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Chapter 1

Introduction

In recent decades, new interest rate dependent securities have appeared, like bond

futures, options on bonds, swaps etc., whose payoffs are dependent on the interest

rates. It means that their values are influenced by the interest rate. Expansion of the

market with interest rate dependent securities, due to the need of risk management

and also the speculative business, leads to valuation of these securities. In the con-

struction of valuation models, it is important to incorporate the stochastic movement

of interest rate into consideration. In this construction the random fluctuations of the

interest rate market could be the right and realistic way. The stochasticity of the in-

terest rate, especially the term structure of interest rate has to be modeled correctly.

The term structure is a functional dependence between the time to maturity of

a bond and its yield. Relevant interest rate models characterize the bond prices (or

yields) as a function of time to maturity, state variables e.g. instantaneous interest

rate as well as several model parameters. Although several approaches for pricing

interest rate derivatives have been proposed, no definite pricing model has been

reached with regard to the best approach for these problems. Term structure models,

as an important part in financial derivatives theory, have attracted a lot of attention

from both a theoretical as well as practical point of view.

Much effort is being spent to calibrate interest rate models. Well known methods

from the literature are for example the Generalized Method of Moments, the Gaus-

sian estimation methods, the Monte Carlo filtering approach or the MCMC (Markov

Chain Monte Carlo) method. These methods have been applied not only for bond

pricing but also for interest rate swaps. Recently, other estimation methods for inter-

est rate models have been proposed. These methods are based on other interest rate
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derivatives like e.g. prices of caps and floors. However, such derivatives are still not

available in some financial markets including most of transitional Central European

countries.

However, less attention is put on possible applications of interest rate models

to Central European financial markets like Czech Republic, Slovakia, Poland and

Hungary. Furthermore, a comparison to stable Western European financial markets

has not been done yet.

There is a difference between Central and Western European financial markets.

The convergence of former socialist countries and their financial markets to the west-

ern ones is evident. The question is: how far they are form each other? In another

way: is the interest rate modeling different in these countries or not? To get an an-

swer to this question we have to know the background of Central European markets

and also to be familiar with the term structure modeling. Chapter 2 introduces the

motivation for the calibration of interest rate models, the Cox-Ingersoll-Ross (CIR)

and Vašiček interest rate models. We recall the term structure of interest rate and

briefly review the basic properties of the one factor interest rate models, in particular

CIR and Vašiček models.

There exist three main types of term structure models. In Chapter 3 there is a

brief review of the equilibrium models, the no-arbitrage models, the LIBOR market

models and the multi factor versions of some of them. First, the equilibrium models:

they start with some assumptions about economic variables and imply a process for

short-term interest rate. Second, the no-arbitrage interest rate models: they are

designed to be consistent with today’s term structure. In this class of models, the

term structure is an input to the parameter estimation. Third, the LIBOR market

models: these models present a tool for exotic interest rate derivatives pricing. They

provide conditions on the drift of the forward rates if arbitrage is to be prevented.

The above mentioned models are used in the pricing of interest rate derivatives. For

some of them there exists an analytical solution. Unfortunately, for most of them,

no analytical solution exists, neither exact nor approximate. The parameters of these

models need to be specified properly for appropriate pricing of securities.

The most important estimation techniques and calibration methodologies, such

as the Markov Chain Monte Carlo method, Generalized Method of Moments and

the Maximum Likelihood Method are described, to compare their advantages and

disadvantages to the developed and in this thesis presented new method. It tries to

eliminate the disadvantages of the other methods.

Models which are analyzed in this thesis are the well known Cox-Ingersoll-Ross

one factor interest rate model and Vašiček interest rate model. They belong to the

set of equilibrium models. These models generate predicted term structures whose

shape depends on the models parameters and the initial short rate.

Chapter 4 is focused on our goals. It contains topics on which is our work focused

on.

The transformation of parameters of the CIR and Vašiček models and the optimal

choice of some of these parameters are presented in Chapter 5. Using the introduc-
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tion of new parameters it is possible to reduce the parameter space. This knowledge

will be used during the calibration of the loss functional to real data. The loss func-

tional need not be necessarily convex, so we have to introduce a robust numerical

method for the optimization. This method is based on a variant of the evolution strat-

egy. Of course there exist other methods solving the non-linear optimization problem.

They are also discussed in this chapter. The calibration of two factor models is com-

plex because of the involved second stochastic factor. We propose a suggestion on

the loss functional for these models and also sketch its possible minimization.

The following part of the thesis consists of two main chapters where the internal

and external methods of calibration are described. The main difference between

these two methods is that we use extra information e.g. from an expert in the external

calibration method. This is not used in the internal calibration method.

The internal calibration described in Chapter 6 is based on the two step opti-

mization method. In the first step we find a global minimum of the non-linear loss

functional and after that in the second step we find a maximum of the likelihood

function over one dimensional curve consisting of global minimizers of the loss func-

tional. This method uses information only from the data basis. The quality of the

fit is measured by non-linear R2 ratio. This calibration method uses only the means

and the covariances from the data. It means that the whole term structure is not

used in the calibration. Bounding of means or the term structures of interest rates

uses more information from the data. This step is a connection between the internal

and external calibration method. The application of the above mentioned internal

calibration method is presented at the end of this chapter. This estimation method is

extensively tested for several European financial markets, on real market term struc-

tures, the Euro-zone term structures as well as Central European financial markets.

The binding interval approach is also tested on real data.

Comparing of the option pricing with the zero-coupon bond pricing and interest

rate (yield curve), we can conclude that there exists an analogy between them. It

means that not all parameters in the option pricing theory could be calibrated in-

ternally. This motivates us to try a new approach, the so-called external calibration

methodology, utilizing an externally provided parameter. The prescribed expected

long-term interest rate interval seems to be an appropriate choice. It is described in

Chapter 7.

Discussion and concluding remarks are presented in Chapter 8.

The thesis will be focused on parameter calibration of term structure models. It

will be preceded by parameter reduction and transformation. We will propose the

two step method of reduced parameter identification (the loss functional minimiza-

tion) in the first step and the transformed parameter identification in the second

step. The calibration will be based either on internal methodology (the restricted

maximum likelihood method or the mean value binding approach using the data ba-

sis) or on external methodology (using externally provided parameter or targeting

interval). Some of these results have been published in papers [64, 65].



Chapter 2

Term structures and their

modeling

In the most former socialist countries financial markets represented by banks and

other financial institutions as well as capital markets did not exist [75]. Stock mar-

kets that existed before, e.g. the Warsaw Stock Exchange or the Prague Stock Ex-

change were completely closed during socialism. In these countries financial systems

were based on one single institution, the so-called monobank. This bank was re-

sponsible for monetary policy and commercial banking. From the beginning of the

integration process of these countries into the world economy and the European

Union (EU) their financial sectors have developed and changed in two last decades.

The first few years of transition were mainly characterized by instability and

restructuring. The monobank system has been changed into two-tier banking sys-

tem meaning the separation of central bank and commercial bank functions. During

this period the capital markets (especially the bond markets and stock markets) and

money markets have been set up.

The second transition period was characterized by overall strengthening, devel-

opment, and macroeconomic stability with positive economic growth rates. Financial

sectors in the new EU member states are characterized by overall financial stability

and a trend of positive financial development such as increase in the size and effi-

ciency of the financial sector. The key features of these financial markets are the low

level of intermediation, the strong dominance of the banking sector, strong presence

of foreign owners and investors and the rise of institutional investments. The bond
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markets are generally small compared to western markets and dominated by govern-

ment securities. The most developed bond markets are in Hungary, Poland and the

Czech Republic. Derivatives markets appear to be quite active also in these countries.

Development of these financial markets is extremely dynamic. Interest rate deriva-

tives became very popular. The main reason is that the investors need to be hedged

against the interest rate risk which is the implication of unexpected interest rate

changing or twisting the yield curve. So, there is a requirement for a robust interest

rate derivative pricing model and a calibration methodology for this model to real

market data. There has been done a lot of research related to the calibration of var-

ious types of interest rate models. They are mostly applications on stable Western

European financial markets data. Less attention is put on the investigation of the

Central European markets (the Czech Republic, Slovakia, Poland and Hungary) and

their comparison to the stable western markets. There is a partial progress in this

direction made by Vojtek in [74].

2.1 What are term structures?

A bond (cf. [47]) is a contract under which the borrower promises to pay the bond-

holder periodic coupon interest payments and par value on specific dates. If there

is no coupon payment, the bond is said to be a zero-coupon bond. The par value is

also called the face value of the bond or principal. This value must be repaid at the

maturity date of a bond. The value of a bond is the present value of the cash flows

which are realized during the life of the bond. Bonds are traded securities and their

prices are observed in the market. The price of a bond depends on different factors,

like the fluctuations in interest rates or the outstanding coupon payments.

Let P (t, T ) denote the price at time t of a zero-coupon bond maturing at time T .

Par value is assumed to be P (T, T ) = 1. Yield to maturity R(t, T ) is defined by:

R(t, T ) = − 1

T − t
ln P (t, T ), (2.1)

which gives the internal rate of return at time t on the bond. The yield curve is the de-

pendence of R(t, T ) on T . Term structure of interest rate is a functional dependence

between the yield and the time to maturity T − t of a bond.

In the forward contract the holder agrees to buy one zero-coupon bond at a later

time T1 with maturity T2 > T1. The forward rate f(t, T1, T2) is the rate in time t for

the period between T1 and T2:

f(t, T1, T2) = − 1

T2 − T1
ln

P (t, T2)

P (t, T1)
. (2.2)

The instantaneous forward rate is:

F (t, T ) = − 1

P (t, T )

∂P (t, T )

∂T
. (2.3)
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Integration of the above expression together with (2.1) gives the following equa-

tion:

R(t, T ) =
1

T − t

∫ T

t

F (t, u)du. (2.4)

This indicates that the yield (or the bond price respectively) can be recovered from

the term structure of the forward rates.

Overnight or the spot interest rate is the initial point of the yield curve and is

defined as follows:

R(t, t) = F (t, t) = rt = −∂ ln P (t, T )

∂T

∣∣∣∣
t=T

. (2.5)

Several theories of term structures have been proposed to explain the shape of a

yield curve. First, the expectation theory stating that the long-term interest rates re-

flect expected future short-term interest rate. Second one is the market segmentation

theory stating that the yield curve will depend on the supply and demand conditions

for funds. Third one is the liquidity preference theory stating that the lenders prefer

to make short-term loans ([47]).

The analysis of term structure is important in the analysis of interest rate deriva-

tives and their pricing models, so it becomes also crucial in the calibration method-

ology.

2.2 Modeling interest rate fluctuations by means of

Wiener processes

A Wiener process is a special type of Markovian stochastic process. It is a stochastic

process describing the probabilistic evolution of the value of a variable through time

and because of the Markovian property, only the present value of the variable is

relevant for the future predicting. The past values and also the way how the variable

emerged from the past is irrelevant. These features are summarized in the following

definition.

Definition 2.2.1. The standard Wiener process w(t), t ≥ 0 is a stochastic process with

the following properties:

• every increment w(t+∆)−w(t) is normally distributed with mean 0 and variance

∆ > 0, for any t ≥ 0,

• for every 0 < t1 < ... < tn increments w(t2) − w(t1), ..., w(tn) − w(tn−1) are

independent random variables with distribution given in the first point,

• w(0) = 0 and the sample paths of w(t) are continuous.
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Figure 2.1: Trend of interest rates in 2005 for BRIBOR, PRIBOR, USD-LIBOR and

EURIBOR with different maturities (1 week - blue, 1 month - red, 1 year - green).

Horizontal axis represents time in days.
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Figure 2.2: Term structures of interest rates for BRIBOR, PRIBOR, EURO-LIBOR and

EURIBOR. Horizontal axis represents maturity in years.
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Figure 2.3: Simulation of a mean reverting process driven by (2.6) with parameters:

κ = 1, σ = 0.2, θ = 0.04, γ = 0.5 within the time interval (0, 20).



11

2.3 One factor interest rate models

The basis of the term structure modeling is the stochastic process of the short-term

interest rate in risk-less world and its influence on the bonds. It is important to realize

that there does not exist a process truly describing the interest rate fluctuations. As

we can see on Figure 2.1, the shapes of interest rates are different for various financial

markets. They also change by the time to maturity, but the trend is the same for the

short and the long one. Hence the modeling of such a different and complicated

shape of interest rates is difficult. In many models the basic assumption is that the

bond price depends on only one stochastic variable. These models are called the one

factor bond pricing models.

Let us assume that the short/spot rate rt
1 follows a special type of continuous

Markovian stochastic process, the mean reverting process of the form:

drt = κ(θ − rt)dt + σrγ
t dwt, (2.6)

where {wt, t ≥ 0} denotes the standard Wiener process, κ, θ, σ are positive constants

and γ is a nonnegative constant.

Parameter κ is the speed of reversion, σ is the volatility of the process and θ is

the limiting interest rate. The parameter γ is determining the type of the model. If

γ = 1
2

than the model derived from (2.6) is refereed to as the Cox-Ingersoll-Ross

(CIR) model. If γ = 0 then it is called the Vašiček model. Besides these two models

there exist a spectrum of one factor interest rate models, e.g. Dothan model, Brennan

and Schwartz model, etc.

In Figure 2.3 we plot sample data obtained from a simulation of equation (2.6)

to demonstrate how the Wiener process works in the interest rate modeling.

Using equation (2.1), the whole term structure can be determined as a function

of rt once κ, θ, σ and γ have been chosen in (2.6). The shape can be upward sloping,

downward sloping, or slightly humped as we can see on Figure 2.2 which is based

on real market data.

The main point of deriving a one factor model is the following Proposition which

can be considered as the extension of the rules of differential in ordinary calculus to

stochastic calculus.

Proposition 2.3.1. (Itô lemma) ([47], p. 29) Let f(x, t) be a C2 smooth, non-random

function and x(t) a stochastic process defined by:

dx = µ(x, t)dt + σ(x, t)dw

where w is the standard Wiener process. Then the stochastic process f(x(t), t) satisfies

the following stochastic differential:

df =

(
∂f

∂t
+ µ(x, t)

∂f

∂x
+

1

2
σ2(x, t)

∂2f

∂x2

)
dt + σ(x, t)

∂f

∂x
dw.

1From now on we will denote the short/spot rate rt = r .
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We assume that the short rate follows the mean reverting process (2.6). According

to Itô lemma the differential for the bond price P = P (t, T, r) 2 is the following:

dP =

(
∂P

∂t
+ µr

∂P

∂r
+

1

2
σ2

r

∂2P

∂r2

)
dt + σr

∂P

∂r
dw (2.7)

=: µ̃(t, T )dt + σ̃(t, T )dw

where µr = κ(θ − rt) and σr = σrγ
t . The µ̃(t, T ) is the drift rate and σ̃(t, T ) is the

variance rate of the stochastic process of P . To hedge the bond we construct a

portfolio of two bonds with different maturities. The interest rate can not be used in

the hedging because it is not a traded security. The portfolio is constructed from one

bond with maturity T1 and ∆ bonds with maturity T2:

π = P1(t, T1, r) + ∆P2(t, T2, r). (2.8)

The investor determines the ∆ to minimize his risk. Change in portfolio value in

time dt is:

dπ = dP1 + ∆dP2.

According to the bond price dynamics defined by (2.7) we get:

dπ = (µ̃1 + ∆µ̃2)dt + (σ̃1 + ∆σ̃2)dw. (2.9)

To eliminate the risk in the portfolio we put σ̃1+∆σ̃2 = 0. So we get the proportion of

the bonds with different maturities ∆ = −eσ1

eσ2

, and the value of the hedged portfolio

is

dπ =

(
µ̃1 −

σ̃1

σ̃2

µ̃2

)
dt. (2.10)

Since the portfolio is instantaneously risk-less, it must earn the risk-less spot interest

rate that is dπ = rπdt. Combining these two results for the portfolio change in time

dt we obtain:

rP1 − µ̃1

σ̃1
=

rP2 − µ̃2

σ̃2
.

This ratio is valid for all maturities, so the relation

λ̃(r, t) =
µ̃(t, T ) − r(t)P (t, T )

σ̃(t, T )
(2.11)

is independent of maturity T . The quantity λ̃(r, t) is called the market price of risk,

since it gives the extra increase in expected instantaneous rate of return of bond per

an additional unit of risk. Dependence of the bond on the investors preferences could

2From now on we will denote the price of zero-coupon bond P = P (t, T, r) = P (τ, r).
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not be eliminated as it is possible in the stock/option hedge, because the interest rate

is not a traded security. If we combine the equation (2.7) with (2.11) we obtain:

σ̃ = σr
∂P

∂r

µ̃ = λ̃σr
∂P

∂r
+ rP =

∂P

∂t
+ µr

∂P

∂r
+

1

2
σ2

r

∂2P

∂r2
.

Proposition 2.3.2. ([47], p. 321) The governing equation for the price of the zero-

coupon bond P = P (t, T, r) is a parabolic partial differential equation of the form:

∂P

∂t
+ (κ(θ − r) − λ̃σrγ)

∂P

∂r
+

1

2
σ2r

∂2P

∂r2
− rP = 0, (2.12)

where t ∈ (0, T ) and r > 0, satisfying P (T, T, r) = 1 ∀r.

