
Fakulta matematiky, fyziky a informatiky

Univerzita Komenského Bratislava

Katedra aplikovanej matematiky a štatistiky

Matematické spracovanie lineárne-kvadratickej

aproximácie v RBC modeloch

Dizertačná práca

Študijný odbor: 9.1.9 Aplikovaná matematika

Autor: Mgr. Michal Zákopčan

Vedúci dizertačnej práce: prof. RNDr. Pavel Brunovský, DrSc. Bratislava 2009



Katedra aplikovanej matematiky a štatistiky

Fakulta matematiky, fyziky a informatiky

Univerzita Komenského

Mlynská dolina

842 48 Bratislava

c©2009 Michal Zákopčan



Chcel by som sa poďakovať môjmu školiteľovi Pavlovi Brunovskému za jeho neoceniteľnú

pomoc a neuveriteľnú schopnosť neustále nachádzať nové spôsoby riešenia tam, kde všetky

predošlé zlyhali.

Bratislava, 2009 Michal Zákopčan



Abstrakt

ZÁKOPČAN, Michal: Matematické spracovanie lineárne-kvadratickej aproximácie v RBC

modeloch, Dizertačná práca, Univerzita Komenského v Bratislave, Fakulta matematiky, fy-

ziky a informatiky, Katedra aplikovanej matematiky a štatistiky, Vedúci práce: prof. RNDr.

Pavel Brunovský, DrSc., Bratislava, 2009

V tejto dizertačnej práci sa zaoberáme lineárne-kvadratickou aproximáciou ako nástro-

jom riešenia RBC modelov. Podávame matematické odôvodnenie správnosti tejto aproximácie

a poukazujeme na konvergenciu optimálneho riadenia a jeho odozvy do rovnovážneho bodu

úlohy. Začiatok práce je venovaný príkladu jednoduchého makroekonomického modelu, v kto-

rom sa využíva táto aproximácia, a následnému zovšeobecneniu pre viacrozmerné premenné.

V ďalších kapitolách podávame matematické spracovamie uvedenej problematiky. Najprv

uvádzame definíciu rovnovážnej trojice, potom sa zaoberáme lineárne-kvadratickými úlohami

s diskontom a bez diskontu a následne úlohami s pôvodnou účelovou funkciou s diskotným

faktorom a bez neho. Dôležité je, že sa venujeme úlohám a ich aproximáciam, v ktorých vy-

stupujú v účelovej funkcii nenulové lineárne členy.

Kľúčové slová: rovnica dynamického programovania, nutné podmienky optimality, RBC

(”Real Bussiness Cycles”) model, lineárne-kvadratická úloha optimálneho riadenia,

aproximácia



Predhovor

Práca sa zaoberá matematickým spracovaním lineárne-kvadratickej aproximácie v RBC mo-

deloch. Cieľom práce je ukázať, že táto aproximácia lokálne dostatočne presne opisuje opti-

málne riadenie a jeho odozvu a teda je oprávnené jej použitie a zároveň ukázať, že optimálne

riadenia a ich odozvy konvergujú k rovnovážnemu bodu úlohy. Na začiatku zrodu tejto práce

stojí niekoľko publikácií a z nich vychádzajúcich diplomových prác, v ktorých sa uvedená

aproximácia využíva. Môjmu školiteľovi Pavlovi Brunovskému pri čítaní týchto prác neschá-

dzala z mysle otázka matematickej korektnosti používanej metódy a keďže mu tieto a iné

práce podobného charakteru neposkytli uspokojivú odpoveď, rozhodol sa, že by táto téma

bola vhodná na spracovanie v dizertačnej práci. Tým sa začala naša spolupráca, ktorej vý-

sledkom je táto práca.
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Úvod

RBC (z anglického ”Real Bussiness Cycles”) modely sa v makroekonómii používajú už dlh-

šiu dobu. V týchto modeloch sa rieši úloha maximalizácie celoživotného úžitku domácností

za istých (zvyčajne lineárnych) podmienok na stav a na vlastnosti účelovej a produkčnej

funkcie. Ide o úlohu optimálneho programovania, v ktorej vystupuje pri tých jednoduchších

modeloch ako riadiaca premenná spotreba domácnosti a ako stavová premenná hodnota ka-

pitálu na hlavu alebo na efektívnu hlavu. Presnejšie ide o úlohu optimálneho programovania

na nekonečnom časovom horizonte s diskrétnym alebo spojitým časom. My sa v našej práci

venujeme len tým s diskrétnym časom. V praxi sa tieto úlohy riešia v okolí rovnovážneho

bodu, tj. bodu vyjadrenému napr. rovnovážnou hodnotou kapitálu a spotreby domácností,

v ktorom keď sa ekonomika nachádza, tak v ňom už zostáva natrvalo. Účelová funkcia sa

aproximuje na okolí tohto bodu Taylorovým polynómom druhého rádu, čo je za predpo-

kladu zápornej definitnosti Hessovej matice účelovej funkcie v tomto bode rýdzokonkávna

kvadratická funkcia. Za lineárnych podmienok na stav v nasledujúcej perióde tak dostávame

lineárne-kvadratickú úlohu optimálneho riadenia, ktorá sa potom numericky rieši obyčajne

metódou postupných aproximácií hodnotovej funkcie.

Cieľom tejto práce bude ukázať, že táto aproximácia lokálne dostatočne presne opisuje

optimálne riadenie a jeho odozvu a teda je oprávnené jej použitie a súčasne ukázať, že opti-

málne riadenia a ich odozvy konvergujú k rovnovážnemu bodu úlohy. Ten je pre úlohu s pô-

vodnou účelovou funkciou a úlohu s jej kvadratickou aproximáciou rovnaký.

