parameters.

3.1 Nonlinear least square minimization

The goal of the first step of the two-phase estimation method consists in minimiza-
tion of the weighted least square sum of differences between real market yield
curve interest rates and those predicted by CIR model. To this end, we introduce
the following cost functional:

um,e) = -^-^{ii--R^?rf (8)
j=l i= l

where {7? ,̂ J = 1, ...,7n} represents the yield curve of the length m at time i =
l,...,7i. It consists of interest rates on zero coupon bonds with timer, to maturity.
By {^j'i = l,...,7n} we have denoted the corresponding yield curve computed
by using the CIR model with parameters 0, ^, Q. The instantaneous interest rate
(short rate) at time z = 1,..., n, is denoted by RQ. Notice that the values -R] can be
calculated from the bond price - yield curve relationship:

Aje~^'^'° ^ P ^ e~^^> .

Hence ^*TJ — BjR}^ — lnAj. After some straightforward calculations, the cost
functional U can be rewritten in a simplified form

)
3

(9)
where E{Xj) and D{Xj) denote the mean value and dispersion of the random
vector Xj — {Xj,i = l,...,7i}, resp. Expression (9) for the cost functional is
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much more suitable for computational purposes because it contains aggregated
time series information from the yield curve only. Indeed, D{TJRJ - BjRo) =
TJD{Rj) -2rjBjCov(Rj, R{i) + B'jD{Ro) andcumu\a.t\ve sl&tislical information
regarding mean and covariance of term structure Rj series can be preprocessed
prior to optimization.

Let us denote by P^ and Pj the market bond price and the bond price predicted
by the CIR model, resp., at time instant i with time to maturity TJ. By (3) Pj =

e - ^ ^ ' andR^ = e ' ^ ^ ^ Thus IP? - P; | < I/?! - ^5 |TJ . Hence the value [/of
the cost function is an upper bound for the average value of squares of differences
between observed market bond prices and those computed from the CIR model.

Concerning existence of a global minimum of [/ on J? we note that the function
U is coercive for ||0| -»• oo, i.e. t/ ->̂  oo for |^| -^ oo. Thus the global minimum
of U is attained on a bounded subset Of, of J?. Furthermore, data vectors Rj.j =
0,..., m, enter expression for U in terms of their means and covariances. Now if
a global minimum of U is attained at multiple minimizers, one can perturb input
data vectors Rj slightly to achieve unique global minimizer oft/. It means that, for
a generic input vectors of term structures, there exists a unique global minimizer
oft/ .

3.2 The restricted likelihood function and the maximum likelihood ratio

In this section we analyze how to measure a quality of estimation of CIR para-
meters. The idea is based on the maximum likelihood estimation combined with
minimization of the cost functional U.

First, we focus on the estimation of parameters based on the analysis of the
mean reverting process (1). According to Bergstrom [6, Theorem 2] (see also [5,
71) the time discretized model corresponding to stochastic equation (1) reads as:
r( - Tt-i = [B — r£-i)(l - e""") + €t where £( is a normally distributed random
variable with zero mean and dispersion a^rt-i. Such a discretization can be used
for the estimation of structural parameters K, 6 and a. Furthermore, the logarithm
of the Gaussian likelihood function for such a time discretization of (1) has the
form:

\( ^) (10)

where v\ = ^ (1 - e-^") n _ i , £( = r̂  - e-'^n-x -B{\~ e"'') (see [61). Fol-
lowing the maximum likelihood approach, the estimator of the model parameters
is the argument (/c",(7",^^) of the maximum of In L(>c,f7,^) taken over the whole
feasible set R^, i.e.

= max InL{K,CT,e). (11)

Hereafter, the upper index u indicates that the maximum is unrestricted and is
taken over the whole feasible 3D parameter space E^.

Since the likelihood function lnL is determined from equation (1) both the
value In L" as well as the estimated parameters «•", a", ^" are independent of the
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market price of risk A. On the other hand, the rest of the yield curve {R^,j =
l , . . . ,m} depends on A and is not taken into account during calculation of the
maximum of the likelihood function.

Combining information gained from minimization of the cost functional U we
are yet able to introduce the concept of a restricted likelihood function. In this
approach we optimize ln L over a one dimensional subset of parameter values.
This restricted set consists of ail tripIes(/CA,CTA,̂ A) C (0,oo)^, A G J,for which
the cost function U (in corresponding transformed variables) attains the global
minimum. More precisely, let (^, i,Q) c i7 be the unique global minimum of U
on fi, i.e.