The parameter λ̃ is different for the two discussed models. For the CIR model

we take λ̃(r) = λr
1

2 /σ whereas for Vašiček model we take λ̃(r) = λ, where λ is a

constant.

Proposition 2.3.3. ([47], pp. 322-325) There exists an explicit solution of PDE (Partial

Differential Equation) (2.12) for both models and it is of the form:

P (T − τ, T, r) = A(τ)e−B(τ)r , (2.13)

where τ = T − t ∈ [0, T ] and the functions A(τ), B(τ) satisfy

B(τ) =
1 − e−κτ

κ
,

A(τ) = exp

[
(B(τ) − τ)

(
θ − σ2

2κ2
− σλ

κ

)
− σ2B(τ)2

4κ

]
, (2.14)

for the Vašǐcek model, and

B(τ) =
2(eητ − 1)

(κ + λ + η)(eητ − 1) + 2η
,

A(τ) =

(
ηe(κ+λ+η)τ/2

eητ − 1
B(τ)

) 2κθ

σ2

, (2.15)

for the CIR model, where η =
√

(κ + λ)2 + 2σ2 .

Note that the market price of risk appears only in summation with κ, as it was

first pointed out in paper [56] by Pearson and Sun.

The main difference between the Vašiček and CIR model is that in the case of

Vašiček model the interest rates may become negative. This negative feature of this

model is eliminated in the CIR model. Since P (t, T, r) depends only on the difference

τ = T − t we shall henceforth write P = P (τ, r) = P (T − τ, r).
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2.4 Multi factor models

In the above one factor models, the whole term structure was dependent on one

stochastic process. The advantages of these models are the analytic tractability and

simplicity. In many times closed form solutions for bonds and term structures ex-

ist. On the other hand this approach tends to oversimplify the interest rate process.

Multi factor models provide better solution to this problem. However, the analytic

tractability becomes complicated.

The most popular multi factor models are two factor models. The first class of

these models uses the short and long rate as state variables, while the second class

uses the short rate and its variance as state variables. Let us mention only some

examples of the second class: the Schaefer and Schwartz model [47], the Fong and

Vašiček model (see [8, 33, 47, 66, 69]), the Chen and Scott model [22], the Longstaff

and Schwartz model [47], the Anderson and Lund [47] and the two factor CIR model.

The main step of deriving a two factor models is a construction of risk-less port-

folio of three bonds with different maturities and applying the multi-dimensional Itô

lemma [47]. The implementation of these models is cumbersome and that is criti-

cized by practitioners.

The price of a bond in the one factor model is a function of the spot rate if the

time to maturity is given. It means that to each value of the spot rate one yield curve

is assigned. The multi factor models allow to assign different yield curves to the same

short rate depending on the values of the other factors.

Demonstration of this feature has been shown by Stehĺıková [68] on BRIBOR’s

yield curves. The plot of the overnight interest rate (the approximation of the spot

rate) against the interest rate for longer time horizon T (but on the same day t)
shows that for the same values of the overnight the value of the other assigned rate

are from a bigger interval. This indicates that the usage of the multi factor models is

necessary and reasonable.

Let us assume that in the two factor interest rate model, the short rate r and
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its volatility y are the two stochastic factors and they follow a system of stochastic

differential equations:

dr = κ1(θ1 − r)dt +
√

yrγdw1, (2.16)

dy = κ2(θ2 − y)dt + vyδdw2. (2.17)

Constants θ1 > 0 and θ2 > 0 are the limiting interest rate and limiting dispersion,

respectively; κ1 > 0 and κ2 > 0 are speed of reversions for the short rate and volatility

of it and w1, w2 are Wiener processes (c.f. [47]) with correlation ρ ∈ [−1, 1], γ, δ ≥ 0
are model parameters and v > 0 is the volatility of the short rate volatility.

As it is depicted in [69], y(t) → σ2
1 := θ2 as t → ∞ in the case v = 0. It means

that the form of governing equation for the short rate reduces to dr = κ1(θ1 − r)dt +
σ1r

γdw1. As we can see it is the same equation as for the short rate in the one factor

model case. Now we can turn to the two factor model.

Proposition 2.4.1. ([47], pp.329-330) The governing equation in the two factor case

for the price of the zero-coupon bond P = P (τ, r, y), where τ = T − t, is a partial

differential equation of the form:

−∂P

∂τ
+ (κ1(θ1 − r) − λ̃1

√
yrγ)

∂P

∂r
+ (κ2(θ2 − y) − λ̃2vyδ)

∂P

∂y
+

1

2
(
√

yrγ)2∂2P

∂r2
+

1

2
(vyδ)2∂2P

∂y2
+ (

√
yrγ)(vyδ)ρ

∂2P

∂r∂y
− rP = 0 (2.18)

where {(r, y), 0 ≤ r, 0 ≤ y} with the initial condition P (0, r, y) = 1.

In this model λ̃1 represents the so-called market price of risk whereas λ̃2 is the

market price of volatility (cf. [33]).

If γ = 0 and δ = 1
2

then we get the so-called Fong-Vašiček model derived by Fong

and Vašiček in 1991 (see also [8, 33, 66]). In this model, the market prices of risk

and volatility are as follows:

λ̃1 = λ1
√

y & λ̃2 = λ2
√

y

where λ1 and λ2 are constants.

A solution to the PDE (2.18) for the Fong-Vašiček model is of the form:

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y (2.19)

iff A = A(τ), B = B(τ), C = C(τ), τ ∈ (0, T ], satisfy the following system of ordinary

differential equations:

Ȧ = −A (κ1θ1B + κ2θ2C) ,

Ḃ = −κ1B + 1 , (2.20)

Ċ = −λ1B − κ2C − λ2vC − B2

2
− v2C2

2
− vρBC
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Figure 2.5: Plots of the function C for two different sets of parameters; λ1 = −2, κ1 =
0.5 (left) and λ1 = −0.1, κ1 = 0.2 (right). In both cases we chose λ2 = −3, κ2 =
0.2, θ1 = 0.04, θ2 = 0.2, v = 0.1, ρ = 0.5.
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Figure 2.6: Yield curve R = R(τ, r, y), τ ∈ [0, T ], for several values of the y variable.

The mean value of y is plotted in the middle in red. The 95% confidence interval of

the term structure R is bounded by upper and lower pink curves.

with initial conditions A(0) = 1, B(0) = 0, C(0) = 0. We denoted by (˙) the deriva-

tion ∂τ ( ). Here we assume that θ2 = σ2
1. The system of ODEs (Ordinary Differential

Equations) (2.20) has been derived by Stehĺıková and Ševčovič [69].

We can find an analogy with the one factor version of the Vašiček model. Func-

tions A(τ) and B(τ) satisfy the same system of differential equations if we choose

λ̃(r) = λ1σ1 in (2.12). A(τ) and B(τ) can be expressed as in (2.14). The behavior

of C(τ) is depicted on Figure 2.5 (for more details see [69]). Yield curves derived

from the solution to the PDE (2.18) for the Fong-Vašiček model for varying y = σ2
1 is

demonstrated on Figure 2.6.



Chapter 3

Survey of known estimation and

calibration methods

The interest rate instruments become very popular and traded on both the ex-

change as well as over-the-counter that suit the specific demands of individual in-

vestors. The most known are the bonds and the options, but there exist other interest

rate derivative products, like swaps, swaptions, interest rate caps and floors.

The interest rate swap (cf. [42, 47]) is an agreement to exchange interest rate

payments for a fixed time period. In the case of plain vanilla interest rate swap two

parties exchange cash flows equal to interest at fixed rate r∗ and floating rate r on the

same notional principal for a predetermined period of time. Exactly they exchange

only the net difference in the cash flow payments on regular basis. To avoid the credit

risk from this transaction an intermediary is used. It is easy to derive the governing

equation for this plain vanilla interest rate swap. We assume continuous exchange

of cash flows. So let W (r, t) be the value of the swap. The swap can be understand

that one party recieves coupon payment at rate r− r∗ on a simple bond with zero par

value at the swap maturity date TS. Suppose that the short rate process is a diffusion

process of the form:

dr = µ(r, t)dt + σ(r, t)dw

(general form of the equation (2.6)) then the governing equation for the W (r, t) will

be similar to the zero-coupon bond equation (2.12) except the coupon payment term

r − r∗, i.e.
∂W

∂t
+ (µ − λσ)

∂W

∂r
+

1

2
σ2∂2W

∂r2
− rW + r − r∗ = 0. (3.1)

We also need a terminal condition W (r, TS) = 0.

17
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Swaption (cf. [42, 47]) is an option to enter the swap at some time in the future.

The governing equation for the swaption is the same as for the zero-coupon bond.

The feature of this contract is reflected in the final condition:

V (r, T ) = max(η(W (r, T ) − X), 0),

where η is a binary variable which takes the value 1 for a call and −1 for a put,

W (r, T ) is the value of the swaption at expiration and X is the strike price of the

option in the swaption. A cap (cf. [42, 47]) guarantees that the interest rate charged

on a floating rate loan at any given time will be the minimum of the prevailing and

ceiling rates. A floor (cf. [42, 47]) is the opposite to a cap. Interest rate cap(floor)

can be considered as a portfolio of European put/call options on discount bonds.

In the pricing of these interest rate dependent securities, interest rate has a key role.

This is the main reason why interest rate models are so popular. They try to capture

the stochasticity of the interest rate.

In a deterministic world, an interest rate is fully determined and the value of

a bond can be easily calculated. This consideration is very convenient but is not

realistic for longer time horizons. Interest rates and bond prices changes are not

deterministic and smooth. Hence there is a need to model interest rates stochastically.

There are essentially three generations of interest rate models. The first genera-

tion is modeling the interest rate directly. They are the so called short-term interest

rate models. Models of the second generation comprise the Heath-Jarrow-Morton

(HJM) models modeling the entire forward curve. The HJM type approach auto-

matically fits the yield curve. The driving state variable of this model is the forward

rate. It can be shown that all short rate model can be formulated in the HJM frame-

work [47]. The last generation comprises the LIBOR market model (LMM) or Brace-

Gatarek-Musiela model which attempts to model specific parts of the forward curve.

The above mentioned first generation of interest rate modeling has been used in

pricing of interest rate derivatives in a number of different ways. One of the oldest

approaches is based on modeling the short-term interest rate by Merton [47] and by

Vašiček [42]. The main assumption of these works is the normality of the interest

rates, so there is a possibility to become negative. Dothan [47], Rendleman and Bart-

ter [59] proposed a log-normal distribution for the short-term interest rate and have

avoided this disadvantage. Cox, Ingersoll, and Ross [42] proposed instead a non-

central χ2 distribution. Another example of these models is the Brennan-Schwartz

[47] model. The above mentioned models are endogenous term structure models.

Hence the initial term structure is the output of the model. In addition, the general

equilibrium conditions are used to endogenize the interest rate and the price of all

contingent claims.

The problem of the first generation is that they in general do not fit the initial yield

curve. This problem have been solved by the second generation of the interest rate

models, the so called no-arbitrage models. In this set of models the initial term struc-

tures are taken as inputs to the model and the values of contingent claims obtained
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from them are automatically consistent with these inputs. The main representatives

of this generation are Ho and Lee [42] model, the Hull and White [42] model which

is an extension of the CIR model or the Vašiček model, the Black-Derman-Toy (BDT)

model [13], the Black and Karasinski [47] model and also the HJM [47] model.

Hull and White model can be characterized as the Ho and Lee model with special

selection of its parameters. The BDT model is similar to Ho and Lee model. Some of

these models have good analytic tractability (like the extended Vašiček model), while

others may be non-Markovian in nature (like the HJM model). The non-Markovian

models can become less used in practice.

The last generation of interest rate modeling is the LIBOR market model. The

LMM is industry standard model for pricing interest rate derivatives and is based on

HJM forward rate approach. Assuming a conditional log-normal process for LIBOR,

it builds a process for LIBOR interest rate. Many implementations of this model use

Monte Carlo simulation to price European-style and Bermudian-style swaptions. This

generation of models is used to calibrate cap and swaption volatilities. Most recent

works dealt in fact with forward LIBOR or swap rates, e.g. Miltersten, Sandmann

and Sondermann [53], Brace, Gatarek and Musiela [15] and Jamshidian [44].

In the above mentioned so called one factor interest rate models, the short-term

interest rate is assumed to follow a one factor continuous time process. Most of these

models have closed form solution, it means that the term structures and bond prices

can be calculated explicitly. As we know, this approach tends to oversimplify the

behavior of interest rate movements, so there is a research concentrated on the con-

struction of multi factor models. The analytic tractability become more complicated

and in most cases numerical methods for the evaluation of bond prices have to be

used.

Recently, there has been a development in the multi factor models framework

e.g. the Chen [21] three factor model, the multi factor version of the Vašiček model

presented by Babbs and Nowman [5] and the multi factor equilibrium model in the

CIR framework developed by Chen and Scott [22].

So far we have described two nodes of the Figure 3.1, the interest rate derivatives

end the interest rate models. We also know why they are closely related through

pricing. The last node, the estimation and calibration methods, is somehow specific.

This node is close-knit with the other two. The reason of this is the following: if

you have a market with different interest rate derivatives, you can calibrate them

through their market prices and obtain the unknown parameters of the interest rate

models included in their prices; or if you are on a market without any sophisticated

interest rate dependent securities, you can estimate the parameters of the interest

rate models through the interest rate observed on the market.

There are many attempts spent on calibration and estimation of these interest

rate models whether through the interest rate or through the derivatives of interest

rates. Let us introduce some examples of calibration and estimation techniques for

the above mentioned models falling within the three main generations of interest

rate models.
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Figure 3.1: Schematic diagram of various calibration and estimation methods
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• 1st generation: Chan, Karolyi, Longstaff and Sandres [20] estimated and com-

pared a variety of short-term interest rate models using the Generalized method

of moments. They have determined which model best fits the short-term Trea-

sury bill yield data.

Later, Li [49] estimated one factor interest rate model parameters also by Gen-

eralized method of moments but in the Australian context. He showed that the

unrestricted one factor model best fits the historical interest rate.

Jensen [46] has demonstrated that the Longstaff and Schwartz model is inade-

quate for the description of the short-term interest rate, by a new implementa-

tion of the Efficient method of moment estimation principle. His main results

are robust to sub-period analysis.

Duan, Gauthier, Simonato and Zaanoun in [27] have applied another esti-

mation method, the Maximum likelihood estimator, for the estimation of the

Merton-Longstaff-Schwartz model parameters.

• 2nd generation: Boyle, Tan and Tian [14] have investigated mathematical

conditions under which fitting of another one factor interest rate model, the

so called Black-Derman-Toy model, results in a reasonable calibration. The

advantage of this model is that it can be calibrated to current market term

structure of interest rates and of volatilities. Their main result is: if the current

implied forward rates and the short rate volatilities are all positive, then the

calibration of BDT model is possible.

• 3rd generation: Takahashi and Sato [73] have developed a new methodology

for estimation of general class of term structure models based on a Monte Carlo

filtering approach. The method was applied to LIBORs and inter-bank rates

swaps in the Japanese market.

Vojtek [74] has presented a methodology to calibrate multi factor interest rate

models for Central European countries. He has estimated the Brace, Gatarek

and Musiela model parameters, especially the conditional volatilities and cor-

relations, by a special type of GARCH model. The BGM model (also known

as LIBOR market model) has been proposed and first time calibrated by Brace,

Gatarek and Musiela [15], Jamshidian [45] and Miltersen, Sandmann and Son-

dermann [53].

• multi factor models: Pearson and Sun [56] have proposed an empirical method

to estimate and test an extension of a two factor CIR model using data on dis-

count and coupon bonds. Their result has shown failure of calibration based

on Treasury bills. Chen and Scott [22] have presented a method for estimat-

ing multi factor version of the CIR model. The fixed parameters have been

estimated by applying an approximate Maximum likelihood estimator using

US Treasury market data and the unobservable factors have been estimated by

non-linear Kalman filter.
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As we can see several approaches have been used on the empirical estimation

of interest rate models. They were based on the Generalized method of moments,

Maximum likelihood estimation, Monte Carlo filtering or non-linear Kalman filter (a

special type of the Markov Chain Monte Carlo method). Less attention is however

put on one factor model parameters estimation and its possible application to Central

European countries.

In the next sections we would like to present some of well known calibration and

estimation methods and find out their advantages and disadvantages. The goal of

this section is not to compare these methods, but learn from their pros and cons and

propose a new method according to this knowledge.
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3.1 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) based methods are used for the continuous-

time asset pricing models estimation. These methods are able to estimate equity

price models with factors and multi factor term structure models with stochastic

volatility. In the asset pricing models, the main goal is to get information about the

state variables and the parameters from the asset prices. The solution to this problem

is the distribution of the parameters, θ, and the state variables, X, conditional on

observed prices, Y , denoted by p(θ, X|Y ). Characterizing this distribution is difficult

mainly due to the following reasons: (i) the model assume continuous-time, while

the data are observed discretely; (ii) the p(θ, X|Y ) is of very high dimension due

to the state variable; (iii) mostly the distribution of the variables is non-normal and

non-standard; (iv) in the case of term structure models the parameters enter in a

non-linear way to PDE.