Práca je členená na osem kapitol. Prvá kapitola je venovaná motivačnému príkladu ma-

kroekonomického modelu, v ktorom sa využíva spomínaná aproximácia, a rozšíreniu pre viac-

rozmerné premenné. V nasledujúcich kapitolách potom podávame matematické spracovamie

uvedenej problematiky. Najprv uvádzame definíciu rovnovážnej trojice a vyjadrenie nutných

podmienok optimality, potom sa zaoberáme lineárne-kvadratickými úlohami s diskontom a

bez diskontu a následne úlohami s pôvodnou účelovou funkciou s diskontným faktorom a bez

neho. Všetky spomenuté prípady sú rozdelené na dve časti, z ktorých jedna sa venuje účelovej

funkcii bez lineárnych členov a druhá účelovej funkcii, v ktorej lineárne členy vystupujú.
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Kapitola 1

Lineárne-kvadratická aproximácia v

RBC modeloch

V tejto kapitole na ilustračnom príklade demonštrujeme použitie lineárne-kvadratickej aproxi-

mácie v RBC modeloch. V týchto modeloch sa rieši úloha maximalizácie celoživotného úžitku

domácností, pričom sa zvyčajne berie jedna reprezentatívna domácnosť ako dôsledok predpo-

kladu identity domácností. Ide o úlohu optimálneho programovania, v ktorej vystupuje ako

riadiaca premenná obyčajne spotreba domácnosti a ako stavová premenná hodnota kapitálu

na hlavu alebo na efektívnu hlavu. Tendenciou sa v poslednej dobe stáva zavedenie náhod-

nej premennej do modelu ako reprezentanta nepredpovedateľných šokov v ekonomike a tým

odstránenie úplnej predeterminovanosti modelu. Úloha sa rieši v okolí rovnovážneho bodu,

ku ktorému potom dokonverguje optimálne riadenie a jeho odozva. Je to bod vyjadrený napr.

rovnovážnou hodnotou kapitálu a spotreby domácností, v ktorom keď sa ekonomika nachá-

dza, tak v ňom už zostáva natrvalo. Spravidla sa v okolí tohto bodu robí lineárne-kvadratická

aproximácia za účelom zjednodušenia úlohy, ktorú potom možno numericky ľahko zrátať.

1.1 Základný neoklasický model rastu

Tento klasický ilustračný model sa zaoberá prerozdeľovaním zdrojov v ekonomike pozostá-

vajúcej z mnoho identických, nekonečne dlho žijúcich domácností. Ide o príklad ekonomiky,

v ktorej je prerozdelenie zdrojov v dokonale konkurenčnom prostredí identické s tým, ktoré

určí sociálny plánovač pri maximalizovaní celoživotného úžitku domácností. Predpokladáme

v ňom, že domácnosti majú k dispozícii jednu jednotku produktívneho času a k0 > 0 pro-

duktívneho kapitálu, ktorý amortizuje konštantnou mierou 0 < δ < 1. Pretože sú všetky

domácnosti identické, tak môžeme vybrať jednu reprezentatívnu domácnosť.
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V každej perióde t máme len jediný tovar (ide o jednosektorový model rastu) produkovaný

s využitím voľne dostupnej technológie a kapitálu:

yt = F (kt, zt) (1.1)

kde F (k, z) je produkčná funkcia, o ktorej sa zvyčajne predpokladá, že je dvakrát spojite

diferencovateľná, ostro rastúca a rýdzokonkávna v premennej k. Najčastejšie sa používa fun-

kcia:

F (k, z) = ezkα

Premenná z reprezentuje technologický šok pozorovaný na začiatku každej periódy a riadi sa

lineárnym Markovovým procesom prvého rádu:

zt+1 = ηzt + εt+1 (1.2)

kde εt je identicky distribuovaná náhodná premenná s nulovou strednou hodnotou a konečnou

varianciou.

V každej perióde sa výstup rozdeľuje medzi bežnú spotrebu ct a hrubé investície it:

yt = ct + it (1.3)

Kapitál sa riadi tzv. zákonom pohybu kapitálu:

kt+1 = (1− δ)kt + it (1.4)

Úlohou sociálneho plánovača je maximalizovať celoživotný úžitok domácností:

E

∞∑

t=0

βtU(ct) (1.5)

kdeE je operátor racionálnych očakávaní, β ∈ (0, 1) je diskontný faktor a funkcia U : [0,∞)→

[0,∞) je dvakrát spojite diferencovateľná, ostro rastúca a rýdzokonkávna, pričom platí:

lim
c→0

∂U(c)
∂c

=∞

Dostávame teda úlohu dynamického programovania na nekonečnom časovom horizonte:

max
{ct}∞t=0

E

∞∑

t=0

βtU(ct)

yt = ct + it

kt+1 = (1− δ)kt + it

zt+1 = ηzt + εt+1

k0, z0 − dané
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Vyjadrime c zo vzťahu (1.3) a dosaďme do účelovej funkcie, potom máme:

max
{it}∞t=0

E

∞∑

t=0

βtU(F (kt, zt)− it)

kt+1 = (1− δ)kt + it

zt+1 = ηzt + εt+1

k0, z0 − dané

V tejto úlohe vystupuje i ako riadiaca premenná, kapitál k je endogénnou stavovou premennou

a z je exogénnou stavovou premennou.