Now we find a global niaximum of the likelihood function ln L over the one di-
mensional curve T-^{^, ^, Q) = {{Kx,a^,dx,X) 6 M^ A € J} (see (6). Lei

inL'' = \nL{Kj^,a-x,O-^) = max\nL{Kx,ax,dx). (12)

Now^we are in a position to identify the resulting optimal values R = K^.a =
ai,9 - 9^ and A as the estimator of the CIR parameters obtained by the two-
phase minmax optimization method described ahove.

Next we introduce the maximum likelihood ratio as follows:

.

We have MLR < 1. Notice that the value of MLR close to 1 indicates that the
restricted maximum likelihood value ln L^ is close to the unrestricted one. In this
case one can therefore expect that the estimated values {K.,a,$) of CIR parame-
ters are close to the argument (K",cr",^") of the unique global maximum of an
unrestricted likelihood function. It means that the direct estimation of parameters
of the mean reversion equation (1) is also suitable for estimation of the whole term
structure. In other words, values of MLR close to I indicate that the CIR model
can be accepted for estimation of the whole term structure.

3.3 The nonlinear R? ratio

The I^ ratio plays an important role in the frame of linear regression methods
based on the least square estimation techniques. The value of R"^ close to 1 in-
dicates that the given data set can be regressed by a linear function. However, in
nonlinear regression methods based on minimization of sum of squares of func-
tions nonlinearly depending on estimated parameters there is no unique way how
to define the equivalent concept of the R^ ratio. It substantially depends on the
choice of the reference value. Hence, by an appropriate choice of the reference
value, we are able to introduce a notion of the so-called nonlinear R? ratio mea-
suring quality of nonlinear regression based on minimization of the cost functional
U defined as in (8).
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We take the reference value of the cost functional U by taking the argument
(/3, ̂ ,g) = (1,1,1). Since lim^-ji Bj = r, and In Aj = 0 for /3 = 1 it is easy to
calculate that

and, moreover, t / ( l , 1,1) = {/(I, ^, g) for any ^ e [0,1] and geR.'We define the
nonlinear R^ ratio as follows:

where {0,^,p) is the argument ofthe unique global minimum ofthe cost func-
tional C/. Then 0 <R^< 1. The value of/?^ close to 1 indicates that ?7(/?, 4, p) «;
U{1,1,1), i.e. the cost functional U is close to zero at {$,^,p). It means almost
perfect matching of the CIR yield curve computed for parameters 0, ^, p) and that
of the given real market data set.

4 Numerical and optimization methods

In this section we discuss an optimization method for solving the minimization
problem for the cost functional U on J7. It is worthwhile to note that the function
U = t /{^ ,^ , Q) is nonlinear and it is not know (at least to the authors) whether U
is convex or not. In such a case it is hard to find a global minimum by standard
optimization techniques like e.g. steepest descent gradient minimization method
of Newton-Kantorovich type (cf. [2]). In general, such methods are know to con-
verge to a local minimum only or they may even converge to a global minimum but
the speed of convergence is very slow. To solve the global minimization problem
for the function U we need a robust and efficient numerical method uncondition-
ally converging to a (unique) global minimum of U. Our optimization method is
based on a variant of the evolution strategy (ES) algorithm. In each optimization
step the approximation of a global minimum obtained by the evolution strategy is
furthermore improved by the corrector step consisting ofthe Newton-Kantorovich
steepest-descent gradient minimization method.

Evolution strategy (ES) is the one of the most successful stochastic algorithm
which was invented to solve technical optimization problems. The reader is re-
ferred to papers by Schwefel (1977, 1995, 1998) for a comprehensive overview
of modem ES optimization methods and their possible applications. Recall that
many different versions and applications of ESs have been developed, but they are
mostly evolution based processes by means of which we find an optimal value .
Parameters are arranged in vectors of real numbers. The main concept of this strat-
egy is based on the survival of the fittest calculated from the value of the function
to be minimized. There exist many different types of this stocbastical algorithm
like the two membered (1 + 1) ES, tbe multi-membered [p, c) ES. (p + c) ES etc.
The {p + c) ES has p parents and c children (offsprings) per population, among
which the p best individuals are selected to be next generations parents by their
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fimess value. The modification (p + c + (i) ES comprises selection from a wider
set consisting of parents, children and d wild type individuals.