The first step in this approach is to interpret the continuous-time asset pricing

model as state space model, in particular the non-linear, non-Gaussian type. The

MCMC provides a general methodology in this case, and gives the distribution of the

state variables and the parameters from the data. The Kalman filter approach is a

special type of the MCMC method. It is the case when the state space model is linear

and Gaussian with known parameters.

The MCMC is a simulation methodology, because it generates random samples

from a given target distribution p(θ, X|Y ). The theory of this method is based on the

Hammersley-Clifford theorem [12]. It implies that the knowledge of p(X|θ, Y ) and

p(θ|X, Y ) fully characterize the joint distribution p(θ, X|Y ). It is much more easier

to characterize the two conditional densities than the joint density. The algorithm

generates a sequence of random variables called Markov Chain {X(g), θ(g)}G
g=1 in the

following way: consider two initial draws X(0) and θ(0), then draw X(1) ∼ p(X|θ(0), Y )
and θ(1) ∼ p(θ|X(1), Y ); and continue in the same manner.

If the two conditional densities are known in closed form and can be directly

drawn from, the above mentioned algorithm is a Gibbs sampler. In other cases it

is known as Metropolis-Hastings algorithm. The combination of these steps (Gibbs

steps and the Metropolis-Hastings steps) generate the MCMC method.

Decomposition of the posterior p(θ, X|Y ) into likelihood function p(Y |X, θ), dis-

tribution of the state variables p(X|θ) and prior distribution of the parameters p(θ)
is based on the Bayes rule. If these distributions can be directly sampled using some

standard method there is no problem with the algorithm. This is the case of the Gibbs

sampler. In the case of the Metropolis-Hastings algorithm, the researcher has to spec-

ify a so called proposal density function because of no direct sampling of some of the

conditional distributions. The choice of the proposal density will effect the conver-

gence of the method. In extreme case the algorithm may never converge. Another

problematic point of the MCMC method could be the prior distribution, especially

using of non-informative priors.

The case of term structure models is a little bit complicated. The parameters
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enter the state space in non-linear often non-analytical fashion and also there are

problems with stochastic singularities. Let us mention that in both the Vašiček and

the CIR model the Metropolis algorithm has to be used, even more the CIR model

involve conditional heteroscedasticity in the spot rates which can be solved with the

heteroscedastic version of Kalman filter.

This approach has been used by number of researchers, some representatives

of this line are: Carlin, Polson and Stoffer [19], Jacquier, Polson and Rossi [43],

Fruhwirth-Schnatter and Geyer [34], Elerian, Chib and Shephard [31], Eraker [32].

3.1.1 Kalman filter approach

In the term structure analysis there are two main issues which have to be solved. One

is modeling and estimation the current term structure of spot rates and the second is

modeling and estimation of the dynamics of the term structure. The joint solving of

this problem is achieved by the Kalman filter approach (KFA). The main advantage

of the Kalman filter is that it uses all present and past price information to estimate

the current term structure.

The KFA is based on a state-space representation of the term structure model

suggested by Harvey [40] where the underlying state variable is treated as unobserv-

able. In this formulation the observable interest rates are assumed to be related to

unobservable state variables via a measurement equation and the unobservable state

variables assumed to follow a Markov process described by a transition equation. So

the aim of the Kalman filter is to obtain information about the unobservable state

variables from the observed interest rates.

The vector of unobservable state variables is governed by stochastic differential

equation and is defining the instantaneous interest rate. According to the form of

the stochastic differential equation we can get several type of interest rate models.

The value of the discount bond is obtained by applying the standard no-arbitrage

assumptions. This implies that the KFA can be applied to a broad class of dynamic

interest rate models including the CIR and Vašiček model.

Extension of this method can be used for models of interest rates using panel-data

with missing observations which is quite common in many emerging markets. The

model can be applied to value and hedge interest rate derivatives and estimate the

term structure for days with small number of traded bonds.

Recent applications of this methodology to dynamic models of interest rates in-

clude: Lund [51, 52], Ball and Torous [7], Duan and Simonato [28], Geyer and

Pichler [35], Duffe [29], de Jong and Santa-Clara [25], Babbs and Nowman [6], de

Jong [24], Chen and Scott [22], Rossi [26] and Cortazar, Schwartz and Naranjo [23].
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3.2 Maximum likelihood method

The Maximum likelihood method (MLM) is used in many papers in the current lit-

erature to estimate model parameters through the time-series approach, the cross-

section approach or the combination of these two methods. The basis of this method

is the maximum likelihood estimator which is the value that maximizes the (log) like-

lihood. This estimation method requires the knowledge of the state variable which

is in the case of the one factor term structure models the instantaneous interest rate.

If we can observe the state variable, we can estimate the model with the maximum

likelihood method, because the likelihood function can be derived from the equation

for the state variable. The closed form of the likelihood function is known only in

some cases. For example the CIR model implies a non-central χ2 and the geometric

Brownian motion implies a log-normal density, for which closed forms of the likeli-

hood functions are available. However, the closed form for some model is difficult to

implement as it involves the Bessel function, and for some models no closed form is

available. In these cases there are used only approximations of the densities, but this

implies the disruption of the optimality properties of the estimator.

An important problem could occur in this method of calibration. This problem is

about the existence and non-existence of the maximum of likelihood function (LF).

An example of non-existence of the maximum of LF:

ln L = −1

2

N∑

t=2

(
ln ν2

t +
ε2

t

ν2
t

)

where ν2
t = σ2

2β

(
eβ − 1

)
r2γ
t−1, εt = rt − α

β

(
eβ − 1

)
− eβrt−1, for the discrete model of

interest rates:

rt = eβrt−1 +
α

β

(
eβ − 1

)
+ εt (t = 2, ...N),

which is derived from the stochastic equation

dr = (α + βr)dt + σrγdw;

is proposed in [67] by Stehĺıková. There is presented the condition under which the

maximum exists. If the data indicate a very high level of mean reversion, then this

condition is violated.

An artificial example of the overnight time series rt, t = 1, 2, ...N for which the LF

has no maximum is as follows

rt = a + b
(−1)t

t
,

where a, b are positive constants. This example is shown on Figure 3.2.

If we thought that such an example could not exist in real data set, we are wrong.

During the calibration of one factor interest rate model on BRIBOR data Stehĺıková
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Figure 3.2: Example of non-existence of the maximum of the likelihood function.

Vertical axis represents modelled interest rates whereas horizontal axis represents

the time.

detected a period (December 2004) during which the condition mentioned above

was not fulfilled. It means that the maximum likelihood estimates did not exist.

In the one factor term structure model the state variable is not observable, be-

cause in the market does not exist any instrument which is maturing at the next in-

stant. So the conditional density is not known and the maximum likelihood estimator

could not be used. Gibbons and Ramaswamy [37] used instead the steady-state den-

sity of the interest rate, while Brown and Dybving [17] used neither the conditional

nor the steady-state density to avoid this problem. On the other hand the problem

could be solved in another way, e.g. Chan, Karolyi, Longstaff and Sanders [20] used

the one-month Treasury yield as a proxy for the instantaneous interest rate.

A lot of effort is being spent on the cases, when the state variable is known (or

is assumed to be known) but the likelihood function is intractable. Pedersen [57]

and Santa-Clara [60], Brandt and Santa-Clara [18], Durham and Gallant [30] pro-

posed the Simulated maximum likelihood estimation (SMLE), through which we can

approximate the likelihood function. The main idea of the SMLE is to split each ob-

servation interval into small subintervals and to simulate a large number of path for

these subintervals. The average of the normal likelihoods in limit converges to the

true likelihood of moving from one observed value to the next. Ait-Sahalia [1, 2]

developed a series of approximations to the likelihood function that are tractable to

estimate and converge to the true likelihood function. Brandt and He [16] developed

a method of calculation on an approximate likelihood function for certain classes of

term structure models.
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3.3 Generalized method of moments

Generalized method of moments (GMM) by Hansen [38] is an econometric approach

also used in estimating the parameters of the interest rate models. The GMM frame-

work gives space not only for estimation, but for testing different versions of interest

rate models.

This methodology uses discrete-time econometric version of the short term in-

terest rate process. It means that in the case of the following stochastic differential

equation for the short rate process:

dr = (α + βr)dt + σrγdw

the discrete-time specification is as follows:

rt+1 − rt = α + βrt + ǫt+1

E(ǫt+1) = 0

E((ǫt+1)
2) = σ2(rt)

2γ

where E(.) is the mean of the process. The unknown parameters are θ = (α, β, σ2, γ).
This method requires the estimation of the above mentioned parameters by the equa-

tion E[ft(θ)] = 0, where

ft(θ) = (ǫt+1, ǫt+1rt, ǫ
2
t+1 − σ2r2γ

t , (ǫ2
t+1 − σ2r2γ

t )rt)
′

.

The GMM consists of replacing E(ft(θ)) with its sample counterpart

gT (θ) =
1

T

T∑

t=1

ft(θ),

where T is the number of observations, and choosing parameter estimates to mini-

mize the quadratic form:

JT (θ) = g
′

T (θ)WT (θ)gT (θ)

for some positive definite weighting matrix WT (θ).
This method has several advantages. Firstly, it does not require that the distribu-

tion of interest rate changes is normal and the asymptotic justification for this method

requires only that the distribution of interest rate changes is stationary and ergodic

and that the relevant expectations exist. This property is important because some

models assume that the interest rate changes are normal, like in our case Vašiček

model, but others assume non-central χ2 variate like the CIR model. Secondly, the

GMM estimator and its standard errors are consistent in the case of conditionally

heteroscedastic disturbances, too.

The negative side of this approach is the impact of aggregation problem arising

from the simplification by discretization, on the parameter estimates because of the

influence on the distribution of disturbances.



28

Table 3.1: Pros and cons of different calibration and estimation techniques

methods pros and cons

MCMC − • distribution p(θ,X|Y ) is of very high dimension

• a-priori specification of the proposal density function

• a-priori specification of the prior distribution

(especially the non-informative priors)

• term structure models (non-linearity, stochastic singularities)

+ • capability to estimate multi factor models

• suitable for non-normal and non-standard

distribution of the variables

MLM − • required knowledge of the state variable (conditional

density of the variable)

• non-existence of the maximum of likelihood function

in some cases

+ • time-series and cross-sectional approach

or the combination of these can be used

• closed form of the LF is known in some cases

GMM − • aggregation problem because of discretization

• do not use the whole term structure, only the overnight interest rate

+ • framework for testing of models

• does not require normality of interest rate changes
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The GMM approach has been used by number of researchers for studying, cal-

ibrating and comparing interest rate models e.g. Gibbons and Ramaswamy [36],

Harvey [39], Longstaff [50], Chan, Karolyi, Longstaff and Sanders [20], Li [49] and

Oľsarová [54].

Every calibration methodology has its advantages and disadvantages as it was

described above. In some cases the assumptions of the applicability are very strict and

can not be fulfilled in the real world or there are strong simplifications which make

big errors. We summarize the problematic areas in each calibration and estimation

methodology in Table 3.1.



Chapter 4

Goals of the thesis

The correct pricing of interest rate derivatives is very important in the financial

business. There are many attempts spent on this topic. Several approaches have

exist, as it was summarized in the previous chapter, but no definite pricing model

has been proposed. Many researchers calibrate the interest rate dependent securities

through their market prices. Others try to estimate the interest rate models param-

eters directly and then utilize this information in the pricing of the derivatives. If

one chooses the first approach then he needs a market with different securities. This

methodology is problematic in the new EU member states because of their less active

financial markets. They are characterized by strong dominance of the banking sec-

tor. This means that we can calibrate the interest rate models through bonds term

structure.

Now it is important to choose a calibration technique for this issue. Some prob-

lems, depicted in the previous chapter, with different estimation and calibration

methodologies lead us to propose a new, the so called minmax optimization method.

This procedure consists of two steps. In the first step we minimize the so-called loss

functional. It leads to a one-dimensional λ-parameterized curve of minimizers. In

the second step we maximize the likelihood function restricted to this curve. Mea-

suring the quality of this method is also important, so we introduce two ratios the

non-linear R2 ratio and the maximum likelihood ratio.

As an extension of this method we introduce the binding of term structures. It

utilizes more (statistical) informations recieved from the yield curves trying to bound

the mean or the whole term structure. For that reason the results are in the form of

intervals.

30
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Of course, basic idea of calibration is the reduction of parameter space and the

proposition of transformed parameters.

The comparison of the results of calibration for Central and Western European

countries is one of the aims of this thesis.

Our attention is primary focused on the internal calibration method and its pos-

sible application to different data basis (which need not be necessarily up-to-date).

After the internal calibration method we present the external method which basically

assume a potential extra information provided externally. That means, the calibra-

tion is performed not only on the data basis (or informations acquired from the data),

but also e.g. an expert judgment. In this case we obtain not a point of calibrated pa-

rameters but an interval of possible values.

Our goal is not only to present a calibration method which can be used on the

one factor models, but also suggest a possible methodology for the multi factor mod-

els. The comprehensive demonstration of the proposed methods is rather difficult on

the multi factor models, the understanding and interpretation of results is complex.

The main reason for the selected approach is to extract the maximum of informa-

tions from the one factor models, especially the CIR and the Vašiček model, and also

indicate the possible way for the multi factor models calibration in the presented

framework. According to the obtained information we would be able to comment

our results from the positive and also negative point of view, find out some advan-

tages and disadvantages.

Most of the results on internal calibration methods are new and were developed

and published by Ševčovič and Urbánova-Csajková just recently [64, 65].



Chapter 5

The loss functional and its

minimization

In the one factor interest rate models, the only stochastic factor is the spot rate

following the mean reverting process of the form (2.6). As it was derived in Section

2.3, the governing equation for the zero-coupon bond price is:

∂P

∂t
+ (κ(θ − r) − λ̃σrγ)

∂P

∂r
+

1

2
σ2r

∂2P

∂r2
− rP = 0, (5.1)

where t ∈ (0, T ) and r > 0. The form of the parameter λ̃ (the market price of risk)

distinguishes the Vašiček from the CIR model. We also know that an explicit solution

to the above mentioned PDE exists in the form: P (T − τ, T, r) = A(τ)e−B(τ)r, where

A(τ) and B(τ) are defined in (2.14) for the Vašiček and (2.15) for the CIR model. As

we can see in these models there are four unknown parameters: (κ, σ, θ, λ). Notice

that in the CIR model, the market price of risk λ appears only in summation κ + λ.

Key feature of our next work was presented also by Pearson and Sun in [56]. This

was the first motivation to look properly at the parameters involved in the above

mentioned models.

Another motivation comes from the option pricing theory. In this case we can

reduce one parameter, the expected rate of return µ. It means that the Black-Scholes

partial differential equation for the option price does not depend on the risk prefer-

ences of the investor. The option price exactly depends on three parameters (σ, r, E)
instead of four (σ, r, E, µ), i.e. V (S, t; σ, r, E) (see [47]).

In the bond pricing theory the underlying instrument is the short rate. This is not

a tradable instrument so it could not be used in the hedging and for that the market

32
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preferences of the investors could not be fully eliminated from the bond price. But in

the following section we will see that some parameter reduction can be made.

5.1 Parameter reduction

There are many ways how to reduce the original four dimensional parameters into

three reduced parameters. Our objective is however to find a transformation leading

to three-parameters reduction.

The idea of reducing the four dimensional parameter space into three parameters

is possible in the case of CIR and Vašiček model, too.

5.1.1 Case of the Cox-Ingersoll-Ross model

The parameter reduction for the CIR model consists of introduction of the following

set of new variables:

β = e−η , ξ =
κ + λ + η

2η
, ̺ =

2κθ

σ2
, (5.2)

where η =
√

(κ + λ)2 + 2σ2. Returning back to the original CIR parameters (κ, σ, θ, λ)
we have

κ = η(2ξ − 1) − λ , σ = η
√

2ξ(1 − ξ) , θ =
̺σ2

2κ
, (5.3)

where η = − ln β. The following proposition is now a consequence of explicit formu-

lae (2.15).

Proposition 5.1.1. In terms of transformed parameters the value of a bond P = P (T −
τ, T, r) can be expressed as P = Ae−Br, where τ = T − t ∈ [0, T ] and functions A =
A(β, ξ, ̺, τ), B = B(β, ξ, ̺, τ) satisfy

B = − 1

ln β

1 − βτ

ξ(1 − βτ ) + βτ
, A =

(
β(1−ξ)τ

ξ(1 − βτ ) + βτ

)̺

. (5.4)

Moreover, (β, ξ, ̺) ∈ Ω = (0, 1) × (0, 1) × R
+ ⊂ R

3.