Označme si účelovú funkciu:

f0(k, z, i) = U(F (k, z) − i)

Potom rovnica dynamického programovania (viď. [3]) pre túto úlohu vyzerá takto:

V (k, z) = max
i

{f0(k, z, i) + βEV (k
′

, z
′

)} (1.6)

kde k
′

, z
′

predstavujú hodnoty premenných k, z v nasledujúcej perióde a V je hodnotová

funkcia definovaná pre počiatočné k0 a z0 ako:

V (k0, z0) = max
{it}∞t=0

E

∞∑

t=0

βtf0(kt, zt, it)

Prepíšme ďalej sústavu rovníc pre stavové premenné v nasledujúcej perióde do tvaru:
(
kt+1

zt+1

)

= A

(
kt

zt

)

+Bit

kde matica A:

A =

(
(1− δ) 0

0 η

)

a vektor B:

B =

(
1

0

)

Nájdime teraz pevný bod tejto úlohy, ktorý sa pri vytváraní tohto ekonomického modelu

chápe ako bod (k, z, i), ktorý spĺňa:

0 =
∂f0(k, z, i)

∂i
+ β(

∂f0(k, z, i)
∂k

,
∂f0(k, z, i)

∂z
)(I − βA)−1B (1.7)

k = (1− δ)k + i (1.8)

z = ηz (1.9)
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Ide o bod, ktorý vyhovuje nutným podmienkam optimality (viď. [3]) a ak existuje opti-

málne riešenie pre úlohu sociálneho plánovača, je predpoklad, že by ekonomika mohla k nemu

dokonvergovať.

Všimnime si, že rovnicu (1.7) môžeme vďaka tomu, že vektor B má druhý argument nulu,

prepísať nasledujúcim spôsobom:

0 =
∂f0(k, z, i)

∂i
+ β

∂f0(k, z, i)
∂k

(1− β(1− δ))−1 (1.10)

Predpokladajme, že existuje taký bod. Označme si vektor premenných (k, z, i) ako y a

pevný bod ako y, teda nech y = (k, z, i) a y = (k, z, i). Urobme Taylorov rozvoj druhého rádu

funkcie f0 v rovnovážnom bode:

f0(y) ≈ f0(y) +
∂f0(y)
∂y

y +
1
2
yT ∂

2f0(y)
∂y2

y (1.11)

Pokiaľ nahradíme pôvodnú účelovú funkciu v úlohe týmto rozvojom, dostaneme úlohu

lineárne-kvadratického programovania na nekonečnom časovom horizonte. Táto úloha má

oproti pôvodnej istú výhodu v tom, že optimálne riadenie je nezávislé na variancii premennej

ε. Platí tu tzv. princíp ekvivalencie (viď. [9]), ktorý nám umožnuje bez straty na všeobecnosti

predpokladať, že variancia je nulová a premennú ε nahradiť jej nulovou strednou hodnotou

a teda de facto odstrániť operátor E z rovnice (1.6).

Rovnaký spôsob riešenia takýchto alebo podobných ekonomických modelov aj pre viac-

rozmerné premenné sa nachádza v publikáciach [9], [11].

1.2 Riešenie podľa Blancharda a Kahna

Ako sme videli v predchádzajúcom prípade, RBC modely vedú na úlohy optimálneho riadenia.

Oproti predošlému urobíme teraz zovšeobecnenie na viacrozmerné premenné.

Vychádzajme z predpokladu, že náhodnosť vstupuje aditívne do vzťahu pre stavovú pre-

mennú, ale nevyskytuje sa priamo v účelovej funkcii. Čo môžeme zapísať ako:

max
{ut}

∞

t=0

E

∞∑

t=0

βtf0(xt, ut)

xt+1 = F (xt, ut) + εt

x0 − dané

V tejto úlohe je x endogénna stavová premenná, ktorou je obyčajne kapitál, ε exogénna

stavová premenná, definovaná ako v predchádzajúcom, reprezentujúca tzv. biely šum, a u

riadiaca premenná, zvyčajne spotreba. f0 značí účelovú funkciu.
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Pre túto úlohu dostávame ako nutnú podmienku pre optimálne riešenie (viď. [3]) sústavu

rovníc, v ktorej ψ označuje tzv. adjungovanú premennú:

xt+1 = F (xt, ut) + εt (1.12)

ψt =
∂f0(xt, ut)

∂x
+ βE[ψt+1

∂F (xt, ut)
∂x

] (1.13)

0 =
∂f0(xt, ut)

∂u
+ βE[ψt+1

∂F (xt, ut)
∂u

] (1.14)

Predpokladajme, že u sa dá vyjadriť z (1.14) jednoznačne ako funkcia premenných (x, ψ),

teda u = g(x, ψ). Predpokladajme ďalej, že pre β = 1 má sústava rovníc (1.12) až (1.14)

pevný bod (x, u, ψ), teda bod, pre ktorý platí:

x = F (x, u)

ψ =
∂f0(x, g(x, ψ))

∂x
+ ψ

∂F (x, g(x, ψ))
∂x

Za určitých podmienok sa dá rozšíriť pevný bod ako funkcia parametra β aj pre β blízke

1. Ďalej môžeme transformovať tento pevný bod do nuly. Potom pokiaľ by bola funkcia F

lineárna a funkcia f0 kvadratická, uvedený systém sa dá prepísať do tvaru:

xt+1 = Mxt +NEψt+1 + εt

ψt = Pxt +REψt+1

kde M , N , P a R sú príslušné matice. V tomto systéme sa premenné x označujú ako prede-

terminované (predurčené) a ψ ako nepredeterminované (nepredurčené).

Článok [14] sa zaoberá predpokladmi, za ktorých má tento systém pre každú danú hodnotu

x0 predurčenej premennej jediné riešenie ležiace na stabilnej ceste do rovnovážneho bodu.

V našej práci overíme platnosť týchto predpokladov pre úlohu lineárne-kvadratického

programovania bez diskontného faktoru aj s diskontným faktorom a pre deterministický prí-

pad ukážeme, aký je vzťah medzi optimálnym riešením lineárne-kvadratickej aproximácie a

optimálnym riešením úlohy, v ktorej je funkcia F pre stav v nasledujúcej perióde lineárna a

účelová funkcia f0 je nekvadratická so zápornou Hessovou maticou v rovnovážnom bode.
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Kapitola 2

Formulácia úlohy

2.1 Rovnovážna trojica

V tejto kapitole sformulujeme typ úloh, ktorými sa v našej práci hodláme zaoberať, odvodíme

nutné podmienky optimality a definujeme pojem rovnovážnej trojice pre tieto úlohy.