Recall that our task in the first optimization phase is to find the real valued
vector 0.^ ^, p) for which the global minimum of the function U is attained on Q.
The proposed algorithmic description of the optimization method based on the ES
is as follows:

The initial population of parent vectors {0,^,p)k< k = l , . . . ,p, is generated
as uniformly distributed random numbers from the a hounded subset Ob of the
domaini'?forevery A:. We takef4 = {{^,^, £>) G X2,0 < ^ < Qmax} wheregmax
is large enough.

1. Vector of children (offspring) (^,^,p)/, / = 1, ...,c, is created from parents
{0,^,p)ki k = l , . . . ,p, hy mutation and recombination operators. The number
of children must be greater or equal to the number of parents. Mutation is
realized by perturbing the data by a Gaussian random variable with zero mean
and preselected standard deviation to each component of the vector of parents
(/3,^,p)fc,fc = 1, ...,p. Recombination is realized by crossing-over parts of
randomly chosen vectors of children.

2. Vector of the wild type population 0,1, p)o, o — l,...,d, is generated ran-
domly from J? in the same way as the initial population.

3. Every member of the population (parents, children, wild population) is char-
acterized hy its fitness vaiue, which is the value of the cost functional U.

4. Selection chooses the best p parent vectors by their fitness value U to he the
next generation of parents. A set of p intermediate parents is obtained.

5. Each of intermediate parents is further improved hy m steps of the gradient
Newton-Kantorovich method. A set of p improved parents is obtained.

6. Finally, selection chooses the best p new parents hy their fitness value from the
set of intermediate and improved parents.

The process continues until termination criterion is fulfilled. In our case this
criterion is the number of populations equal to a given number N. For optimiza-
tion purposes we have used the parameters p = c = d = 10^,N — 300 and
the standard deviation for Gaussian mutation operator equal to 0.01. We did not
up-date the the standard deviation according to Rechenberger's rule (see Rechen-
berger (1973)) as it turned to he ineffective in our case. The number of Newton-
Kantorovich iterates was 30. It should he noticed that the time complexity of the
two phase estimation method is very high. Computation of CIR parameters for a
term structure with the length m î  10 takes 40 minutes in average. The over-
all computational time for all investigated examples of parameter estimation de-
scribed in the next section was 12 hours of CPU of the Comenius University Linux
parallel cluster containing twelve 3GHz processors.

5 European term structures

The aim of this section is to present results of the two-phase estimation method
for terms structures for various European countries. Moreover, the aim is to make



On a two-phase minmax method for parameter estimation 179

comparison of stable western European financial markets to those of transitional
Central European economies. More precisely, we will compare European inter-
bank offer rates EURIBOR, London inter-bank offer rates EURO-LIBOR and
USD-LIBOR, and inter-hank offer rates in Slovakia (BRIBOR), Hungary (BU-
BOR), Czech Republic (PRIBOR) and Poland (WIBOR).

5.1 Term structure description and summary statistics

The instantaneous interest rate n is the yield of a discount bond with maturity
in the subsequent time instant. As such is not observable and can not be used as
a state variable rt in (1). However, a good approximation for the instantaneous
interest rate is the so-called overnight or short rate where available. It represents
one day interest rate for inter-bank loans. The data for the overnight interest rate
are available for all investigated Eastern Europe financial markets (BRIBOR, PRI-
BOR, WIBOR, BUBOR) as well as for London inter-bank offer rates (LIBOR).
As far as the Euro-zone term structure EURJBOR is concerned we recall that there
exists a commonly accepted substitute for the overnight rate which is referred to as
EONIA. It is computed as a weighted average of all overnight unsecured lending
transactions in the inter-bank market, initiated within the Euro-zone area by 48
European Panel Banks. We also remind ourselves that the number of Panel Banks
is 16 for BUBOR, 10 for WIBOR and 7 for BRIBOR.

Our parameter estimation method for term structure data has been applied for
the period from the year 2001 up to 2003. EURO-LIBOR and USD-LIBOR term
structures contain bonds with the following maturities: I week, 1 up to 12 month,
i.e. its length is m = 13. EURIBOR, in addition, contains 2 and 3 weeks matu-
rities, i.e. its length is m = 15. BRIBOR contains 1, 2 weeks and 1, 2, 3, 6, 9,
12 months maturities with the length m = 8. BUBOR, PRIBOR, and WIBOR
contain the following maturities: I and 2 weeks, 1, 2, 3, 6, 9, 12 months, and then
each quarter up to 10 years maturity, i.e. their length is m = 39.