It is convenient to introduce the transformation T : D → Ω defined as in (5.2)

where D = (0,∞)3 ×R ⊂ R
4. Then T (κ, σ, θ, λ) = (β, ξ, ̺), is a smooth mapping and,

for any (β̌, ξ̌, ˇ̺) ∈ Ω, the preimage

T−1(β̌, ξ̌, ˇ̺) = {(κλ, σλ, θλ, λ) ∈ R
4, λ ∈ J̌}, J̌ = (−∞,−(2ξ̌ − 1) ln β̌),

is a smooth one-dimensional λ-parameterized curve in D ⊂ R
4 where

κλ = −λ − (2ξ̌ − 1) ln β̌,

σλ = −
√

2ξ̌(1 − ξ̌) ln β̌, (5.5)

θλ =
ˇ̺σ2

λ

2κλ
, (5.6)
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where λ ∈ J̌ .

5.1.2 Case of the Vašiček model

As far as the Vašiček model is considered we put

β = e−κ , ξ = θ − σ2

2κ2
− σλ

κ
, ̺ =

σ2

4κ
. (5.7)

Then for the original Vašiček parameters we have:

κ = − ln β , σ = 2
√

̺κ , θ = ξ +
σ2

2κ2
+

σλ

κ
. (5.8)

Similarly as in above, it follows from (2.14):

Proposition 5.1.2. In terms of transformed parameters the value of a bond P =
P (τ, r) can be expressed as P = Ae−Br, where τ = T − t ∈ [0, T ] and functions

A = A(β, ξ, ̺, τ), B = B(β, ξ, ̺, τ) satisfy

B = −1 − βτ

ln β
, A = exp

(
ξ(B(τ) − τ) − ̺B2(τ)

)
. (5.9)

where (β, ξ, ̺) ∈ Ω = (0, 1) × R × R
+ ⊂ R

3.

The transformation T : D → Ω defined as in (5.7), i.e. T (κ, σ, θ, λ) = (β, ξ, ̺),
where D = (0,∞)3 × R ⊂ R

4, is a smooth mapping too and, for any (β̌, ξ̌, ˇ̺) ∈ Ω, the

preimage

T−1(β̌, ξ̌, ˇ̺) = {(κλ, σλ, θλ, λ) ∈ R
4, λ ∈ J̌}, J̌ = R,

is a smooth one-dimensional λ-parameterized curve in D ⊂ R
4. In this case

κλ = − ln β̌, σλ = 2
√

ˇ̺κλ, θλ = ξ̌ +
σ2

λ

2κ2
λ

+
σλλ

κλ
. (5.10)

Summarizing, in both studied one factor models the yield curve depends only on

three transformed parameters β, ξ and ̺ defined in (5.2) and (5.7), resp.

5.2 Loss functional

In this section we introduce the loss functional which measures the quality of ap-

proximation of the set of real market yield curves by computed yield curves from

each model.
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Definition 5.2.1. The loss functional is the time-weighted distance of the real market

yield curves {Ri
j , j = 1, ..., m} and the set of computed yield curves {R̄i

j , j = 1, ..., m} at

time i = 1, ..., n, determined from the bond price - yield curve relationship

Aje
−BjRi

0 = e−R̄i
jτj (5.11)

where ri = Ri
0 is the overnight interest rate at time i = 1, ..., n, Aj = A(τj) and

Bj = B(τj) where 0 = τ0 < τ1 < τ2 < ... < τm stand for maturities of bonds forming the

yield curve, is defined as follows:

U(β, ξ, ̺) =
1

m

m∑

j=1

1

n

n∑

i=1

(Ri
j − R̄i

j)
2τ 2

j . (5.12)

Recall that A(τ) and B(τ) are defined by (5.4) and (5.9).

Proposition 5.2.1. In terms of the averaged term structure values and their covariance

values the loss functional can be expressed in form:

U(β, ξ, ̺) =
1

m

m∑

j=1

((τjE(Rj) − BjE(R0) + ln Aj)
2

+ D(τjRj − BjR0)), (5.13)

where E(Xj) and D(Xj) denote the mean value and dispersion of the vector Xj =
{X i

j , i = 1, ..., n}.

This equivalent form of the loss functional is derived in details in the Appendix

5.7 (to Chapter 5).

Expression (5.13) for the loss functional is much more suitable for computational

purposes because it contains aggregated time series information from the yield curve

only, the cumulative statistics like the mean and covariance of term structure Rj

series. These statistical informations can be pre-processed prior to optimization.

5.3 Non-linear regression problem for the loss func-

tional

Introducing the short form of the loss functional (5.13) is prerequisition to the next

steps. The core of the estimation method is to minimize the following function:

min
(β,ξ,̺)∈Ω

U(β, ξ, ̺)

where Ω = (0, 1) × (0, 1) × (0, ̺max)
1 is a bounded domain in R

3. During this step

of our approach we obtain the vector of (β̌, ξ̌, ˇ̺) for any given λ. This problem is

1̺max is sufficiently large; in our computation ̺max = 5.
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highly non-linear. For that reason we discuss different numerical procedures in the

next section. Having identified the curve of global minimizers of the loss functional

we proceed by the second step which will be discussed later in Section 6.1 and 6.2.

Remark 5.3.1. The parameter reduction described in the previous section can be fol-

lowed by optimal selection of some of the parameters (see Propositions 5.3.1 and 5.3.2).

5.3.1 Case of the Cox-Ingersoll-Ross model

Proposition 5.3.1. Given β and ξ, an optimal value for the parameter ̺ in the CIR

model ̺opt
c = ̺opt

c (β, ξ) can be found as a function of β and ξ. Solving the first order

optimality condition ∂U
∂̺

= 0 we have:

m∑

j=1

(ln Aj)
2 = −

m∑

j=1

(τjE(Rj) − BjE(R0)) lnAj (5.14)

and the optimal ̺c is determined as follows:

̺opt
c = −

∑m
j=1(τjE(Rj) − BjE(R0)) ln Aj(β, ξ, 1)

∑m
j=1(ln Aj(β, ξ, 1))2

. (5.15)

The proof can be find in Appendix 5.7.

5.3.2 Case of the Vašiček model

Proposition 5.3.2. Given β, a pair of optimal values for the parameter (̺, ξ) in the

Vašǐcek model ̺opt
v = ̺opt

v (β), ξopt
v = ξopt

v (β) can be found. Solving the system of first

order optimality conditions ∂U
∂̺

= 0 and ∂U
∂ξ

= 0 we have:

0 =

m∑

j=1

(τjE(Rj) − BjE(R0) + ξ(Bj − τj) − ̺B2
j )B

2
j (5.16)

0 =
m∑

j=1

(τjE(Rj) − BjE(R0) + ξ(Bj − τj) − ̺B2
j )(Bj − τj)

and the pair of optimal values (̺opt
v , ξopt

v ) can be determined from the system of linear

equations:

̺opt
v =

∑m
j=1(τjE(Rj) − BjE(R0) + ξopt

v (Bj − τj))B
2
j∑m

j=1 B4
j

(5.17)

ξopt
v = −

∑m
j=1(τjE(Rj) − BjE(R0) − ̺opt

v B2
j )(Bj − τj)∑m

j=1(Bj − τj)2
.
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The optimal values of ̺opt
c for the CIR model and (̺opt

v , ξopt
v ) for the Vašiček model

can be picked and used during the optimization only when they are positive. This

sufficient assumption is derived in Theorem 5.7.1.

Summarizing, for the CIR as well as for the Vašiček model we have first order

necessary conditions for the minimizer of the loss functional. These conditions can

be used either for further parameter reduction of the problem (2D problem for the

CIR model and even 1D problem for the Vašiček model) or for testing whether a

numerical approximation is close to a minimizer. Latter property has been used in

practical implementation of the minimization method.

5.4 Numerical procedure for minimization of the loss

functional

In this section we discuss several optimization methods for finding the minimum of

the loss functional U on Ω. The objective is to find a numerical approximation of the

optimization problem:

min
x∈Ω

U(x) (5.18)

where x is the vector of the unknown parameters and Ω ∈ R
n. In our case n = 3, x =

(β, ξ, ̺) and Ω = (0, 1)× (0, 1)× (0, ̺max) is a bounded domain in R
3 where ̺max > 0

is sufficiently large number.

In the following we discuss three different methods we have used in order to find

a minimum of the loss functional U = U(β, ξ, ̺).

• a steepest descend method of Newton-Kantorovich type,

• an evolution strategy based method,

• combination of these two methods.

5.4.1 A steepest descend method of Newton-Kantorovich type

This method is often used in convex optimization problems. The basic idea of this

method is read as follows:

1. we choose an initial approximation x0 of arg minΩU

2. we construct a sequence of approximations:

xi+1 = xi − [∇2U(xi)]
−1∇U(xi), i = 0, 1, 2, ... (5.19)

where ∇U(xi) is the gradient of U in the i-th approximation of x



38

3. we continue computation of xi until a prescribed accuracy goal measured by

the norm of ‖∇U(xi)‖ is attained.

The numerical approximation of partial derivatives ∂xk
U can be approximated by

central finite differences, i.e. ∂xk
U(x) ≈ (U(x+hek)−U(x−hek))/2h where 0 < h ≪ 1

is sufficiently small and ek ∈ Rn is the k-th vector of the canonical orthonormal basis

in Rn. Second derivatives appearing in ∇2U are approximated similarly by means of

second central differences.

According to [3] the above algorithm constructs a sequence {xi} converging to a

local minimum of U provided the function U satisfies suitable regularity conditions

and the initial condition x0 is chosen appropriately. In this case the convergence is

locally quadratical. However, in general (if the function U is not convex) the above

method need not guarantee convergence and it may converge to a local minimum

only (see Algower & Georg [3] for details).

Let us mention several difficulties we had to overcome when implementing this

method:

1. The loss function U(β, ξ, ̺), (β, ξ, ̺) ∈ Ω ∈ R
3 is not necessarily convex. The

plot of this function indicate that it can be flat in one parameter. The demon-

stration of this feature is shown on Figure 5.1. As we can see, the flat shape

is typical for the loss functional. This behaviour makes problems during the

minimization not only for the Newton-Kantorovich type method but also for

the evolution strategies.

2. The admissible values of optimal parameters have to satisfy the following con-

ditions

• β ∈ (0, 1), ̺ ∈ (0, ̺max) and ξ ∈ R for the Vašiček, model

• β ∈ (0, 1), ̺ ∈ (0, ̺max) and ξ ∈ (0, 1) for the CIR model.

The sequence constructed as in (5.19) does not necessarily satisfy these bounds

and therefore it may converge to a minimum which is not admissible from

financial point of view.

The reason of this setting is the required positivity of B(τ) in P (T−τ) = A(τ)e−B(τ)r

and requirement that κ, θ, σ > 0 for original variables. If B(τ) < 0 then the price of

the bond is increasing with increasing interest rate which is inconsistent with the

bond pricing theory.

In order to achieve the required bounds β, ξ ∈ (0, 1) we employ the 1-periodic

extension mapping of the identity function. To ensure positivity of ̺ we use a smooth

approximation of the absolute value function. Indeed, let us define a smooth approx-

imation g of the step function ξ − [ξ], i.e

g(ξ) ≈ ξ − [ξ] for ξ 6∈ N , and we put |̺|h =
√

̺2 + h2 − h



39

0 0.01 0.02 0.03 0.04 0.05 0.06
Β

0.6

0.65

0.7

0.75

0.8

Ξ

xminimum

0.3 0.35 0.4 0.45 0.5 0.55 0.6
Β

0.9

0.92

0.94

0.96

0.98

1

Ξ

x
minimum

0

0.02

0.04

0.06

Β

0.6

0.65

0.7

0.75

0.8

Ξ

75

80

85

U Hx 10^8L xminimum

0

0.02

0.04

0.06

Β

0.3

0.4

0.5

0.6

Β

0.9

0.925

0.95

0.975

1

Ξ

9.02

9.025

9.03

U Hx 10^8L

x
minimum

0.3

0.4

0.5

0.6

Β

Figure 5.1: 3D plot (values have been multiplied by 108 so correspond to 10−8) and

2D density plot of f(β, ξ) = U(β, ξ, ̺opt(β, ξ)) for Bribor 2/2005 (first column) and

Pribor 7/2005 (second column).



40

where [.] denotes the integer part, 0 < h ≪ 1 is a small parameter. Clearly, g : R 7→
[0, 1) and g(ξ) ≃ ξ for ξ ∈ [0, 1). Then it should be obvious that any local minimum

(β̌, ξ̌, ˇ̺) ∈ R3 of the extended minimization problem defined on the whole domain

R3

min
(β,ξ,̺)∈R3

U(g(β), g(ξ), |̺|h)

for the CIR model and

min
(β,ξ,̺)∈R3

U(g(β), ξ, |̺|h)

for the Vašiček model, resp., corresponds to a local minimum (g(β̌), g(ξ̌), | ˇ̺|h) ∈
(0, 1) × (0, 1) × (0,∞) for the CIR model, and (g(β̌), ξ̌, | ˇ̺|h) ∈ (0, 1) × R × (0,∞)
for the Vašicek model.

The steepest descent method of Newton-Kantorovich type has two problematic

features. The first is the choice of the starting point x0 = (β0, ξ0, ̺0) of the compu-

tation and the second is the number of steps to achieve the predetermined accuracy.

For that reason we have considered a new method which is a combination of an

evolution strategy method and the steepest descend method. It will be discussed

later.

5.4.2 Evolution strategies

As it was mentioned in previous section a steepest-descent methods of Newton-

Kantorovich type (cf. [3]) may capture a local minimum only. This is why we have

to consider a different robust numerical method generically converging to a global

minimum of U . There is a wide range of optimization methods based on stochastic

optimization algorithms.

These methods are often referred to as Evolution strategies (ES) (see e.g. [58,

61, 62, 63]). The main concept of this strategy is based on the survival of the fittest.

There exist many different types of this stochastic algorithm like the two membered

(1 + 1) ES, multi-membered (p, c) ES, (p + c) ES (see [58, 61, 62, 63]).

In our case we used a slight modification of the well known (p+c) ES [58]. Recall

that the (p + c) ES has p parents and c children (offsprings) per population among

which the p best individuals are selected to be next generation parents by their fitness

value. The procedure is repeated until some termination criterion is satisfied.

The mathematical description of the modification of (p + c) ES called (p + c + d)
ES is as follows:

The problem is defined as finding the real valued vector x ∈ Ω which is a global

minimum of objective function U in Ω ⊂ Rn.

1. The initial population of parent vectors xk ∈ Ω, k = 1, ..., p is generated ran-

domly from bounded three dimensional space Ωb = {(β, ξ, ̺) ∈ Ω, 0 ≤ ̺ ≤
̺max} where ̺max is large enough. Ωb is a subset of the domain Ω.
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2. In each step of the ES algorithm we generate a set of c offsprings from the

parent population (c ≤ p). Each vector of children (offspring) x̄l, l = 1, ..., c is

created from parents xk, k = 1, ..., p by mutation and recombination. Mutation

means perturbation of parent generation xk, k = 1, ..., p by Gaussian noise with

zero mean and preselected standard deviation σgauss. Recombination means

crossing over parts of randomly chosen vectors of children.

3. The modification (p + c + d) ES comprise selection on a wider set. It means

that we include a randomly generated set of d wild type individuals forming

the so-called wild population. The procedure of generation of the wild type

population xo, o = 1, ..., d, from bounded space Ωb is the same as for the initial

population.

4. Every member of the population (parents, children, wild population) is charac-

terized with its fitness value which is the value of the loss functional U .

5. Selection chooses p best vectors from the population by their fitness value to be

next generation parents. A set of p intermediate parents is obtained.

6. Next we include a corrector step consisting of improving the set of p intermedi-

ate parents by NK iterates of the Newton-Kantorovich gradient minimization

method. As a result we obtain a set of p improved parents.

7. The best p individuals from the set of p parents, p improved parents, c offsprings

and d wild type individuals are selected to be the next generation of parents.

8. We repeat this procedure until the overall number of steps is less than N . We

also perform the first order necessity test as described in Chapter 5.

In our computations we have chosen N = 300, p = c = d = 105, NK = 30
and σgauss = 0.01. We have not update the standard deviation according to Rechen-

berger’s rule (see [58]) as it turned to be ineffective.

Similarly as in the case of gradient optimization methods, for a general mini-

mized function, an ES based stochastic algorithm need not necessarily converge to a

global minimum. Additional assumptions like e.g. convexity made on a minimized

function are required. We are unable to verify these conditions in our particular

case. Nevertheless, our numerical experience based on repeated experiments with

different numerical constants indicates that the ES algorithm described above indeed

converges to a global minimum of the loss functional U . Moreover, an important

question concerning existence and uniqueness of a global minimum of U on Ω arises.

Some theoretical considerations about the global minimum of U on Ω are in Lemma

5.7.1 and Proposition 5.7.1. Notice that data vectors Rj , j = 0, ..., m, enter expres-

sion for U in terms of their means and covariances. Now if a global minimum of U
is attained at several minimizers then one can perturb input data vectors Rj slightly

in order to perturb their means and covariances destroying their multiplicity and
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achieving thus a unique global minimizer of U . Therefore, for generic data vectors

Rj , j = 0, ..., m, it reasonable to assume that there exists a unique global minimizer

of U . A rigorous proof of this feature is however not included in this thesis.