Uvažujme nasledujúcu autonómnu úlohu optimálneho programovania s diskrétnym časom

na nekonečnom časovom horizonte:

sup
{ut}∞t=0

∞∑

t=0

βtf0(xt, ut)

xt+1 = F (xt, ut) (2.1)

xt ∈ X ⊆ R
n (2.2)

ut ∈ U ⊆ R
m (2.3)

x0 − dané (2.4)

kde β ∈ (0, 1] (pre účely práce je užitočné uvažovať aj prípad, keď β = 1), ďalej účelová funkcia

f0 je aspoň trikrát spojite diferencovateľná a funkcia F je lineárna v oboch argumentoch:

F (x, u) = Ax+Bu+ c

kde A je regulárna matica typu n× n, matica B je typu n×m a c je vektor konštánt z R
n.

Nás bude zaujímať prípad, keď stavová premenná x je z R
n a riadiaca premenná u z R

m a

teda môžeme postaviť X = R
n a U = R

m. Pre konkrétne β označujme túto úlohu (Uβ).

Ľubovoľná postupnosť {ut}
∞
t=0 v R

m sa nazýva riadenie. Pod odozvou na riadenie {ut}
∞
t=0

rozumieme postupnosť {xt}
∞
t=0 v R

n spĺňajúcu podmienky (2.1) a (2.4). Riadenie ω = {ut}
∞
t=0
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a jeho odozva χ = {xt}
∞
t=0, ktoré spĺňajú (2.2) a (2.3) sa nazývajú prípustné riadenie a jeho

odozva pre úlohu (Uβ). Označme si J(x0, ω) =
∑∞

t=0 β
tf0(xt, ut). Ak sa navyše v prípustnom

riadení ω realizuje suprémum radu J(x0, ω), nazýva sa optimálne riadenie pre túto úlohu.

Hodnotovou funkciou rozumieme funkciu V : Rn → R, ktorá nám pre každý počiatočný

stav x0 poskytne suprémum radu J(x0, ω) na množine prípustných riadení, teda funkciu,

pre ktorú platí:

V (x0) = sup
ω

∞∑

t=0

βtf0(xt, ut) (2.5)

kde ω = {ut}
∞
t=0 je prípustné riadenie.

Potom Bellmanova funkcionálna rovnica (viď. [3]) pre túto úlohu vyzerá takto:

V (x) = sup
u
{f0(x, u) + βV [F (x, u)]} (2.6)

Nazýva sa tiež rovnica dynamického programovania a pre úlohu (Uβ) je nutnou podmien-

kou optimality.

Dajú sa však odvodiť aj iné nutné podmienky optimality pre túto úlohu. Z vety 3.4

v [3] sa dozvedáme, že optimálne riadenie a jeho odozva musia vyhovovať sústave (systému)

diferenčných rovníc s adjungovanou premennou ψt ∈ R
n, ψt 6= 0 pre t = 0, 1, 2, ...:

xt+1 = F (xt, ut)

0T =
∂f0(xt, ut)

∂u
+ βψT

t+1
∂F (xt, ut)

∂u

ψT
t =

∂f0(xt, ut)
∂x

+ βψT
t+1

∂F (xt, ut)
∂x

(2.7)

za predpokladu, že matica ∂F (xt,ut)
∂x

je regulárna pre všetky t.

Keďže F (xt, ut) = Axt +But + c, tak vlastne požadujeme, aby bola matica A regulárna.

Uvedený predpoklad je urobený na začiatku kapitoly pri formulácii úlohy. Sústavu rovníc

(2.7) môžeme potom prepísať takto:

xt+1 = Axt +But + c

0T =
∂f0(xt, ut)

∂u
+ βψT

t+1B

ψT
t =

∂f0(xt, ut)
∂x

+ βψT
t+1A (2.8)

Pod rovnovážnym (pevným) bodom tejto sústavy budeme rozumieť bod (x, u, ψ), ktorý

spĺňa:

x = Ax+Bu+ c

0T =
∂f0(x, u)

∂u
+ βψ

T
B

ψ
T
=

∂f0(x, u)
∂x

+ βψ
T
A (2.9)
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Dostali sme 2n+m rovníc o 2n+m neznámych. Dá sa k nej tiež dopracovať cez rovnicu

dynamického programovania. Za predpokladu, že existuje funkcia V spĺňajúca rovnicu dyna-

mického programovania (2.6), ktorá je navyše diferencovateľná, tak derivovaním (2.6) podľa

u dostávame:

0T =
∂f0(x, u)

∂u
+ β

∂V [F (x, u)]
∂x

∂F (x, u)
∂u

(2.10)

Súčasne derivovaním (2.6) podľa premennej x dostaneme:

∂V (x)
∂x

=
∂f0(x, u)

∂x
+ β

∂V [F (x, u)]
∂x

∂F (x, u)
∂x

(2.11)

V pevnom bode máme:

x = Ax+Bu+ c

0T =
∂f0(x, u)

∂u
+ β

∂V (x)
∂x

B

∂V (x)
∂x

=
∂f0(x, u)

∂x
+ β

∂V (x)
∂x

A (2.12)

Po preznačení ψ
T
= ∂V (x)

∂x
získame systém (2.9).

Všimnime si, že pokiaľ pre konkrétne β existuje matica (I − βA)−1, kde I je jednotková

matica, tak uvedený systém môžeme zúžiť na dve rovnice a pritom odstrániť premennú ψ.

Z tretej rovnice systému (2.9) dostávame:

ψ
T
=
∂f0(x, u)

∂x
(I − βA)−1

Dosadením do druhej máme:

0T =
∂f0(x, u)

∂u
+ β

∂f0(x, u)
∂x

(I − βA)−1B

Po pretransformovaní:

0 =
∂f0(x, u)

∂u

T

+ βBT (I − βAT )
−1∂f0(x, u)

∂x

T

Celkove máme:

x = Ax+Bu+ c

0 =
∂f0(x, u)

∂u

T

+ βBT (I − βAT )
−1∂f0(x, u)

∂x

T

Bod, ktorý vyhovuje týmto dvom rovniciam, sa obyčajne v ekonomickej literatúre (napr.