The sample mean and the standard deviation (STD), in each quarter, for dif-
ferent inter-bank offer rates is presented in Table 1 for year 2003. The mean of
BRIBOR. WIBOR and BUBOR is higher than the mean of the last three data sam-
ple (PRIBOR, EURIBOR and EURO-LIBOR) during the whole year. The same
is true concerning standard deviation. It is an indication that the Czech data could
have similar qualitative properties as the western European term structures.

The key issue of the CIR model is to model the short-rate as the mean reverting
process (I). In Figure 2 we present some examples of short-rate for specific sam-
ples of data (EURO-LIBOR, BRIBOR and PRIBOR). It can be seen from Figure
2 that the over-night is more volatile than the interest rates with longer maturity.

It is worthwile noting that parameters of various mean reverting diffusion
processes with linear drift and non-constant variances were estimated in [14]. The
parameters were obtained by ordinary least squares method for daily averaged loan
rates. Fischer and Zechner (1984) showed that mean reverting diffusion processes
are not capable of describing the long-run behavior of the instantaneous interest
rate. Therefore one has to choose shorter time periods for estimating CIR parame-
ters. We chose a period of quarter in our experiments.
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Table 1 Descriptive statistics for various term structures. Mean and standard deviation (in
%) are shown for the overnight rate and the rate on the longest bond with 1 -year maturity.

BRIBOR

WIBOR

BUBOR

PRIBOR

EURIBOR

EURO-LIB

on

ly
on
ly
on
ly
on

ly
on

ly
on

ly

1/4 2003
Mean
5.75
5.48
6.65
5.95
5.42
6.57
2.52
2.43
2.77
2.54
2.79
2.54

STD
1.041
0.205
0.761
0.138
1.813
0.433
0.107
0.130
0.188
0.140
0.196
0.139

2/4 2003
Mean
6.27
5.42
5.76
5.19
7.08
6.76
2.44
2.33
2.44
2.23
2.47
2.23

STD
1.279
0.208
0.359
0.255
0.879
0.773
0.045
0.084
0.199
0.189
0.196
0.187

3/4 2003
Mear
5.63
5.80
5.22
4.97
9.58
8.80
2.06
2.13
2.07
2.20
2.08
2.20

STD
0.802
0.066
0.438
0.053
0.547
0.207
0.135
0.063
0.120
0.106
O.IOl
0.105

4/4 2003
Mear
5.48
5.50
5.17
5.79
10.52
10.02
1.94
2.19
2.02
2.36
2.02
2.35

STD
0.992
0.033
0.438
0.380
1.213
1.334
0.032
0.061
0.169
0.081
0.139
0.085

5.2 Results of parameter estimations

The results of estimation for CIR model parameters, corresponding maximum like-
lihood (MLR) and R^ ratios are summarized in Table 2 for term structures with
shorter maturities and in Tahle 3 for those having longer maturities.

Table 2 reports quarterly results for BRIBOR, WIBOR, BUBOR, PRIBOR,
EURO-LIBOR and EURIBOR for the year 2003. Estimated parameters K, a, B, A,
the value of the cost functional (U x 10~^) and the nonlinear R^ ratio together with
the maximum likelihood ratio (MLR) are presented. Behavior of the long term av-
erage interest rate B is in accordance to what is expected by the market in the long
term run. It predicts long term interest rates close to 1.7% for EURO-LIBOR and
EURIBOR as well as for PRIBOR. Other term structures also indicate decrease
of interest rates in the future but these estimations of 9 are quantitatively less con-
vincing compared to EURO-LIBOR, EURIBOR and PRIBOR predictions. Results
of estimation for K show that the speed of adjustment for HURJBOR and EURO-
LIBOR is comparable. The lowest values of estimated K were achieved by the
PRIBOR term structure. On the other hand, highest values of K were achieved for
BRIBOR which is in accordance to highly fluctuating character of BRIBOR inter-
est rates (see Figure 2). The estimated volatility parameter a of the mean reverting
process has a similar behavior for WIBOR and BUBOR, and, it is very large for
the Slovak BRIBOR data. On the other hand, results for the Czech data enables us
to conclude that the volatility of PRIBOR quantitatively and qualitatively is very
similar to that of EURIBOR and EURO-LIBOR. In terms of the maximum like-
lihood ratio (measuring appropriateness of the CIR model), the overall quality of
estimation is better for PRIBOR, EURIBOR and EURO-LIBOR. The nonlinear
R^ ratio is mostly close to one for all data, but there are some exceptions.