5.4.3 Other methods for solving non-linear regression problems

The non-linear optimization problem could be solved also in another way. Let us

remind that we are minimizing the loss functional U(x), where x = (β, ξ, ̺) ∈ R
3 on

a bounded domain. Instead of this problem we can solve an approximation of it in

the following form:

min
x∈Ω

Ũ(x)

where Ũ(x) is the linear approximation of U(x) in x. It means that if U(x) is defined

in the following general form:

U(x) =
∑

i

(f̄(x, yi) − fi)
2

where x is the vector of parameters, y is the vector of inputs, f ∈ R
k the vector of

observed outputs to the optimization problem and f̄ : Ω × R
k is a smooth function,

then one can approximate this problem by taking the first order Taylor expansion

f̄(x̃, y) + f̄ ′
x(x̃, y)(x − x̃) of the non-linear function f̄ = f̄(x, y) in x variable at the

point x̃, i.e.

Ũ(x) =
∑

i

(f̄(x̃, yi) + f̄ ′
x(x̃, yi)(x − x̃) − fi)

2

where x̃ = xn is the previous approximation of the argument of the minimum of U
and f̄ ′

x is the gradient of f̄ with respect to the x variable. Now this problem is a linear

regression problem in x variable that can be solved easily for a new approximation

x = xn+1 of the argument of minimum of Ũ . This way one can obtain a sequence

{xn}∞n=1 of approximations of the argument of minima of U which can be shown to

be convergent under suitable assumptions made on non-linearity f . More details on

this kind of linearization can be found e.g. in Pázman [55], Štulajter [72], Hornǐsová

[41].

5.5 A’posteriori analysis of residuals. Justification of

the form of the loss functional

We have defined the loss functional in Section 5.2 as a measurement of the quality of

approximation of the real data by the computed one from the models (Vašiček and

CIR models). As it was mentioned, the optimization problem of finding the minimum

of the loss functional U on Ω is highly non-linear, despite of the fact it mimics least

squares approach in linear regression method. Solving the problem (5.18) we obtain
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(β, ξ, ̺). Since computed term structures R̄j
i = R̄j

i (β̌, ξ̌, ˇ̺) depend only on (β, ξ, ̺) the

knowledge of the global minimizer (β̌, ξ̌, ˇ̺) of U is enough information for the next

a’posteriori analysis of residuals.

One of the basic assumption of the simple linear regression is the normality of the

distribution of residuals. Since we have constructed our loss functional as a weighted

sum of squares of residuals one should justify this form by an a’posteriori analysis of

the distribution of residuals.

Departures from the normality assumption can be identified in several ways like

graphical checking by the histogram of residuals, analyzing of the skewness and the

kurtosis of the distribution of residuals, Jarque-Bera test and other methods.

For readers’ convenience we recall some basic testing method for normality of

distributions:

• Using the histogram to test for normality is based on the comparison of the

normal curve and the distribution of residuals. This method is fundamental

and gives us basic idea, whether the distribution of residuals is normal or not.

• Skewness is the measure of the symmetry of a distribution. The sample skew-

ness can be calculated from the central moments of a distribution as follows:

s =
m3

m2
√

m2

where mr = 1
N

∑
(X−X̄)r is the r-th moment about the mean X̄, and N stands

for the number of observations. If a distribution is symmetrical, then m3 = 0
and s = 0. If a distribution is right skewed, then s > 0. If a distribution is left

skewed, then s < 0.

• Kurtosis is a measure of the thickness of the tails of a distribution. It tells us

something about the ”peakness” of a distribution and the sample kurtosis can

be calculated as follows:

k =
m4

m2
2

.

The moments are defined as it was depicted above. If a distribution is normal

(m4

m2

2

= 3), then k−3 = 0. If a distribution is leptokurtic (fat tails), then k−3 > 0.

If a distribution is platykurtic (thin tails), then k − 3 < 0.

• The Jarque-Bera test is used for detecting departures from normality, too. It is

based on the Wald test, and is computed as follows:

JB = N

[
s2

6
+

(k − 3)2

24

]
.

If JB ≥ 5.99 the null hypothesis (that s = 0 and k = 3) is rejected at significance

level 5%.
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Table 5.1: Testing for normality of residuals for EURO-LIBOR interest rate
EURO-LIBOR 1/4 2003 2/4 2003 3/4 2003 4/4 2003

mean (×10−5) 14.0071 0.635416 -6.17419 -19.3512

variance (×10−7) 6.81257 4.38528 1.81024 1.89934

skewness -0.336927 -0.122863 0.133453 -0.296781

kurtosis 2.95249 5.23716 5.54494 5.75616

Jarque-Bera 15.5724 172.852 234.089 180.834

Table 5.2: Testing for normality of residuals for EURIBOR interest rate
EURIBOR 1/4 2003 2/4 2003 3/4 2003 4/4 2003

mean (×10−5) 2.47656 0.21192 2.68519 -1.78745

variance (×10−7) 6.08292 4.01117 2.12413 2.17348

skewness -0.463778 0.0264481 0.672902 1.13337

kurtosis 3.53435 5.75725 6.07218 7.21584

Jarque-Bera 45.1194 294.703 464.041 916.456

In our case we would like to known whether the residuals defined as:

ej
i = τj(R

i
j − R̄i

j)

= (τjR
i
j − BjR

i
0 − ln Aj) (5.20)

where j = 1, ... , m and i = 1, ..., n are normally distributed. Vector of residuals E
corresponds to X in our consideration of the skewness and kurtosis and N = m.n.

Demonstration of the testing for normality has been done in program Mathematica

see Chapter 10 (content of CD ROM). We have computed the residuals for different

inter-bank rates quarterly because the calibration have been done on quarterly basis

(see [65]) too. The data are from the year 2003, but the calculation steps would be

the same for other data (e.g. for different years).

Results of our analysis are summarized in Tables 5.1-5.4. The graphical represen-

tation can be seen on Figures 5.2-5.5. As we can see the normality test results are

not satisfactory. The distribution of residuals is left skewed in many cases and also

leptocurtic which means that the hypothesis of normality is rejected by the Jarque-

Bera test. This fact has been neglected or disregarded in many papers, when the loss

functional is of the same or very similar form as we have defined. One of the results

(Table 5.3, 2nd quarter) verifies that, if the significance level is decreased to 1%, the

null hypothesis (that the residuals are normally distributed) can not be rejected. We

compare the value from the Jarque-Bera test with 9.21. Although in this case the type

1 error (rejecting of the null hypothesis when it is true) has decreased, but the type

2 error (not rejecting of the null hypothesis when the alternative hypothesis is true)

has increased.

For that reason, the definition of the loss functional 2 is the key element of the

calibration and we should not forget about the residuals. Possible solution to this

2Our results indicate that the least square estimation for the loss functional could be better in the
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Table 5.3: Testing for normality of residuals for BRIBOR interest rate
BRIBOR 1/4 2003 2/4 2003 3/4 2003 4/4 2003

mean (×10−4) 9.19593 9.95761 4.28008 1.87488

variance (×10−7) 17.6885 20.3381 5.46829 5.17393

skewness -0.702378 -0.120432 -0.888203 -1.14491

kurtosis 5.9977 3.58279 4.8819 4.59112

Jarque-Bera 198.185 7.075 123.061 140.596

Table 5.4: Testing for normality of residuals for PRIBOR interest rate
PRIBOR 1/4 2003 2/4 2003 3/4 2003 4/4 2003

mean (×10−4) 0.161299 -1.82956 -0.495298 -2.40967

variance (×10−7) 1.17819 2.2319 0.292456 1.08391

skewness 0.924772 -2.41783 -1.25976 -0.961701

kurtosis 10.055 8.46094 5.9829 3.97165

Jarque-Bera 480.965 481.066 146.74 41.9857

problem could be in the selection of right weights in the definition of the loss func-

tional. On the other hand, the problem of the right weight selection and calibration

with subsequent testing for normality of residuals is rather computationally difficult.

case of U(β, ξ, ̺) = 1

m

∑m

j=1

1

n

∑n

i=1

∣∣(Ri
j − R̄i

j)τj

∣∣p, where 1 < p < ∞ and p 6= 2.
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Figure 5.2: Plot of the histogram of residuals for BRIBOR rates (1Q, 2Q, 3Q, 4Q) in

2003
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Figure 5.3: Plot of the histogram of residuals for PRIBOR rates (1Q, 2Q, 3Q, 4Q) in

2003
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Figure 5.4: Plot of the histogram of residuals for EURIBOR rates (1Q, 2Q, 3Q, 4Q) in

2003
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5.6 Generalizations

As it was mentioned in Section 2.4 the solution to the two factor Fong-Vašiček model

is of the following form:

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y ,

where A(τ), B(τ), C(τ) satisfy the system (2.20).

Definition 5.6.1. The loss functional, for the two factor model case which is the time-

weighted distance of the real market yield curves {Ri
j, j = 1, ..., m} and the set of com-

puted yield curves {R̄i
j, j = 1, ..., m} at time i = 1, ..., n, determined from the bond price

- yield curve relationship

Aje
−BjRi

0
−Cjy = e−R̄i

jτj (5.21)

where ri = Ri
0 is the overnight interest rate at time i = 1, ..., n, Aj = A(τj), Bj = B(τj)

and Cj = C(τj) where 0 ≤ τ0 < τ1 < τ2 < ... < τm stand for maturities of bonds

forming the yield curve, is defined as follows:

U2f (κ1, θ1, σ1, λ1, κ2, λ2, v, ̺) =
1

m

m∑

j=1

1

n

n∑

i=1

(Ri
j − R̄i

j)
2τ 2

j . (5.22)

In the case of A(τ) = Ã(τ)e−F (τ), where Ã(τ) and F (τ) satisfy the system:

˙̃A = −Ã

[
(λ1σ1 − κ1θ1) +

1

2
θ2B

2

]
(5.23)

Ḟ = λ1σ1B + κ2θ2C +
1

2
θ2B

2 (5.24)

we can rewrite the solution to the Fong-Vašiček model in the following form:

P (τ, r, y) = Ã(τ)e−B(τ)r−C(τ)y−F (τ)

where the corresponding equations to the functions B(τ) and C(τ) remain the same

as in (2.20).

In this case the functions Ã(τ) and B(τ) are the same as for the one factor version

of the Vašiček model, so if we consider a set of parameters Θ = (κ1, θ1, σ1, λ1, κ2, λ2, v, ̺)
such that C(τ) ≡ 0 and F (τ) ≡ 0 we get the one factor Vašiček model.

Proposition 5.6.1. In terms of the one factor version of the Vašǐcek model the loss

functional in the two factor case can be expressed in form:

U2f (Θ) = Uv − 2
1

m

m∑

j=1

(Cjy + Fj) [τjE(Rj) − BjE(R0) + ln Aj ]

+
1

m

m∑

j=1

(Cjy + Fj)
2, (5.25)
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where E(Xj) and D(Xj) denote the mean value and dispersion of the vector Xj =
{X i

j , i = 1, ..., n} and Uv stands for the loss functional for the Vašǐcek model in the one

factor case.

The second stochastic factor in this model is the volatility of the short rate. In

practice we do not have any information about this parameter. The short rate can be

approximated by the overnight interest rate, but we have no proxy of the volatility.

One possible solution to this problem is to compute the average values for the model

through the second stochastic value.

The averaging leads to the average loss functional < U2f (Θ) >y of the form:

< U2f (Θ) >y = Uv

− 2
1

m

m∑

j=1

(Cj < y > +Fj) [τjE(Rj) − BjE(R0) + lnAj ]

+
1

m

m∑

j=1

(C2
j < y2 > +2CjFj < y > +F 2

j ), (5.26)

The process of the short rates’ volatility (2.17) has Gamma distribution in limit

with the mean µ = θ2 and the variance var = v2θ2

2κ2
. It means that < y >= θ2 and

< y2 >= var+ < y >2=
θ2(v

2 + 2θ2κ2)

2κ2

where < ym >=
∫ +∞

−∞
ymg(y)dy, where g is the density function of the Gamma distri-

bution (for more details see [68]).

The calibration of the two factor model can be based on the calibration of U2f

to real market data. One of the possible approaches is presented in [4], where the

author took the calibrated parameters of the one factor Vašiček model as an input

to the two factor model calibration and was seeking for the remaining unknown

variables.
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5.7 Appendix to Chapter 5

Proof. (Proof of Proposition 5.2.1.) The logarithm of (5.11) is:

ln Aj − BjR
i
0 = −R̄i

jτj. (5.27)

Substituting this expression to the loss functional we obtain:

U(β, ξ, ̺) =
1

m

m∑

j=1

1

n

n∑

i=1

(Ri
jτj − BjR

i
0 + ln Aj)

2

=
1

m

m∑

j=1

[τ 2
j E(RjRj) + B2

j E(R0R0) + (ln Aj)
2

−2τjBjE(RjR0) + 2τj lnAjE(Rj) − 2Bj lnAjE(R0)]

=
1

m

m∑

j=1

[(τj(E(Rj)) − Bj(E(R0)) + (ln Aj))
2

+cov(τjRj , τjRj) + cov(BjR0, BjR0) − 2cov(τjRj , BjR0)].

This imply the form defined in (5.13).

Lemma 5.7.1. Let ˇ̺(β, ξ) = max(0, ˇ̺aux(β, ξ)) then ∀(β, ξ, ρ) ∈ Ω = [0, 1] × [0, 1] ×
[0,∞) it holds that U(β, ξ, ̺) ≥ U(β, ξ, ˇ̺(β, ξ)).

Proof. If (β, ξ, ̺) ∈ ΩL = [0, 1] × [0, 1] × R we define

ˇ̺aux = −
∑m

j=1(τjE(Rj) − BjE(R0)) lnAj(β, ξ, 1)
∑m

j=1(lnAj(β, ξ, 1))2
.

Let U has its global minimum on ΩL in (β̌, ξ̌, ˇ̺).
I. If ˇ̺ > 0 =⇒ (β̌, ξ̌, ˇ̺) is the global minimizer of U on Ω = [0, 1] × [0, 1] × [0,∞).
II. If ˇ̺ < 0 =⇒ ∀β, ξ ∈ [0, 1] and ∀̺ ∈ R it holds that U(β, ξ, ̺) ≥ U(β, ξ, ˇ̺aux(β, ξ)).
∀β, ξ ∈ [0, 1] and ∀̺ ≥ 0 we could distinguish two cases:

1. ˇ̺aux > 0 =⇒ U(β, ξ, ̺) ≥ U(β, ξ, ˇ̺aux(β, ξ)).
2. ˇ̺aux < 0 =⇒ U(β, ξ, ̺) ≥ U(β, ξ, 0).
It means that U(β, ξ, ̺) ≥ U(β, ξ, ˇ̺(β, ξ)).

Proposition 5.7.1. If (β̌, ξ̌, ˇ̺) ∈ Ω = [0, 1]× [0, 1]× [0,∞) is the global minimum of U
on Ω then ˇ̺ = ˇ̺(β̌, ξ̌).

Proof. For ∀(β, ξ, ̺) ∈ Ω it holds that U(β, ξ, ̺) ≥ U(β̌, ξ̌, ˇ̺) especially more U(β̌, ξ̌, ̺) ≥
U(β̌, ξ̌, ˇ̺).

We have two cases for the quadratic function ̺ 7−→ U(β̌, ξ̌, ˇ̺) in parameter ̺:

I. if ˇ̺ > 0 =⇒ ˇ̺ = ˇ̺aux(β̌, ξ̌) = ˇ̺(β̌, ξ̌).
II. if ˇ̺ = 0 =⇒ ˇ̺ = max(0, ˇ̺aux) = ˇ̺(β̌, ξ̌) = 0.
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Theorem 5.7.1. (For CIR model) If ξ ≥ 1
2

and E(Rj) ≥ E(R0) (yield curve monotonic-

ity assumption) then ˇ̺aux ≥ 0.

Proof. If ξ = κ+λ+η
2η

≥ 1
2
⇐⇒ κ + λ ≥ 0 ⇐⇒ λ ≥ −κ which is the limited market price

of risk, then B(τ) ≤ τ .

Let us show this implication:

− 1

ln β

1 − βτ

ξ(1 − βτ ) + βτ
≤ τ (5.28)

1 − βτ

ξ(1 − βτ ) + βτ
≤ −τ ln β

We use the following substitution: x = βτ :

(1 − x) ≤ −[ξ(1 − x) + x] ln x (5.29)

Denote F (x) = (1 − x) + [ξ(1 − x) + x] ln x. We require F (x) ≤ 0. If x = 1 then

F (1) = 0.

d

dx
F (x) = ξ(

1

x
− 1) + (1 − ξ) lnx

d2

dx2
F (x) = − ξ

x2
+

1 − ξ

x

We require the convexity of F , i.e. d2

dx2 F (x) ≤ 0. It comes up iff:

−ξ + x(1 − ξ)

x2
≤ 0

Therefore

x ≤ ξ

1 − ξ
.

Since ξ
1−ξ

≥ 1 for ξ ≥ 1
2

we have Bj < τj . In addition if E(Rj) ≥ E(R0), then

τjE(Rj) − BjE(R0) > 0.