[11]) chápe ako pevný bod. Uvedená definícia sa tiež vyskytuje v prvej kapitole tejto práce.
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Pretože nutné podmienky optimality nezaručujú existenciu optimálneho riadenia, len ho-

voria, že ak existuje, musí vyhovovať systému (2.9), tak si teraz pre účely práce zadefinujeme

rovnovážnu trojicu (x, u, ψ), pod ktorou budeme rozumieť pevný bod systému (2.9) nutných

podmienok optimality:

Definícia 2.1. Rovnovážna trojica pre úlohu (Uβ) s β ∈ (0, 1] je taký bod (x, u, ψ), že platí:

x = Ax+Bu+ c

0 =
∂f0(x, u)

∂u

T

+ βBTψ

ψ =
∂f0(x, u)

∂x

T

+ βATψ

Urobme nasledujúci predpoklad:

Predpoklad Q1: Pre úlohu (U1) existuje rovnovážna trojica (x1, u1, ψ1).

V nasledujúcej vete si za pomoci tohto predpokladu ukážeme, že existuje okolie bodu 1

také, že rovnovážna trojica (x, u, ψ) sa dá vyjadriť jednoznačne ako spojitá funkcia parametra

β.

Označujme B[x, ε] uzavretú guľu v R
p so stredom v bode x a polomerom ε, tj.:

B[x, ε] = {x ∈ R
p|‖x− x‖ ≤ ε}

kde ‖·‖ značí normu v R
p. Ďalej označme:

f1(β, x, u, ψ) = (I −A)x−Bu− c (2.13)

f2(β, x, u, ψ) =
∂f0(x, u)

∂u

T

+ βBTψ (2.14)

f3(β, x, u, ψ) =
∂f0(x, u)

∂x

T

+ (βAT − I)ψ (2.15)

Potom systém rovníc pre rovnovážnu trojicu pre úlohu (Uβ) s β ∈ (0, 1] môžeme prepísať ako:

f1(β, x, u, ψ) = 0

f2(β, x, u, ψ) = 0

f3(β, x, u, ψ) = 0

Nech f : R×R
n ×R

m ×R
n → R

n ×R
m ×R

n je vektorová funkcia definovaná trojicou funkcií

(2.13), (2.14), (2.15). Označme maticu parciálnych derivácii funkcie f v bode (1, x1, u1, ψ1)

podľa premenných (x, u, ψ) ako H, potom platí:

H =





(I −A) −B 0
∂2f0(x1,u1)

∂u∂x

T ∂2f0(x1,u1)
∂u2

T
BT

∂2f0(x1,u1)
∂x2

T ∂2f0(x1,u1)
∂x∂u

T
AT − I




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Urobme ešte jeden predpoklad:

Predpoklad Q2: Matica H je regulárna.

Veta 2.1. Nech funkcia f0 je Cr funkcia, kde r ≥ 3. Nech je splnený predpoklad Q1 a

pre rovnicu:

f(β, x, u, ψ) = 0 (2.16)

predpoklad Q2. Potom existujú také ε1 > 0 a ε2 > 0, že rovnica (2.16) určuje jediné Cr−1

zobrazenie ϕ : B[1, ε1] → B[(x, u, ψ), ε2] také, že ϕ(β) = (x(β), u(β), ψ(β)), pričom x(1) =

x1, u1 = u(1) a ψ1 = ψ(1).

Dôkaz. Bod (1, x1, u1, ψ1) vyhovuje (2.16). Na okolí tohto bodu je funkcia f spojitá, rovnako

ako jej parciálna derivácia podľa premenných (x, u, ψ), pretože f0 je aspoň trikrát spojite

diferencovateľná. Keďže z predpokladu Q2 je matica H regulárna, tak sú splnené podmienky

vety o implicitnej funkcii, čo dokazuje tvrdenie.

Takže sme si ukázali, že existuje okolie bodu 1 také, že rovnovážna trojica (x, u, ψ) sa dá

vyjadriť jednoznačne ako funkcia parametra β príslušnej hladkosti. Zároveň z toho vyplýva,

že funkčná hodnota účelovej funkcie f0 v bode (x, u) bude na tomto okolí spojitou funkciou

parametra β, rovnako ako aj parciálne derivácie ∂f0

∂x
, ∂f0

∂u
, ∂2f0

∂x2
, ∂2f0

∂x∂u
a ∂2f0

∂u2
v tomto bode.

Urobme ďalší predpoklad:

Predpoklad Q3: Hessova matica účelovej funkcie f0 v rovnovážnom (x1, u1) je záporne

definitná.

Potom, ak je splnený, existuje okolie bodu 1 také, že pre β z tohto okolia je Hessova

matica účelovej funkcie f0 v bode (xβ, uβ) záporne definitná.

Označujme prienik okolia bodu 1, na ktorom sa dajú vyjadriť x, u a ψ jednoznačne ako

spojité funkcie β a súčasne na ktorom je Hessova matica účelovej funkcie f0 v bode (xβ, uβ)

záporne definitná, s (0, 1] ako O.
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2.2 Nutné podmienky optimality pre lineárne-kvadratickú

úlohu s diskontom

Nech platia predpoklady Q1, Q2 a Q3. Nech β ∈ O. Označme δx = x − xβ, δu = u − uβ.