Table 3 presents quarterly results of parameter estimation for WIBOR, BU-
BOR and PRIBOR for years 2002-2003. in this case the term structures include
interest rates on bonds with rather longer maturities, up to 10 years. Due to the
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Fig. 2 Graphical description of overnight (short-rate) interest rates and those of bond with
longer maturity. Daily data are plotted for EURO-LIBOR (a), BRIBOR (b) and PRIBOR
(c)

increased length ofthe term structures, the quality of approximation expressed by
MLR and R^ has decreased. Estimated values of the parameter 9 are again in ac-
cordance with market expectations on decrease of future interest rates. However,
quantitatively these results are less convincing when compared to estimation of 6
based on shorter term structures shown in Table 2. The reason is that bond with
long maturities are considerably less traded and their price need not necessarily
follow basic assumptions made in the CIR theory. In terms of i?^ ratio the accu-
racy of estimation is high for all term structures. Nevertheless, in terms of the MLR
the CIR model seems to be more appropriate for the Czech PRIBOR, similarly as
it was stated for shorter term structures.

In Figure 3, parts (a) and (b) we show comparison ofthe MLR and R^ ratios
for EURO-LIBOR an USD-LffiOR. As we can see they are strongly correlated.
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Hence, in the next parts of this figure, we present a comparison of results of pa-
rameter estimation for EURO-LIBOR, BRIBOR, PRIBOR and WIBOR only. The
graph (c) displays their MLR. In most quarters, this ratio is better for EURO-
LIBOR and the worst for BRIBOR. Eor the last two samples (PRIBOR and WI-
BOR), it is varying. In the graph (d) we can see that the best R^ is achieved for WI-
BOR and the worst for PRIBOR. R^ is varying for BRIBOR and EURO-LIBOR.
Parts (e) and (f) presents estimated parameters B (long term average interest rate)
and (7 (volatility of the process (1)). Eor PRIBOR and EURO-LiBOR the results
are similar not only for 9 but also for a. The volatility of the process for Slovak
data is very high and also parameter 9 is quite volatile.

Eigure 4 presents the results of parameter estimation for term structures with
longer maturity. The MLR depicted in part (a) is getting better for WIBOR and
just opposite could be claimed for PRIBOR. The nonlinear R"^ ratio is comparable
for these data, except of the beginning of the estimated period. Parts (c) and (d)
compares the estimated parameters 9 and a, resp. The limiting interest rate is very
different for these data, but the volatility of the process (1) of WIBOR is tending
to the volatility of PRIBOR.

5.5 A posteriori prediction of future term structures

In this section we present results of a posteriori testing of term structures predic-
tion. The idea of testing is rather simple and consists in comparison of the values
of the optimal value of the cost functional U and its value computed by using CIR
parameters calibrated a time period before.

Let us consider a term structure data for a given period p of time. Let us denote
t>y $p, ip, Pp optimal values of transformed parameters for which the cost func-
tional U = Up (see (8)) corresponding to the period p attains its unique global
minimum. Similariy, by /3p_i,^p_i,pp_i we denote the minimizer of the cost
functional Up-i corresponding to the previous period p — L Then the quality of
prediction (QP) can be measured by the square root of the ratio of Up{Pp, ^p, Pp)

^ 4

Clearly, 0 < QP < 1 and a value of QP close to 1 indicates very high level
of prediction capability of the model. On the other hand, a value of QP close to
zero enables us to conclude that one cannot use parameters calibrated from the
previous period in order to predict the term structure in the present period. In
Table 4 we present values of the QP ratio computed for various term structures
(EURO-LIBOR, EURIBOR, WIBOR, PRIBOR, BUBOR and BRIBOR) for the
three quarter periods in 2003. The QP ratio is qualitatively similar for EURO-
LIBOR and EURIBOR as expected. High prediction ratios QP have been obtained
for the second quarter of PRIBOR, BRIBOR and BUBOR when estimated CIR
parameters were calibrated from the first quarter of 2003. Unsatisfactory QP ratios
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Table 2 Numerical results of calibration for short term structures (up to one year) for BRI-
BOR, WIBOR, BUBOR, PRIBOR, EURIBOR and EURO-LIBOR. Results cover 4 quarters
of 2003.