Now, it is enough to show that ∀j: ln Aj(β, ξ, 1) < 0 i.e. Aj(β, ξ, 1) < 1, then

ˇ̺aux ≥ 0.

Aj(β, ξ, 1) =
β(1−ξ)τ

ξ(1 − βτ ) + βτ
< 1. (5.30)

Denote βτ = x, then ∀x ∈ [0, 1] the following has to be fulfilled:

x1−ξ < ξ(1 − x) + x. (5.31)

Denote F (x) = ξ(1 − x) + x − x1−ξ. For x = 0 it holds that F (0) = ξ > 0, and for

x = 1, F (1) = 0. Since
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d

dx
F (x) = (1 − ξ)(1 − 1

xξ
) < 0

we have F (x) > 0 for 0 ≤ x < 1. Hence Aj(β, ξ, 1) < 1.



Chapter 6

Internal calibration methods

and their results

In the previous chapter we have proposed a new method how the four original pa-

rameters of the one factor interest rate models, especially the CIR and the Vašiček

model, can be reduced to three new parameters. The idea of reducing the four di-

mensional parameter space comes on one hand from the paper of Pearson and Sun

[56] and on the other hand from the option pricing theory. According to the defined

loss functional U which is the difference between the computed and real market yield

curve, we are able to find a one dimensional λ-parameterized curve of global mini-

mizers of U . It means that we find three new parameters of the one factor interest

rate model depending on the fourth parameter λ the market price of risk.

Our goal is now to propose a method to obtain an exact parameter or an interval

of parameters from this one dimensional curve of parameters. All these calculations

are implemented on the basis of the assumption that during the calculation only the

data are used. This is the reason why this method is called internal.

6.1 Calibration based on maximization of the restricted

likelihood function

In this section the calibration method for the estimation of one factor models pa-

rameters is discussed. The main principles of the calibration of the CIR and Vašiček

model parameters are the same. Let us suppose that the parameter determining the

53
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type of the model γ is given.

The method consists of two steps. In the first step, as it was described in Section

5.3, we identify one dimensional curve of the model parameters by minimizing the

loss functional. This method looks like the least square approach in linear regression,

but the proposed minimization problem is highly non-linear. Having identified the

curve of global minimizers of the loss functional we proceed by the second step.

This step consists of maximization of the likelihood function restricted to that

curve so the global maximum is attained in a unique point which is the estimation of

the model parameters.

Let us propose the second step of our method. Notice that the aim of the first

”minimization” step of the method described above was to find a point (β̌, ξ̌, ˇ̺) - a

unique global minimum of the loss functional U = U(β, ξ, ̺). Bearing in mind param-

eter reduction described in Subsection 5.1 there exists a C∞ smooth one dimensional

curve of original model parameters (κλ, θλ, σλ, λ) ∈ R4 parameterized by λ ∈ J̌ cor-

responding to the same transformed triple (β̌, ξ̌, ˇ̺) for which the minimum of U (in

terms of transformed variables β, ξ, ̺) is attained. In order to construct estimation

of the model parameters κ, θ, σ, λ we proceed with the second optimization step in

which we find a global maximum of the standard Gaussian likelihood function (LF)

over the above mentioned λ-parameterized curve representing of global minimizers

of the loss functional U . The two step optimization method combines the maximum

likelihood estimation with minimization of the loss functional U. In the case of pa-

rameter estimation of a stand-alone short rate process having the form (2.6) the LF

is:

ln L(κ, σ, θ) = −1

2

n∑

t=2

(
ln v2

t +
ε2

t

v2
t

)
(6.1)

where v2
t = σ2

2κ
(1 − e−2κ) r2γ

t−1, εt = rt − e−κrt−1 − θ (1 − e−κ) (see [9, 10, 11]). If

estimation of model parameters (κ, σ, θ) is realized by maximization of the likelihood

function over the whole set R
3
+ then the maximum is unrestricted. The value of the

unrestricted maximum likelihood function is:

ln Lu = ln L(κu, σu, θu) = max
κ,σ,θ>0

ln L(κ, σ, θ) . (6.2)

In our approach we make use of restricted maximization of ln L over the λ-parameterized

curve {(κλ, θλ, σλ), λ ∈ J̌}. This can be expressed in original model parameters as fol-

lows:

ln Lr = ln L(κλ̄, σλ̄, θλ̄) = max
λ∈J̌

ln L(κλ, σλ, θλ), (6.3)

where J̌ = (−∞,−(2ξ̌ − 1) ln β̌) in the case of the CIR model and J̌ = R for Vašiček

model. The argument κ̄ = κλ̄, σ̄ = σλ̄, θ̄ = θλ̄ of the maximum of the restricted

likelihood function ln Lr is adopted as a result of two step optimization method for

calibrating the model parameters. A global maximizer of the unrestricted likelihood

function ln Lu has been computed by the same variant of the ES algorithm described
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in Section 5.4. Since maximization of the restricted likelihood function ln Lr is per-

formed over one dimensional parameter λ and the function λ 7→ ln L(κλ, σλ, θλ) is

smooth we could apply a standard optimization software package Mathematica in

order to find a global maximizer of the restricted likelihood function. For measuring

of accuracy of calibration we introduce the maximum likelihood ratio (MLR) as a

ratio of the maximum values of the restricted ln Lr and unrestricted ln Lu likelihood

functions. We have MLR≤ 1 and if MLR is close to 1 then the restricted maximum

likelihood value is close to the unrestricted one. In this case one can therefore expect

that the estimated values (κ̄, σ̄, θ̄) of the model parameters are close to the argument

(κu, σu, θu) of the unique global maximum of the unrestricted likelihood function. It

may indicate that a simple estimation of parameters based on the mean reversion

equation (2.6) for the short rate process rt is also suitable for estimation of the whole

term structure.

6.1.1 Qualitative measure of goodness of fit. Non-linear R2 ratio

In linear regression statistical methods, the appropriateness of linear regression func-

tion is measured by the R2 ratio. If the value of R2 ratio is close to one, it indicates

that the given data set can be regressed by a linear function. In the case of non-

linear regression, there is no unique way how to define the equivalent concept of the

linear R2 ratio. The non-linear R2 ratio essentially depends on the choice of the ref-

erence value. We take this value of the loss functional (5.12) by taking the argument

(β, ξ, ̺) = (1, 1, 1). Since limβ→1 Bj = τj and ln Aj = 0 for β = 1 it is easy to calculate

that

U(1, 1, 1) =
1

m

m∑

j=1

τ 2
j E((Rj − R0)

2),

and, moreover, U(1, 1, 1) = U(1, ξ, ̺) for any ξ ∈ [0, 1] and ̺ ∈ R.

Now we are able to define the non-linear R2 ratio measuring the quality of non-

linear regression as follows:

R2 = 1 − U(β̌, ξ̌, ρ̌)

U(1, 1, 1)
, (6.4)

where (β̌, ξ̌, ρ̌) is the argument of the unique global minimum of the loss functional

U . Then 0 ≤ R2 ≤ 1. The value of R2 close to one indicates perfect matching of the

yield curve computed for parameters (β̌, ξ̌, ρ̌) and that of the given real market data

set.
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6.2 Binding of term structures by expected long-term

interest rate interval

In the calibration based on the two step optimization method: minimization of the

loss functional in the first step and maximization of the restricted likelihood function

in the second step we utilize only aggregated statistics from the data. As we can see

in the loss functional:

U(β, ξ, ̺) =
1

m

m∑

j=1

((τjE(Rj) − BjE(R0) + ln Aj)
2

+ D(τjRj − BjR0)),

where E(Xj) is the mean and D(Xj) is the dispersion of Xj = {X i
j , i = 1, ..., n}. It

means that we calculate the mean and the covariance, so we use aggregated time

series information from the term structure of interest rates and in the calibration we

use only this information. The yield curve comprises more information which can be

also utilized during the calibration. So in the second step of the calibration we may

also utilize an extra information from the data. It is important that we use only the

data basis to get the final parameters. In this method we use the yield curves and try

to bound their means or the whole term structure. Using this bounding we get not

only a unique point but an interval of parameters.

The main idea of this new approach is the follows:

• in the first step we minimize the loss functional U = U(β, ξ, ̺) on the λ-

parameterized curve of global minimizers of U ,

• in the second step we use an extra information from the data. We utilize the

variety richness of the yield curves to calibrate the fourth parameter λ.

The expected long-term interest rate interval [θd, θu] which is obtained from the

data basis, is used in the calibration. In this case we do not get a specific calibrated

point of parameters in the four dimensional parameter space of unknown values in

the case of the CIR and Vašiček model. Details of the second step are explained in

the next two subsections.

6.2.1 Mean value binding

Recall that according to the CIR model the price of a zero-coupon bond P = P (t, T, r)
satisfies the parabolic equation (5.1) and is given by the explicit formula P (t, T, r) =
A(T − t)e−B(T−t)r. Thus ∂rP = −BP . Hence equation (5.1) can be rewritten as

∂P

∂t
+ κ(θ − r)

∂P

∂r
+

1

2
σ2r

∂2P

∂r2
− r∗P = 0 , t ∈ (0, T ) , r > 0 (6.5)
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where r∗ = (1 − λB)r. According to [56] the multiplier 1 − λB can be interpreted

as the risk premium factor and r∗ as the expected rate of return on the bond. Since

B(τ) > 0 for τ > 0 we have r∗ > r if λ < 0. On the other hand, if λ > 0, market bond

return r∗ is less than risk less return rate r.

In the case of Vašiček model the equation for the risk premium factor is slightly

different, because of the form of the function λ̃(r) in (2.12). We have r∗ = r − λ σB
for this model.

In the first step of minimization described in Chapter 5 we obtain a point (β̌, ξ̌, ˇ̺)
which is, in the original model, represented by a curve of parameters (κλ, θλ, σλ, λ) ∈
R

4 parameterized by λ ∈ J̌ . It means that we need to find λ and then the (κλ, θλ, σλ, λ)
is unambiguously defined. The same curve admits many other parameterization, in

particular, parameterization by θ in the form (κθ, θ, σθ, λθ) ∈ R
4.

In this part we propose a new way of calibration of the CIR and Vašiček model.

This method is based on a targeting interval of the expected long-term interest rate

Iθ = [θd, θu]. We can determine an interval for the market price of risk Iλ = [λd, λu],
where λd = λ(θd) and λu = λ(θu), if this interval is known. In this approach we

relate:

r∗ = r∗(λ, τj, R
i
0) =

{
(1 − λB(τj))R

i
0 (CIR)

Ri
0 − λσB(τj) (V asicek)

(6.6)

where the first part stands for CIR model, and second one stands for Vašiček model.

Notice that σ depends only on (β̌, ξ̌, ˇ̺) for both CIR and Vašiček model. Based on

this relationship, for the targeting interval of the expected long-term interest rate

Iθ = [θd, θu] we can define an interval for the expected rate of return as follows:

r∗u = r∗(λ(θd), τj, E(R0)),

r∗d = r∗(λ(θu), τj , E(R0)),

for both of the models.

The idea of the calibration based on binding of means of yield curves, consists in

finding the narrowest possible interval Iθ = [θd, θu] such that:

r∗d < E(Rj) < r∗u ∀j ∈ {1, ..., m}.
To be more precise, we need to determine the relation between r∗ and θ for CIR and

Vašiček models.

• Case of the CIR model:

Based on the parameter reduction presented in Section 5.1 we have derived

in (5.6) the λ-parameterized curve in the CIR model case. According to these

parameters the mapping θ 7−→ λ(θ) is unambiguously defined as follows:

λ(θ) = −Ǩ − ˇ̺
σ2

2θ
,

where Ǩ = (2ξ̌ − 1) ln β̌ and σ = − ln β̌
√

2ξ̌(1 − ξ̌).
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• Case of the Vašiček model:

The λ-parameterized curve for this model is defined in (5.10). In this case the

above mentioned mapping is as follows:

λ(θ) =

(
θ − ξ̌ − σ2

2(− ln β̌)2

) (
− ln β̌

σ

)

where σ = 2
√

(− ln β̌)ˇ̺.

Since β̌ ∈ (0, 1), ˇ̺ > 0 and σ2 > 0 we have the following:

Proposition 6.2.1. Function θ 7−→ λ(θ) is increasing and θ 7−→ r∗(λ(θ), τj, E(R0))
is decreasing in θ for the CIR and Vašǐcek models. Moreover, λ(0+) = ∞, λ(∞) = −κ̌,

r∗(λ(0+), τj, E(R0)) = ∞, for CIR model; λ(0+) < 0, λ(∞) = ∞, r∗(λ(∞), τj, E(R0)) =
−∞, for Vašǐcek model.

An illustration can be seen on Figure 6.1. To find the appropriate targeting inter-

val for the expected long-term interest rate we have to solve the following problem,

to detect whether the following sets are not empty:

θu = inf{θ > 0 | ∀j ∈ {1...m}, r∗(λ(θ), τj, E(R0)) < E(Rj)}
θd = sup{θ > 0 | ∀j ∈ {1...m}, r∗(λ(θ), τj, E(R0)) > E(Rj)} . (6.7)

We remind ourselves (see (6.6)) that r∗(λ(θ), τj , E(R0)) = (1 − λ(θ)Bj)E(R0) in the

case of the CIR model, and, r∗(λ(θ), τj , E(R0)) = E(R0) − λ(θ)σBj in the case of the

Vašiček model.

Let us consider the CIR model and its mean value binding interval Iθ = [θd, θu]. It

follows from Proposition 6.2.1 that r∗(λ(0+), τj , E(R0)) = ∞. If (1+ǨB(τj))E(R0) ≤
min1≤k≤m E(Rk), ∀j ∈ {1, ..., m} then r∗(λ(+∞), τj, E(R0))) ≤ min1≤k≤m E(Rj), ∀j ∈
{1, ..., m} and therefore there exist finite values of 0 < θd ≤ θu < ∞ defined as in

(6.7). Thus we have shown the following proposition:

Proposition 6.2.2. Suppose that (1+ǨB(τj))E(R0) ≤ min1≤k≤m E(Rk), ∀j ∈ {1, ..., m}.

Then the mean value binding interval [θd, θu] for the CIR model is finite, i.e. 0 < θd ≤
θu < ∞. This condition is fulfilled if Ǩ < 0 i.e. ξ̌ > 1

2
and E(R0) ≤ E(Rj) ∀j ∈

{1, ..., m}.

6.2.2 Binding of the whole term structures and their significant

parts

In the previous part the mean value have been bound. We are also interested in

whether it is possible to bind (of course over a reasonable interval) not only the

mean value of the yield curves by [r∗d, r
∗
u] but also the whole term structure or their
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Figure 6.1: Illustration: where r∗(λ(θ)) = r∗(λ(θ), τj, E(R0))

significant parts (e.g. 95%) through the targeting interval of expected long-term

interest rate Iθ = [θd, θu]. The new task is to find this interval as the following sets

are not empty:

θu = inf{θ > 0, P r(j ∈ {1...m} | r∗(λ(θ), τj, R
i
0) < Ri

j , ∀i ∈ {1...n}) ≥ 1 − α}
θd = sup{θ > 0, P r(j ∈ {1...m} | r∗(λ(θ), τj, R

i
0) > Ri

j, ∀i ∈ {1...n}) ≥ 1 − α}
With this choice of [θd, θu] interval we have the estimate:

Pr(j ∈ {1...m} | r∗(λ(θu), τj, R
i
0) < Ri

j < r∗(λ(θd), τj, R
i
0), i ∈ {1...n}) ≥ 1 − 2α,

where Pr is the probability of the event and α is the significance or confidence level.

If 1 − α = 1, i.e. α = 0, then, for all i = 1, .., n and j = 1, ..., m, we have:

r∗(λ(θ), τj, R
i
0) < Ri

j

and therefore we have

r∗(λ(θ), τj, E(R0)) < E(Rj)

because r∗ is linear in Ri
0 argument (see 6.6). It means that θα=0

u > θmean
u

1 obtained

from mean value binding. On the other hand, the same can be derived for the θd, so

we have that θα=0
d < θmean

d .

6.3 Internal calibration results for a sample European

term structures

The aim of this section is to present results of the two step optimization method for

terms structures for various European countries and to make comparison of stable

1θα=0

u stands for θu when α = 0 and θmean
u stands for θu when the parameter is calculated based

on mean value binding.
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western European financial markets to those of the new EU member states. More pre-

cisely, we will compare European inter-bank offered rates EURIBOR, London inter-

bank offered rates EURO-LIBOR and USD-LIBOR, and inter-bank offered rates in

Slovakia (BRIBOR), Hungary (BUBOR), the Czech Republic (PRIBOR) and Poland

(WIBOR).

6.3.1 Term structure description and summary statistics

In the two step optimization method for calibration of the CIR and Vašiček model we

need to have a good approximation for the process of the spot interest rate (2.6) for

inter-bank loans. The overnight or short rate seems to be appropriate. The data for

the short interest rate are available for all investigated financial markets (BRIBOR,

PRIBOR, WIBOR, BUBOR) as well as for London inter-bank offered rates (LIBOR).