Urobme aproximáciu funkcie f0 Taylorovým polynómom do druhého rádu v bode (xβ , uβ):

f0β(x, u) = f0(xβ, uβ) + k
T
β δx+ l

T
β δu+

1
2
δxTPβδx+

1
2
δxTQT

β δu

+
1
2
δuTQβδx+

1
2
δuTRβδu (2.17)

kde kT
β =

∂f0(xβ ,uβ)
∂x

, lTβ =
∂f0(xβ ,uβ)

∂u
, Pβ =

∂2f0(xβ ,uβ)
∂x2

, Qβ =
∂2f0(xβ ,uβ)

∂u∂x
, Rβ =

∂2f0(xβ ,uβ)
∂u2

.

Potom matica: (
Pβ QT

β

Qβ Rβ

)

je Hessovou maticou funkcie f0 a teda je záporne definitná. Úlohu (Uβ) s kvadratickou úče-

lovou funkciou, ktorá vznikla aproximáciou pôvodnej účelovej funkcie f0 Taylorovým poly-

nómom do druhého rádu v bode (xβ, uβ), budeme označovať ako (U
Q
β ).

Funkciu F môžeme tiež zapísať nasledujúcim spôsobom:

F (x, u) = F (xβ + δx, uβ + δu) = F (xβ , uβ) +Aδx+Bδu (2.18)

Uvažujme teraz systém úloh (UQ
β ) pre β ∈ O. Dosaďme vyjadrenie (2.17) do druhej a

tretej rovnice systému (2.9), dostaneme:

0 = lβ + βB
Tψβ (2.19)

ψβ = kβ + βA
Tψβ (2.20)

Poznámka 2.1. Poznamenajme, že za predpokladu regulárnosti matice I − βA platí:

ψβ = (I − βAT )
−1
kβ (2.21)

Dosadením (2.21) do (2.19), dostaneme vzťah medzi lβ a kβ:

lβ = −βBT (I − βAT )
−1
kβ (2.22)

Dosaďme ďalej vyjadrenia (2.17) a (2.18) do systému (2.8), dostaneme:

δxt+1 = Aδxt +Bδut (2.23)

0 = lβ +Qβδxt +Rβδut + βB
Tψt+1 (2.24)

ψt = kβ + Pβδxt +Q
T
β δut + βA

Tψt+1 (2.25)
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Označme δψt = ψt − ψβ a upravujme postupne rovnicu (2.24):

0 = lβ +Qβδxt +Rβδut + βBTψt+1

0 = lβ +Qβδxt +Rβδut + βB
Tψt+1 − βBTψβ + βB

Tψβ

0 = Qβδxt +Rβδut + βBT δψt+1 + lβ + βB
Tψβ

0 = Qδxt +Rδut + βBT δψt+1 (2.26)

kde posledný krok vyplýva zo vzťahu (2.19).

Urobme postupnosť úprav i pre rovnicu (2.25):

ψt = kβ + Pβδxt +Q
T
β δut + βA

Tψt+1

δψt = Pβδxt +Q
T
β δut + βA

T δψt+1 + kβ − ψβ + βA
T
ψβ

δψt = Pβδxt +QT
β δut + βAT δψt+1 (2.27)

kde opäť posledný krok vyplýva zo vzťahu (2.20).

Celkovo sme dostali systém nasledujúcich rovníc (2.23), (2.26), (2.27):

δxt+1 = Aδxt +Bδut

0 = Qβδxt +Rβδut + βB
T δψt+1

δψt = Pβδxt +QT
β δut + βAT δψt+1

Vidíme, že kβ, lβ je možné odstrániť zo systému rovníc (2.23), (2.24) a (2.25) a teda

lineárne členy nevstupujú do vzťahov, ktoré musí spĺňať optimálne riadenie a jeho odozva.

Inými slovami nutné podmienky optimality sú rovnaké pre úlohu (UQ
β ) s účelovou funkciou

s nenulovými i nulovými lineárnymi členmi.

Pretože matica Rβ je záporne definitná, môžeme vyjadriť z rovnice (2.26) δut ako lineárnu

funkciu premenných δxt a δψt+1 a totiž:

δut = −R−1
β Qβδxt − βR−1

β BT δψt+1 (2.28)

Dosaďme (2.28) do (2.23) a (2.27), dostaneme:

δxt+1 = (A−BR−1
β Qβ)δxt − βBR−1

β BT δψt+1 (2.29)

δψt = (Pβ −QT
βR

−1
β Qβ)δxt + β(A

T −QT
βR

−1
β BT )δψt+1 (2.30)

Označme Pβ = (Pβ −QT
βR

−1
β Qβ), Bβ = −BR−1

β BT a Aβ = (A−BR−1
β Qβ), potom:

δxt+1 = Aβδxt + βBβδψt+1 (2.31)

δψt = Pβδxt + βA
T
β δψt+1 (2.32)
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2.3 Nutné podmienky optimality pre pôvodnú úlohu

V ďalšom budeme používať nasledujúce skrátené označovanie:

Nech f(x) je Cp funkcia v okolí bodu x a fr(x) je jej Taylorov polynóm stupňa r ≤ p, potom

skratka č. v. r. reprezentuje zvyšok ϕ(x) polynómu fr(x), tj. ϕ(x) je Cp a platí:

∂jϕ(x)
∂xj

= 0

pre j = 0, 1, ..., r.

Nech sú stále splnené predpoklady Q1, Q2 a Q3. Vráťme sa k systému úloh (Uβ) pre β ∈ O.

Účelovú funkciu f0 môžeme rozpísať nasledujúcim spôsobom:

f0(x, u) = f0(xβ, uβ) + k
T
β δx+ l

T
β δu+

1
2
δxTPβδx+

1
2
δxTQT

β δu

+
1
2
δuTQβδx+

1
2
δuTRβδu+ č. v. r. (2.33)

kde kT
β =

∂f0(xβ ,uβ)
∂x

, lTβ =
∂f0(xβ ,uβ)

∂u
, Pβ =

∂2f0(xβ ,uβ)
∂x2

, Qβ =
∂2f0(xβ ,uβ)

∂u∂x
, Rβ =

∂2f0(xβ ,uβ)
∂u2

a

matica: (
Pβ QT

β

Qβ Rβ

)

je záporne definitná.