BRIBOR
1/4 2003
2/4 2003
3/4 2003
4/4 2003
WIBOR
1/4 2003
2/4 2003
3/4 2003
4/4 2003
BUBOR
1/4 2003
2/4 2003
3/4 2003
4/4 2003
PRIBOR
1/4 2003
2/4 2003
3/4 2003
4/4 2003
EURIBOR
1/4 2003
2/4 2003
3/4 2003
4/4 2003
EURO-LIBOR
1/4 2003
2/4 2003
3/4 2003
4/4 2003

K

688.298
38.467
598.875
793.487

10.103
7.459
33.370
40.925

14.233
14.166
134.256
2.715

0.098
36.934
2.836
3.385

40.927
0.818
39.209
15.592

34.118
0.734

^40.018
9.217

a
8.960
1.509
8.276
9.396

0.622
0.877
0.707
0.972

0.576
0.671
5.064
0.812

0.007
0.728
0.067
0.097

1.030
0.028
0.644
0.360

0.689
0.024
0.699
0.286

e
0.0025
0.0458
0.0031
0.0022

0.0564
0.0204
0.0483
0.0455

0.0555
0.0626
0.0035
0.0111

0.0248
0.0209
0.0200
0.0187

0.0202
0.0240
0.0178
0.0180

0.0241
0.0244
0.0175
0.0178

A
-658.657
-6.302
-568.839
-764.117

-0.362
-4.457
-1.149
-8.718

-2.425
-0.658
-130.883
-2.508

0.092
-4.714
-0.212
-0.626

-8.724
0.252
-6.986
-3.451

-1.897
0.276
-7.797
-2.243

U
(xlO"*')
1.629
1.704
0.487
0.339

0.660
1.075
0.169
3.766

6.118
2.967
1.037
19.593

0.134
0.238
0.028
0.088

0.506
0.319
0.143
0.145

0.634
0.432
0.221
0.221

R^
0.947
0.971
0.971
0.986

0.966
0.897
0.976
0.820

0.965
0.805
0.940
0.208

0.633
0.428
0.897
0.924

0.783
0.746
0.807
0.941

0.818
0.790
0.714
0.929

ML
ratio
0.528
0.719
0.536
0.551

0.702
0.519
0.750
0.709

0.964
0.684
0.363
0.394

0.904
0.514
0.799
0.685

0.654
0.876
0.735
0.778

0.712
0.864
0.703
0.758

have been obtained in prediction of term structures of PRIBOR and BUBOR in the
third quarter.

5.4 Risk premium analysis

In this section we discuss and analyze results of parameter estimation for the pa-
rameter A representing the market price of risk in the CIR model. We remind our-
selves that according to the CIR model the price of a zero coupon bond P =
P{t, T, r) satisfies the parabolic equation (2) and is given by the explicit formula
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Table 3 Numerical results of calibration for ten years term stractures of WTBOR, BUBOR.
PRIBOR. Results cover 4 quarters of 2003.

WffiOR
2/4 2002
3/4 2002
4/4 2002
1/4 2003
2/4 2003
BUBOR
2/4 2002
3/4 2002
4/4 2002
1/4 2003
2/4 2003
PRIBOR
2/4 2002
3/4 2002
4/4 2002
i/4 2003
2/4 2003

K

32.496
0.739
1.506
4.614
3.773

14.797
4.380
1.546
23.237
23.329

0.686
0.306
0.274
0.158
0.119

a
2.604
0.203
0.060
0.334
0.080

1.576
0.928
0.53!
1.231
1.816

0.174
0.014
0.012
0.077
0.075

e
0.0048
0.0625
0.0721
0.0603
0.0579

0.0049
0.0098
0.0289
0.0450
0.0066

0.0210
0.0319
0.0280
0.0075
0.0022

A
-32.244
-0.118
0.320
0.455
0.523

-15.044
-4.453
-1.049
-6.870
-21.394

-0.524
-0.150
-0.177
-0.251
-0.239

U
(xlO-^)
423.220
407.977
352.889
47.817
96.430

713.717
216.067
649.690
64.998
90.866

54.246
124.070
62.261
38.768
97.038

R 2

0.973
0.906
0.926
0.989
0.945

0.735
0.966
0.962
0.996
0.974

0.991
0.975
0.989
0.993
0.981

ML
ratio
0.408
0.655
0.911
0.753
0.934

0.413
0.412
0.467
0.902
0.455

0.520
0.986
0.876
0.595
0.538

Table 4 The quality of the prediction ratio QP evaluated for various term structures from
Central European counirics and three quarters of the year 2003.