In case of the Euro-zone term structure EURIBOR, there exists an accepted substitute

to the overnight called EONIA. It is computed as a weighted average of all overnight

unsecured lending transactions in the inter-bank market, initiated within the Euro

area by the Panel Banks. These Panel Banks (the overall number 48) are the same

as the banks for the quoting of EURIBOR. They use the convention of 360 day count

and the inter-bank rate is displayed to two decimal places. In the case of BRIBOR

the number of the Panel Banks is 7, the rates, quoted at 11:00 a.m., are computed

as non-weighted arithmetic average of all quoted values except the lowest and the

highest one and displayed to two decimal places. The number of Panel Banks for

BUBOR is 16, for WIBOR is 10 and the rates are quoted at 10:30 a.m. in the first

case and at 11:00 a.m. in the second.

Term structures for the above mentioned European financial markets data contain

bonds with the following maturities:

• EURO-LIBOR and USD-LIBOR: 1 week, 1 up to 12 months, i.e. its length is

m = 13.

• EURIBOR: 1, 2 and 3 weeks, 1 up to 12 months, i.e. its length is m = 15.

• BRIBOR: 1 and 2 weeks and 1, 2, 3, 6, 9, 12 months, i.e. its length is m = 8.

• BUBOR: 1 and 2 weeks, 1, 3, 6, 9, 12 months, i.e. its length is m = 7.

• WIBOR 1 week and 1, 3, 6, 9, 12 months, i.e. its length is m = 6.

• PRIBOR: 1 and 2 weeks, 1, 2, 3, 6, 9, 12 months, i.e. its length is m = 8.

The sample mean and the standard deviation for different inter-bank offered rates

is presented on quarterly basis in Table 6.1 for year 2003. The mean of BRIBOR,

WIBOR and BUBOR is higher than the mean of the last three data sample (PRIBOR,

EURIBOR and EURO-LIBOR) during the whole year. The same is true concerning

the standard deviation. It is an indication that the Czech data could have similar

qualitative properties as the western European term structures.
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Table 6.1: Descriptive statistics for various term structures. Mean and standard devi-

ation (STD) (in %) are shown for the overnight rate and the rate on the longest bond

with 1-year maturity.
1/4 2003 2/4 2003 3/4 2003 4/4 2003

Mean STD Mean STD Mean STD Mean STD

BRIBOR on 5.75 1.041 6.27 1.279 5.63 0.802 5.48 0.992

1y 5.48 0.205 5.42 0.208 5.80 0.066 5.50 0.033

WIBOR on 6.65 0.761 5.76 0.359 5.22 0.438 5.17 0.438

1y 5.95 0.138 5.19 0.255 4.97 0.053 5.79 0.380

BUBOR on 5.42 1.813 7.08 0.879 9.58 0.547 10.52 1.213

1y 6.57 0.433 6.76 0.773 8.80 0.207 10.02 1.334

PRIBOR on 2.52 0.107 2.44 0.045 2.06 0.135 1.94 0.032

1y 2.43 0.130 2.33 0.084 2.13 0.063 2.19 0.061

EURIBOR on 2.77 0.188 2.44 0.199 2.07 0.120 2.02 0.169

1y 2.54 0.140 2.23 0.189 2.20 0.106 2.36 0.081

EURO-LIB on 2.79 0.196 2.47 0.196 2.08 0.101 2.02 0.139

1y 2.54 0.139 2.23 0.187 2.20 0.105 2.35 0.085

The key issue of the CIR and Vašiček model is to model the short rate as an

Orstein-Uhlenbeck type of the mean reverting process (2.6). In Figure 6.2 we present

some examples of short rate for specific samples of data (EURO-LIBOR, BRIBOR and

PRIBOR). As we can see the over-night is more volatile than the interest rates with

longer maturity.

6.3.2 Results of calibration by means of restricted likelihood func-

tion

The results of calibration for the CIR model parameters as well as corresponding max-

imum likelihood (MLR) and R2 ratios are summarized in Table 6.2 for term structures

with maturities up to one year.

Table 6.2 reports quarterly results for BRIBOR, WIBOR, BUBOR, PRIBOR, EURO-

LIBOR and EURIBOR for the year 2003. Estimated parameters κ, σ, θ, λ, the value

of the loss functional (U) and the non-linear R2 ratio together with the maximum

likelihood ratio (MLR) are presented. Behavior of the expected long-term interest

rate θ is in accordance with the expectancy of the market in the long-term run. It

predicts interest rates close to 1.7% for EURO-LIBOR and EURIBOR as well as for

PRIBOR. Other term structures also indicate decrease of interest rates in the future

but these estimations of θ are quantitatively less convincing compared to EURO-

LIBOR, EURIBOR and PRIBOR predictions. Results of estimation for κ show that the

speed of reversion for EURIBOR and EURO-LIBOR is comparable. The lowest values

of estimated κ were achieved by the PRIBOR term structure and the highest values

were achieved for BRIBOR which is in accordance to highly fluctuating character of
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(a)

(b)

(c)

Figure 6.2: Graphical description of overnight (short-rate) interest rates and those of

bond with longer maturity. Daily data are plotted for EURO-LIBOR (a), BRIBOR (b)

and PRIBOR (c). The 10y PRIBOR stands for the 10 year yield on government bonds.
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Figure 6.3: Comparison of risk premium factors 1 − λB1 for EURO-LIBOR and BRI-

BOR (left) and EURO-LIBOR, WIBOR and BRIBOR (right).

BRIBOR interest rates (see Figure 6.2). It can be explained by the characteristics of

Slovak inter-bank market. The estimated volatility parameter σ of the mean revert-

ing process has the same behavior for WIBOR and BUBOR, and, it is very large for

the Slovak BRIBOR data. On the other hand, results for Czech data enables us to

conclude that volatility of PRIBOR quantitatively and qualitatively is very similar to

that of EURIBOR and EURO-LIBOR. In terms of the maximum likelihood ratio, mea-

suring appropriateness of the CIR model, the overall quality of estimation is better

for PRIBOR, EURIBOR and EURO-LIBOR. The non-linear R2 ratio is mostly close to

one for all data, but there are some exceptions.

In Figure 6.4, parts (a) and (b) we show comparison of the MLR and R2 ratios

for EURO-LIBOR an USD-LIBOR. As we can see they are strongly correlated. Hence,

in the next parts of this figure, we present a comparison of results of parameter esti-

mation for EURO-LIBOR, BRIBOR, PRIBOR and WIBOR only. The graph (c) displays

their MLR. In most quarters, this ratio is better for EURO-LIBOR and the worst for

BRIBOR. For the last two samples (PRIBOR and WIBOR), it is varying. In the graph

(d) we can see that the best R2 ratio is achieved for WIBOR and the worst for PRI-

BOR. This value is varying for BRIBOR and EURO-LIBOR. Parts (e) and (f) present

estimated parameters θ (expected long-term interest rate) and σ (volatility of the

process (2.6)). For PRIBOR and EURO-LIBOR the results are similar not only for θ
but also for σ. The volatility of the process for Slovak data is very high and also

parameter θ is quite volatile.

Risk premium analysis

In this section we discuss and analyze results of parameter estimation for the param-

eter λ representing the market price of risk in the CIR model.

Table 6.2 shows that the market price of risk λ is negative in most time periods.

It implies that the expected rate of bond return r∗ is greater than instantaneous rate

r. There are however some short time periods in which the market price of risk is

positive for EURIBOR and EURO-LIBOR (2nd quarter). In Figure 6.3 we plot the
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Table 6.2: Numerical results of calibration for short term structures (up to one year)

for BRIBOR, WIBOR, BUBOR, PRIBOR, EURIBOR and EURO-LIBOR. Results cover 4

quarters of 2003.

U ML

BRIBOR κ σ θ λ (×10−6) R2 ratio

1/4 2003 688.298 8.960 0.0025 -658.657 1.629 0.947 0.528

2/4 2003 38.467 1.509 0.0458 -6.302 1.704 0.971 0.719

3/4 2003 598.875 8.276 0.0031 -568.839 0.487 0.971 0.536

4/4 2003 793.487 9.396 0.0022 -764.117 0.339 0.986 0.551

WIBOR

1/4 2003 10.103 0.622 0.0564 -0.362 0.660 0.966 0.702

2/4 2003 7.459 0.877 0.0204 -4.457 1.075 0.897 0.519

3/4 2003 193.565 6.097 0.0029 -189.986 1.781 0.870 0.371

4/4 2003 2.910 0.842 0.0004 -3.084 22.862 0.048 0.388

BUBOR

1/4 2003 14.233 0.576 0.0555 -2.425 6.118 0.965 0.964

2/4 2003 14.166 0.671 0.0626 -0.658 2.967 0.805 0.684

3/4 2003 134.256 5.064 0.0035 -130.883 1.037 0.940 0.363

4/4 2003 2.715 0.812 0.0111 -2.508 19.593 0.208 0.394

PRIBOR

1/4 2003 0.098 0.007 0.0248 0.092 0.134 0.633 0.904

2/4 2003 36.934 0.728 0.0209 -4.714 0.238 0.428 0.514

3/4 2003 2.823 0.060 0.0201 -0.200 0.028 0.897 0.814

4/4 2003 3.385 0.097 0.0187 -0.626 0.088 0.924 0.685

EURIBOR

1/4 2003 40.927 1.030 0.0202 -8.724 0.506 0.783 0.654

2/4 2003 0.818 0.028 0.0240 0.252 0.319 0.746 0.876

3/4 2003 39.209 0.644 0.0178 -6.986 0.143 0.807 0.735

4/4 2003 15.592 0.360 0.0180 -3.451 0.145 0.941 0.778

EURO-LIBOR

1/4 2003 34.118 0.689 0.0241 -1.897 0.634 0.818 0.712

2/4 2003 0.734 0.024 0.0244 0.276 0.432 0.790 0.864

3/4 2003 40.018 0.699 0.0175 -7.797 0.221 0.714 0.703

4/4 2003 9.217 0.286 0.0178 -2.243 0.221 0.929 0.758
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Results of parameter estimation for various term structures. Maximum

likelihood ratio (a) and R2 ratio (b) for EURO-LIBOR and USD-LIBOR. Comparison

of the same factors for EURO-LIBOR, BRIBOR, PRIBOR and WIBOR is presented in

(c) and (d), resp. Estimated parameters θ and σ are shown in (e) and (f), resp.
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risk premium factor 1 − λB for 10 quarters since the third quarter of 2001. We

chose B = B1, i.e. we plotted the risk premium for bonds with one week maturity.

Figure 6.3 (left) displays the risk premium of EURO-LIBOR and PRIBOR. They are

comparable as far as behavior and range of values are concerned. The right figure

presents a comparison for EURO-LIBOR with WIBOR and BRIBOR. The risk premium

is quite similar for WIBOR and EURO-LIBOR except of the third quarter of 2003.

However, this factor is extremely large and highly volatile for the Slovak BRIBOR

term structure.
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6.3.3 Results of calibration based on binding of means

Recall that in the mean value binding approach we are seeking for a narrowest in-

terval of the expected long-term interest rate Iθ = [θd, θu] through the yield curve

binding as follows:

r∗d < E(Rj) < r∗u ∀j ∈ {1, .., m}. (6.8)

It is important to remind that this investigation is possible by means of the market

price of risk which is different for the Vašiček and CIR models. This is because of the

different definition of the expected rate of return of the bond for these models. Based

on Sections 5.1.1, 5.1.2, 6.1.1 we have the following formula for the market price of

risk depending on the expected long-term interest rate interval:

• case of the Vašiček model:

λi =

(
θi − ξ̌ +

2ˇ̺

ln β̌

) √
− ln β̌

2
√

ˇ̺
(6.9)

• case of the CIR model:

λi = − ln β̌

[
(2ξ̌ − 1) +

ˇ̺

θi
ξ̌(1 − ξ̌) ln β̌

]
(6.10)

where i ∈ {d, u}.

According to this fact the algorithm consists of the following steps:

1. obtain (β̌, ξ̌, ˇ̺) in the first step (minimization of the loss functional)

2. get the narrowest possible interval Iθ = [θd, θu] in the second step

I. give initial approximation θd ∈ [θmin, θmax] and θu ∈ [θmin, θmax] and small

steps ∆θu, ∆θd > 0

II. calculate λd, λu and consequently r∗d and r∗u

III. verify r∗u ≤ E(Rj) ≤ r∗d for all j ∈ {1, ..., m} (in a special case just for a

given subset of j ∈ {1, ..., m})

IV. if III is satisfied increase θd = θd + ∆θd and decrease θu = θu − ∆θu. Go to

step II otherwise stop.

It means that we identify the smallest interval of the expected long-term interest

rate in iterative process. If all the maturities have to fulfill the condition (6.8) then

the interval is wider than in the special case (when only the longer maturities have to

fulfill this condition). Tables 6.3-6.6 summarize the results for PRIBOR and BRIBOR

interest rates from February up to September 2005 for the CIR model. This compu-

tation is rather general, so it could be performed also for other data basis and for

the Vašiček model. These results include not only the interval Iθ = [θd, θu] but also



68

Table 6.3: Results for PRIBOR interest rates for data from 2005 in the case of includ-

ing all maturities

PRIBOR θd θu λd λu

February 0.01005 0.02285 -0.46189 0.00570

March 0.02035 0.02215 -0.24978 0.75840

April 0.00865 0.02390 -0.71028 -0.03909

May 0.01580 0.01810 -0.35461 -0.06380

Jun 0.01705 0.01760 -0.13371 -0.00915

July 0.01660 0.01885 -0.17155 -0.06187

August 0.01700 0.01870 -0.25981 -0.11381

September 0.01560 0.02070 -0.24073 -0.08629

Table 6.4: Results for PRIBOR interest rates for data from 2005 in the case of includ-

ing only longer maturities (from 2 months upto 1 year).

PRIBOR θd θu λd λu

February 0.02090 0.02285 -0.02713 0.00570

March 0.02190 0.02215 0.67572 0.75840

April 0.02010 0.02390 -0.10987 -0.03909

May 0.01795 0.01810 -0.06961 -0.06379

Jun 0.01750 0.01750 -0.00915 -0.00915

July 0.01860 0.01885 -0.06870 -0.06187

August 0.01840 0.01870 -0.13068 -0.11381

September 0.01970 0.02070 -0.10832 -0.08629

the interval for the market price of risk Iλ = [λd, λu]. While in the case of including

only the longer maturities into the computation we can obtain a narrower interval,

in some cases even a unique point (see Table 6.4 Jun), in the case of covering the

whole term structure we obtain a wider interval of parameters (θ and λ).

Some representative examples are shown on Figures 6.5-6.7. Naturally the yield

curve bounds (r∗d and r∗u) and the mean value of term structure Rj could be compared

on these figures. The results are organized as follows: in the first line there are

results for the BRIBOR and in the second line there are for PRIBOR interest rates (for

a specified time period, in this case May, July and August); the first column is for all

maturities and the second is only for the longer maturities, especially for 2 months

up to 1 year.

Calibration based on the data basis (it means that the expected long-term interest

rate interval Iθ is obtained from the data) results in a positive outcome from the

point of view of negative market price of risk interval Iλ. As we can see in Tables 6.3

and 6.5 in the most of the cases λu < 0. The same result is achieved in the case of
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Table 6.5: Results for BRIBOR interest rates for data from 2005 in the case of includ-

ing all maturities

BRIBOR θd θu λd λu

February 0.02805 0.04090 -1.29012 -0.34379

March 0.00580 0.03210 -7.04533 -0.26786

April 0.01170 0.02905 -10.33360 -0.67071

May 0.02545 0.02880 -0.46294 1.40862

Jun 0.02225 0.02795 -3.64359 0.31737

July 0.01955 0.03030 -8.23568 -1.33360

August 0.02825 0.02995 -0.16431 0.70541

September 0.02270 0.02745 -4.26512 -0.81113

Table 6.6: Results for BRIBOR interest rates for data from 2005 in the case of includ-

ing only longer maturities (from 2 months upto 1 year).

BRIBOR θd θu λd λu

February 0.03285 0.04090 -0.84777 -0.34379

March 0.02400 0.03210 -0.77124 -0.26786

April 0.02535 0.02905 -1.60358 -0.67071

May 0.02700 0.02880 0.48575 1.40862

Jun 0.02595 0.02795 -0.83528 0.31737

July 0.02805 0.03030 -2.30550 -1.33360

August 0.02860 0.02995 0.03424 0.70541

September 0.02600 0.02745 -1.68687 -0.81113
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Figure 6.5: Results from May 2005 for BRIBOR (top row) and PRIBOR (bottom row)

interest rates (left–all maturities, right–2m up to 1y); r∗u–violet, r∗d–red, E(Rj)–green

0.0190.0380.083 0.17 0.25 0.50 0.75 1.
Maturity

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.032

Y
i
e
l
d

0.0190.0380.083 0.17 0.25 0.50 0.75 1.
Maturity

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.032

Y
i
e
l
d

0.0190.0380.083 0.17 0.25 0.50 0.75 1.
Maturity

0.016

0.017

0.018

0.019

0.02

Y
i
e
l
d

0.0190.0380.083 0.17 0.25 0.50 0.75 1.
Maturity

0.016

0.017

0.018

0.019

0.02

Y
i
e
l
d

Figure 6.6: Results from July 2005 for BRIBOR (top row) and PRIBOR (bottom row)

interest rates (left–all maturities, right–2m up to 1y); r∗u–violet, r∗d–red, E(Rj)–green
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Figure 6.7: Results from August 2005 for BRIBOR (top row) and PRIBOR (bottom

row) interest rates (left–all maturities, right–2m up to 1y); r∗u–violet, r∗d–red, E(Rj)–
green

including only the longer maturities into the calibration.