Je jasné, že rovnovážna trojica (xβ , uβ, ψβ) je rovnaká pre úlohu (Uβ) ako i úlohu (U
Q
β ),

a že pre ψβ platia vzťahy (2.19), (2.20).

Po dosadení vyjadrenia (2.33) do systému (2.8), dostávame:

δxt+1 = Aδxt +Bδut

0 = Qβδxt +Rβδut + βB
T δψt+1 + č. v. r.

δψt = Pβδxt +Q
T
β δut + βA

T δψt+1 + č. v. r. (2.34)

V nasledujúcej vete si za pomoci vety o implicitnej funkcii ukážeme, že z druhej rovnice

systému (2.34) sa na dostatočne malom okolí bodu (0, 0, 0) dá δut vyjadriť jednoznačne ako

funkcia premenných δxt a δψt+1.

Veta 2.2. Nech funkcia f0 je Cr funkcia, kde r ≥ 3. Nech β ∈ O. Uvažujme druhú rovnicu

systému (2.34):

0 = Qβδxt +Rβδut + βBT δψt+1 + č. v. r. (2.35)

Potom existujú také ε1 > 0 a ε2 > 0, že rovnica (2.35) určuje jediné Cr−1 zobrazenie

δut : B[(0, 0), ε1]→ B[0, ε2] také, že δut(0, 0) = 0, pričom platí:

δut(δxt, δψt+1) = −R−1
β Qβδxt − βR−1

β BT δψt+1 + č. v. r. (2.36)
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Dôkaz. Označme výraz na pravej strane rovnice (2.35) ako Φ(δx, δu), potom musí platiť:

Φ(0, 0) = 0

Funkcia Φ(δx, δu) je spojitá aj spojite diferencovateľná, pretože f0 je aspoň trikrát spojite

diferencovateľná funkcia. Ďalej platí:

∂Φ(0, 0)
∂u

= R

čo je záporne definitná matica a teda regulárna matica. Tým pádom sú všetky podmienky

vety o implicitnej funkcii splnené, čo dokazuje tvrdenie.

Dosadením (2.36) do prvej a tretej rovnice systému (2.34), dostaneme:

δxt+1 = Aβδxt + βBβδψt+1 + č. v. r. (2.37)

δψt = Pβδxt + βAT
β δψt+1 + č. v. r. (2.38)

Vidíme, že s použitím transformácie δx = x − xβ, δu = u − uβ, δψt = ψt − ψβ môžeme

rovnovážnu trojicu (xβ , uβ, ψβ) bez ujmy na všeobecnosti posunúť do bodu (0, 0, 0). Rovnako

môžeme miesto účelovej funkcie f0 brať ako účelovú funkciu funkciu fβ definovanú vzťahom:

fβ(x, u) = f
0(x, u) − f0(xβ, uβ) (2.39)

Resp. pri úlohách (UQ
β ) môžeme miesto f

0
β brať ako účelovú funkciu funkciu δf

0
β definovanú

vzťahom:

δf0β = f
0
β(x, u)− f0(xβ, uβ) (2.40)

Je to preto, lebo pri derivovaní nezáleží na posune o konštantu a teda nutné podmienky

optimality sú pre obe dvojice funkcií rovnaké. Z toho vyplýva, že všetky doposiaľ odvodené

vzťahy platia aj pre funkciu fβ, resp. v úlohách (U
Q
β ) pre funkciu δf

0
β .

Aby sme sa vyhli neustálemu vypisovaniu δ, preznačíme spätne δx na x, δu na u, δψ na ψ

a δf0β na f
0
β . Označenie funkcie fβ ponecháme. Pod funkciou F budeme rozumieť funkciu

definovanú vzťahom:

F (x, u) = Ax+Bu

Označenie úlohy s účelovou funkciou f0β a funkciou F definovanou predchádzajúcim vzťa-

hom ponecháme ako (UQ
β ) a úlohy s účelovou funkciou fβ a funkciou F definovanou predchá-

dzajúcim vzťahom ponecháme ako (Uβ).
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Kapitola 3

Lineárne-kvadratická úloha pre β=1

V tejto kapitole sa budeme venovať úlohám lineárne-kvadratického programovania bez dis-

kontného faktoru. Ukážeme si v nej, za akých predpokladov možno systém doposiaľ odvode-

ných nutných podmienok prepísať na systém so symplektickou maticou a v ďalšom potom

využijeme niektoré jej vlastnosti. Kapitola je členená na dve časti. Prvá podkapitola sa za-

oberá lineárne-kvadratickou úlohou s účelovou funkciou bez lineárnych členov a druhá potom

lineárne-kvadratickou úlohou, v ktorej vystupuje účelová funkcia aj s nimi. Cieľom oboch

podkapitol bude nájsť predpoklady, za ktorých existujú optimálne riadenie a jeho odozva,

ukázať, kedy sú jediné a k čomu konvergujú a naformulovať pre ne vzťahy, ktorými sa riadia.

V ďalšom pre celú kapitolu predpokladajme, že je splnený predpoklad Q1.