2/4 2003
3/4 2003
4/4 2003

EURO-LIBOR
0.34
0.39
0.58

EURIBOR
0.33
0.37
0.57

PRIBOI^
0.93
0.13
0.62

WIBOR
0.34
0.45
0.42

BRIBOR
0.95
0.38
0.40

BUBOR
0.93
0.09
0.57

P{t,T,r) = A{T-
rewritten as

dP ,„ .

2

'. Thus drP = -BP. Hence equation (2) can be

i € ( 0 , r ) , r > 0 (15)

where r* = (1 - XB)r. According to [21] the multiplier 1-\B can be interpreted
as the risk premium factor and r' as the expected rate of return on the bond. It is
easy calculus to show B{T) > T > 0 and therefore we have r' > r iff A < 0. On
the other hand, if A > 0 market bond return r' is less than risk less return rate r.

It follows from Table 2 that the market price of risk A is negative in most time
periods. It implies that the expected rate of bond return r* is greater than instanta-
neous rate r. There are however some short lime periods in which the market price
of risk is positive for EURIBOR and KURO-LIBOR (2nd quarter). In Figure 5 we
plot the risk premium factor 1 - A.B for 10 quarters since the third quarter of 2001.
We chose B = Bi, i.e. we plotted the risk premium for bonds with one week ma-
turity. Figure 5 (left) displays the risk premium of EURO-LffiOR and PRIBOR.
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CIR maximum Ilkallhood rabo CIR nonlinear R ' ratio
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(0
Fig. 3 Results of parameter estimation for various term structures. Maximum likelihood
ratio (a) and R^ ratio (b) for EURO-LIBOR and USD-LIBOR. Comparison of the same
factors for EURO-LIBOR, BRIBOR, PRIBOR and WIBOR is presented in (c) and (d),
resp. Estimated parameters 9 and a are shown in (e) and (0, resp.

They are comparable as far as behavior and range of values are concerned. The
right figure presents a comparison for EURO-LIBOR with WIBOR and BRIBOR.
The risk premium is quite similar for WIBOR and EURO-LIBOR except of the
third quarter of 2(X)3. However, this factor is extremely large and highly volatile
for the Slovak BRIBOR term structure.

6 Discussion

We proposed a new two-phase minmax optimization method for parameter esti-
mation of the CIR one-factor interest rate model. The advantage of our method
consists in the reduction of the parameter space together with the two-phase op-
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CIR maximum likelihood ratio CIR nonlinear R ratio
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Fig. 4 Results of parameter estimation for term structures with maturities up to 10 years.
Maximum likelihood ratio (a) and R"^ ratio (b) for BRIBOR. WIBOR and BUBOR. Esti-
mated parameters 6 and a are shown in (c) and (d), resp.

Risk premium

3/4
?0Q1

4/4 1/4 2(4 3/4 4/4 1/4 2/4 3/4 4(4
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3/4 * 4 1/4 2/4 3(4 4/4 1/4 2/4 31A AIA
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Fig. 5 Comparison of risk premium factors 1 - XBi for EURO-LIBOR and BRIBOR (Iefl)
and EURO-LIBOR, WIBOR and BRIBOR (right).

timization procedure based on minimization of the cost functional accompanied
with maximization of the likelihood function restricted to the set of cost func-
tional minimizers. We have tested our estimation method various term structures
including stable western inter-bank offer rates as well as those of transitional coun-
tries. Based on our results of parameter estimation for the CIR one-factor model
we can state that the western European term structure data are better described
with CIR model compared to transitional economies represented by Central Eu-
ropean countries. This model can be applied in order to estimate CIR parameters
for EURO-LIBOR, USD-LIBOR and EURIBOR term structures. Interestingly, to
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some extent, it could be also applied for estimation of CIR parameters for the
Czech PRIBOR term structure. On the other hand, we can observe, at least partial,
quantitative failure of the CIR model for other Central European term structures.
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