In the case of binding of the whole term structure this approach will be modified

in the following way:

1. obtain (β̌, ξ̌, ˇ̺) in the first step (minimization of the loss functional)

2. get the narrowest possible interval [θd, θu] in the second step

I. give initial approximation θd ∈ [θmin, θmax] and θu ∈ [θmin, θmax] and small

steps ∆θd, ∆θu > 0

II. calculate λd, λu and consequently r∗(λ(θu), τj , R
i
0) and r∗(λ(θd), τj, R

i
0)

III. verify r∗(λ(θu), τj , R
i
0) ≤ Ri

j ≤ r∗(λ(θd), τj, R
i
0) for all j ∈ {1, ..., m} and for

all i ∈ {1, ..., n}
IV. if III is satisfied increase θd = θd + ∆θd and decrease θu = θu − ∆θu. Go to

step II otherwise stop.



Chapter 7

External calibration methods

In this chapter we introduce a new approach in the one factor interest rate models

calibration. Until now we have tried to calibrate all the unknown parameters of the

Vašiček and CIR models on the basis of the inter-bank rates. We searched for the best

solution to fit the real data. This method leads to an endogenous outcome. The new

approach, proposed in this part, uses not only the inter-bank rates but also an expert

expectation. It results in an exogenous solution.

We recall main steps of the option pricing Black-Scholes model in order to under-

stand our motivation for introduction of the external calibration method based on

an extra (externally provided) information. We should find out the analogy of the

option pricing with the bond pricing theory.

The evolution of the asset price S at time t is assumed to follow the process of the

form:

dS = µSdt + σSdw, (7.1)

where µ is the expected rate of return, σ is the volatility and w is the standard Wiener

process. According to the assumptions of the risk-less hedging principle (see [47])

one can derive the Black-Scholes partial differential equation for option pricing in

the form:
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− rV = 0. (7.2)

Note that the parameter µ which is the expected rate of return does not enter the

above PDE. It indicates that the risk preference of the investor (tendency of stock

evolution) do not affect the option price so it exactly depends on three parameters σ,

r and E: V (S, t = T − τ ; σ, r, E), where E is the strike price of the underlying asset.
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The knowledge of the option price V is not enough for the calibration of µ, so it must

be externally added.

In the case of the CIR model (the same analogy could be used also for the Vašiček

model), the underlying equation is of the form:

drt = κ(θ − rt)dt + σ
√

rtdwt (7.3)

where κ(θ − rt) is the mean reverting drift and σ
√

rt is the volatility of the process

for rt. The method of applying the risk-less hedging principle is similar but slightly

different from that used in the option pricing model (see [47]). Since the interest

rate is not a traded asset, dependence of the zero-coupon bond price on the investors

preferences could not be eliminated as it has been done in the case of options. We

obtain the following PDE for the price of a zero-coupon bond:

∂P

∂t
+ (κ(θ − r) − λr)

∂P

∂r
+

1

2
σ2r

∂2P

∂r2
− rP = 0. (7.4)

In this case the bond price depends on four parameters P (r, t = T − τ ; κ, σ, θ, λ), but

we are able to reduce the four dimensional parameter space of (κ, σ, θ, λ) into three

dimensional space as it was mentioned in Section 5.1. So the bond price depends

exactly on three parameters and the fourth one should be determined either inter-

nally (using e.g. restricted maximum likelihood estimation) or it can be provided

as an exogenous parameter. As we can see there is an analogy with option pricing,

the only difference is in the investors preferences, the tendency of evolution of the

underlying equation. In the case of the option pricing, this parameter have to be pro-

vided, because it could not be identified from the data. The bond price knowledge

allows us the calibration of this parameter internally, as it was done in Chapter 6, but

the motivation from the option pricing theory suggests us a new approach.

This methodology, the so-called external calibration method, is based on the idea

of externally provided parameter. This parameter could be for example the expected

long-term interest rate θ. This input can be obtained by an expert data analysis or

from the market experts expectations.

Generally, in the one factor interest rate models, there are four parameters in-

volved. According to the economic interpretation of these parameters: the expected

long-term interest rate, the market price of risk, the volatility of the short rate process

and the mean reversion factor; it is difficult to obtain externally one of them. The

most likely to get an expectation about the long-term interest rate parameter θ.

7.1 Calibration based on prescribed expected long-term

interest rate interval

Suppose that we are given an extra information that the expected long-term interest

rate θ lies within the interval Iθ = [θd, θu], where θd is the lower and θu is the upper

bound provided by external expertise and 0 < θd < θu.
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Table 7.1: Expected long term interest rate intervals for EURIBOR in 2006.

θd θu

on (%) 1w (%) on (%) 1w (%)

February 2.3299 2.3588 2.3691 2.3862

March 2.3898 2.5656 2.6502 2.6402

April 2.5967 2.6212 2.6600 2.6478

May 2.5162 2.6105 2.6375 2.6318

Jun 2.5365 2.6785 2.8589 2.9067

July 2.7923 2.8310 2.8353 2.8551

August 2.8269 2.9833 3.1096 3.1208

September 3.0159 3.0659 3.0660 3.0820

This problem could be very complicated for multi factor models, because we have

to hit the target interval with more parameters than in the case of one factor interest

rate models. For simplicity, let us assume a one factor interest rate model for the

zero-coupon bond price. As we know, we have an explicit solution to the PDE for

CIR and Vašiček model, too. It means that we are able to calibrate the parameters of

the models, of course with additional information which is the expected long-term

interest rate interval Iθ.

The basic step before the calibration is again the parameter reduction as described

in Section 5.1. We can minimize the loss functional (5.13) to obtain the optimum

vector (β̌, ξ̌, ˇ̺). In the second step we need extra information which is the prescribed

interval Iθ in our methodology. Based on this expectation we are able to find:

1. the market price of risk interval Iλ = [λd, λu], where λd < λu are defined in

(6.9) for the Vašiček model and in (6.10) for the CIR model, i.e.

CIR model:

λd = − ln β̌

[
(2ξ̌ − 1) +

ˇ̺

θd

ξ̌(1 − ξ̌) ln β̌

]

λu = − ln β̌

[
(2ξ̌ − 1) +

ˇ̺

θu
ξ̌(1 − ξ̌) ln β̌

]

Vašiček model:

λd =

(
θd − ξ̌ +

2ˇ̺

ln β̌

) √
− ln β̌

2
√

ˇ̺

λu =

(
θd − ξ̌ +

2ˇ̺

ln β̌

) √
− ln β̌

2
√

ˇ̺

Notice that 0 < β < 1 =⇒ − ln β > 0.
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2. the interval for the speed of reversion Iκ = [κd, κu] in the CIR model case, where

κd and κu are defined as follows:

κd = −(2ξ̌ − 1) ln β̌ − λu

κu = −(2ξ̌ − 1) ln β̌ − λd

For the Vašiček model this parameter depends only on the transformed param-

eters (5.7). κ = κd = κu = − ln β̌.

3. and the last parameter of the one factor model σ which is independent on λ in

both cases and can be expressed as:

σ = σd = σu = − ln β̌

√
2ξ̌(1 − ξ̌) (CIR)

σ = σd = σu = 2

√
(− ln β̌)ˇ̺ (V asicek)

7.1.1 Discussion on the expected long-term interest rate interval

with results

As it was mentioned earlier, considering an observable or externally provided pa-

rameter for the interest rate models, the most rational is to make some expectations

about the long-term interest rate θ. However setting up this parameter is difficult.

It would be careless to say that this expectation is for sure a fixed value. For that

reason, we decided to set an interval for the expected long-term interest rate.

We realize that our targeting need not be right, however the background of this

consideration could be plausible. The Slovak economy is a small open economy. We

are influenced by other European countries. Our currency is linked to the Euro (in

a standard fluctuation band), as we have entered the ERM II in November 2005.

We plan to adopt the Euro and enter the Euro-zone in the close future. We have to

fulfill the Maastrichts criteria before entering. One of them is about the long term

interest rate on 10 year government bonds, that it could not exceed the average

interest rate of three EU countries (with the smallest inflation) more than 2%. The

central bank will foster the growth of economy through lower interest rates. All

these facts influence the market expectations. To avoid the shock from these changes

the market is preparing for that. We could expect a convergence on the inter-bank

market, especially in the interest rates.

Based on that we have set two possible intervals for the expected long-term in-

terest rates. They are established in the following manner; the BRIBOR and PRIBOR

overnight rates from 2005 are expected to be in the interval of one standard devia-

tion from the mean values of EURIBOR overnight rates in 2006. We have computed

the mean value and the standard deviation of the EURIBOR in 2006 for different
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months and also for different maturities. The final intervals, summarized in Table

7.1, are:

Iθ = [θd, θu] = [µj − σj , µj + σj ]

where µj = E(Ri
j), σj =

√
D(Ri

j), Ri
j -EURIBOR rates, i stands for one month time

horizon and j ∈ {on, 1w} is the maturity. In the case of the convergence to the

shorter maturity interval, the Iθ is much more wider (see Figure 7.1) than in the case

of longer maturities such as the one week case. The reason is the greater volatility

of the overnight EURIBOR rates. Of course the Iθ interval could be determined in

another way.

Now, the externally added information is given. We can continue with the cal-

ibration steps to obtain the interval for the market price of risk. Demonstration of

the calibrated intervals Iλ is shown on the Figure 7.2. The calibration has been done

in a sample period of time for the BRIBOR and PRIBOR rates in 2005, with the ex-

pectation of the convergence to the EURIBOR in 2006 used the CIR model. The first

step of the calibration was the same as for the internal calibration method. We have

obtained (β̌, ξ̌, ˇ̺) for any given λ. In the second step we added our expectation about

the Iθ and the outcome was the interval for the market price of risk.

As we can see from the results for the market price of risk, λ < 0 in most of

the cases for BRIBOR. The opposite is true for the market price of risk interval for

PRIBOR rates. Since λ is a constant determining the risk premium factor 1 − λB(τ)
the expected rate of bond return r∗ = (1− λB(τ))r is greater than the overnight rate

r if and only if λ < 0.

One possible conclusion from such term structure behavior might be that the cho-

sen target interval Iθ for BRIBOR based on the EURIBOR 2006 data verifies greater

expected rate of bond return r∗ compared to the overnight rate. On the other hand,

for the Czech data the target interval Iθ turns to be artficialy pulled up because of

positive values of λ leading to lower expected rate of bond return r∗ compared to the

overnight rate. If we push down the target interval Iθ (i.e. we decrease θd and θu for

which λu < 0) then we achieve greater expected rate of bond return r∗ compared to

the overnight rate.

Now it is interesting to compare the results of calibration based on the internal

and external methodology. In Subsection 6.3.3 we have proposed the outcomes of

the internal calibration based on binding of means. As we can see the interval for

the market price of risk Iλ is in the most of the cases negative for BRIBOR and PRI-

BOR rates (see Table 6.3 and 6.5). It means that the predetermined interval of the

expected long-term interest rate Iθ is set in a manner proving the condition that the

expected rate of bond return is greater than the overnight rate. It does not necessar-

ily mean that the expert could not better adjust his/her expectation on Iθ to obtain

the same outcome.
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Figure 7.1: Expected long-term interest rate interval Iθ = [θd, θu], case of overnight

EURIBOR rates.
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Figure 7.2: Results of calibration based on expected long-term interest rate interval

for PRIBOR (left) and BRIBOR (right) rates for different expectations, convergence

to overnight (a)-(b) and 1-week (c)-(d) interest rates of EURIBOR.



Chapter 8

Discussion

The main goal of this thesis was to identify and analyze a lot of possibilities of

using one factor interest rate models in the context of the European and emerging

(new member states) markets. Of course, there exist many different papers dealing

with these models, but many of them are focusing only on particular aspect or one

issue connected with the one factor models. We attempted to add a new value and

insight in this theses, not just a general overview of the existing calibration and esti-

mation techniques and their connection to the interest rate models and derivatives.

We proposed new and hopefully interesting issues and topics which came out during

the analysis and expertise of the possibilities of usage of these models for real data.

The core results of this theses could be divided into two main parts. The first

part is the so-called internal calibration method. This method is based on the new

two phase minmax optimization method for parameter estimation of the CIR and

Vašiček one factor interest rate model. It is based on minimization of the loss func-

tional together with the maximization of the likelihood function restricted to the set

of minimizers. We have tested the estimation method on various term structures

including stable west Europe inter-bank offered rates as well as those of the new

EU member states. Based on our results of parameter estimation for the CIR one

factor model we can state that the western European term structure data are better

described with CIR model compared to the new EU member states represented by

Central European countries. Our methodology can be applied in order to estimate

CIR parameters for EURO-LIBOR, USD-LIBOR and EURIBOR term structures. Inter-

estingly, to some extent, it could be also applied for estimation of CIR parameters for

the Czech PRIBOR term structure. On the other hand, we can observe, at least par-

tial, quantitative failure of the CIR model for other Central European term structures.

78



79

We measured the quality of non-linear regression by mean of non-linear R2 ratio.

It is very important to emphasize the possibility of the parameter reduction in

the CIR and Vašiček model too. This is utilized during all introduced methods and

approaches in this theses. Because of integrated view on interest rate models calibra-

tion we sketched a way how to calibrate two factor models including, in particular,

the Fong-Vašiček model.

Before turning to the second part of our analysis and results, we insert a somehow

new view on the internal calibration method. This is the calibration based on binding

interval approach. It means that we do not try to calibrate all the parameters of the

one factor models to be a point, but we allow some freedom of a parameter. The

endogenity of this method remains, because all the parameters are obtained from

the data.

Final part of the theses deals with the external calibration method. In this case

the exogenity of this approach is coming from an externally provided parameter.

Based on that information which is the expected long-term interest rate interval we

have calibrated the remained parameters of the one factor interest rate models. We

assumed that the BRIBOR and PRIBOR rates in 2005 will converge to the mean

values of EURIBOR with specific maturity in 2006. We prefer the results for BRIBOR

from the point of view of negative market price of risk. Our assumption about the

expected long-term interest rate interval is not justified for PRIBOR. The plausible

expectation would be a lower interest rate interval.

The main contributions of this thesis are:

1. introduction of the new variables for the CIR and Vašiček models to reduce the

four dimensional parameter space of the one factor interest rate models into

three reduced parameters,

2. transformation of the explicit solution to the PDE for the zero-coupon bond

price by means of the new variables,

3. proposition of the loss functional in an aggregated form which is used in the

optimization procedure,

4. introduction of a new calibration technique called the minmax procedure con-

sisting of two steps,

5. measuring the quality of the fit by the non-linear R2 ratio and the maximum

likelihood ratio,

6. suggestion of other internal calibration methods (using not only the cummula-

tive statistics of the yield curves) based on mean value binding,

7. proposition of the external calibration methodology utilizing an externally pro-

vided information,

8. analysis and comparison of the results of calibration for Central and Western

European countries,
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9. extension to the multi factor model case.

Results included in points (1)–(5) have been published in author’s papers [64,

65]. According to our best knowledge and careful inspection of literature, parts

(1)–(9) are new and original contributions of this thesis in the field of parameter

calibration of term structure models.



Chapter 9

List of symbols

BRIBOR - Bratislava inter-bank offered rate

CIR - Cox-Ingersoll-Ross

D(X) - dispersion of X

EONIA - Euro overnight index average

ES - Evolution strategies

EU - European Union

EURIBOR - Euro inter-bank offered rate

EURO-LIBOR - London inter-bank offered rate in EUR

E(X) - mean of X

GMM - Generalized method of moments
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Iλ - market price of risk interval

Iκ - speed of reversion interval

KFA - Kalman filter approach
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LF - likelihood function

MCMC - Markov Chain Monte Carlo

MLM - Maximum likelihood method

MLR - Maximum likelihood ratio

P , P (t, T ), P (t, T, r), P (τ, r) - zero-coupon bond price
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r∗ - risk premium factor
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r∗d - lower bound for the risk premium factor

r∗u - upper bound for the risk premium factor

R(t, T ) - yield to maturity

USD-LIBOR - London inter-bank offered rate in USD

U - loss functional

κ - speed of reversion of the short rate process

σ - volatility of the short rate process

θ - expected long-term interest rate of the short rate process
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A. Urbánová Csajková: Calibration of term structure models

• Papers
Paper-CEJOR
Paper-CEJOR.pdf
D. Ševcovic and A. Urbánová Csajková: Calibration of one factor interest rate mod-
els, Journal of Electrical Engineering, 55, No. 12/s (2004), 46–50.

Proceedings-EUBA
Paper-EUBA.pdf
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