Nech β = 1. Uvažujme úlohu (UQ
1 ). Teda úlohu:

sup
{ut}∞t=0

∞∑

t=0

f01 (xt, ut)

xt+1 = F (xt, ut)

xt ∈ R
n

ut ∈ R
m

x0 − dané

Označme si:

Q1(x, u) =
1
2
(xTP1x+ x

TQT
1 u+ u

TQ1x+ u
TR1u) (3.1)

Potom môžeme funkciu f01 zapísať nasledujúcim spôsobom:

f01 (x, u) = k
T
1 x+ l

T
1 u+Q1(x, u) (3.2)
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Z predchádzajúcej kapitoly vieme, že optimálne riadenie pre úlohu (UQ
1 ) (ak existuje)

musí vyhovovať systému rovníc (2.31), (2.32) pre β = 1:

xt+1 = A1xt +B1ψt+1

ψt = P1xt +AT
1 ψt+1

Predpokladajme, že matica A1 je regulárna, potom vieme vyjadriť ψt+1 z druhej rovnice:

ψt+1 = −(AT
1 )

−1
P1xt + (AT

1 )
−1
ψt

Dosadením do prvej rovnice dostávame:

xt+1 = [A1 −B1(A
T
1 )

−1
P1]xt +B1(A

T
1 )

−1
ψt

Celkovo máme:

xt+1 = [A1 −B1(A
T
1 )

−1
P1]xt +B1(A

T
1 )

−1
ψt (3.3)

ψt+1 = −(AT
1 )

−1
P1xt + (AT

1 )
−1
ψt (3.4)

Teda sme za predpokladu, že matica A1 je regulárna, odvodili sústavu diferenčných rov-

níc, ktorá je nutnou podmienkou pre optimálne riešenie úlohy (UQ
1 ) s účelovou funkciou

f01 (x, u) = Q1(x, u), ale zároveň aj s účelovou funkciou f
0
1 (x, u) = kT

1 x + lT1 u + Q1(x, u).

V ďalšom si ukážeme, že matica tejto sústavy je symplektická.

Hovoríme, že matica M typu 2n× 2n je symplektická, keď spĺňa podmienku:

MTΩM = Ω

kde Ω je matica:

Ω =

(
0 I

−I 0

)

a matica I je jednotková matica typu n× n.

Vlastné hodnoty symplektickej matice vystupujú v recipročných pároch, tj. ak λ je vlastná

hodnota maticeM , tak aj 1
λ
je vlastná hodnota maticeM (viď. [13]). Takže ak |λ| < 1, potom

| 1
λ
| > 1. Ak vlastná hodnota λ leží na jednotkovej kružnici, potom aj vlastná hodnota 1

λ
leží

na jednotkovej kružnici.

Ďalej platí veta (viď. [13]), že bloková matica M typu 2n× 2n daná ako:

M =

(
A B

C D

)
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kde matice A, B, C aD sú typu n×n, je symplektická práve vtedy, keď sú splnené nasledujúce

tri podmienky:

ATD − CTB = I (3.5)

ATC = CTA (3.6)

DTB = BTD (3.7)

Označme maticu systému rovníc (3.3), (3.4):

M1 =

(
A1 −B1(AT

1 )
−1
P1 B1(AT

1 )
−1

−(AT
1 )

−1
P1 (AT

1 )
−1

)

V nasledujúcej vete ukážeme, že M1 je symplektická.

Veta 3.1. Nech matica A1 je regulárna. Potom matica M1 systému rovníc (3.3), (3.4) je

symplektická.

Dôkaz. Dôkaz bude pozostávať z overenia podmienok (3.5)-(3.7).

Najprv overme podmienku (3.5):

[AT
1 −P1(A1)

−1B1](A
T
1 )

−1
+ [P1(A1)

−1][B1(A
T
1 )

−1
] = I

I = I

Teraz podmienku (3.6):

−[AT
1 −P1(A1)

−1B1][(AT
1 )

−1
P1] = −P1 +P1(A1)

−1B1(AT
1 )

−1
P1

čo je symetrická matica.

A napokon podmienku (3.7):

(A1)
−1[B1(A

T
1 )

−1
] = (A1)

−1B1(A
T
1 )

−1

čo je tiež symetrická matica.

3.1 Účelová funkcia bez lineárnych členov

Táto podkapitola sa venuje úlohám typu (UQ
1 ) s účelovou funkciou Q1(x, u). Za predpokladu

Q3 je kvadratická forma Q1(x, u) záporne definitná.

V nasledujúcej vete si ukážeme, za akých predpokladov prípustné riadenie pre úlohu (UQ
1 )

s účelovou funkciou f01 (x, u) = Q1(x, u) spolu so svojou odozvou konvergujú k bodu (0, 0)

pre t→ ∞.
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Veta 3.2. Nech k1 = 0 a l1 = 0 a teda účelová funkcia f01 (x, u) = Q1(x, u). Nech je spl-

nený predpoklad Q3. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva.

Nech rad
∑∞

t=0 f
0
1 (xt, ut) konverguje. Potom postupnosť {(xt, ut)}

∞
t=0 konverguje k bodu (0, 0)

pre t→ ∞.

Dôkaz. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva. Ak konverguje

rad
∑∞

t=0 f
0
1 (xt, ut), tak musí platiť:

lim
t→∞

f01 (xt, ut) = 0 (3.8)

Pretože f01 (x, u) = Q1(x, u) a Q1(x, u) je podľa predpokladu Q3 záporne definitná kvadra-

tická forma, tak Q1(x, u) dosahuje nulu len v bode (0, 0). To dokazuje tvrdenie.

V ďalšej vete dokážeme, že pre každé x0 existuje pre úlohu (U
Q
1 ) s účelovou funkciou

f01 (x, u) = Q1(x, u) optimálne riadenie. Budeme nato potrebovať definíciu stabilizovateľnosti

páru matíc.

Hovoríme, že λ je nekontrolovateľná vlastná hodnota páru (dvojice) matíc (A,B), kde

matica A je typu n × n a matica B je typu n ×m, ak existuje riadkový vektor w 6= 0 taký,

že wA = λw a súčasne wB = 0.

Hovoríme, že dvojica matíc (A,B) je stabilizovateľná, ak existuje matica Z taká, že matica

A + BZ je stabilná, tj. všetky jej vlastné hodnoty sú v absolútnej hodnote menšie ako 1.

Alternatívne dvojica matíc (A,B) je stabilizovateľná práve vtedy, keď sú nestabilné vlastné

hodnoty páru (A,B), tj. tie, pre ktoré |λ| > 1, kontrolovateľné (bližšie viď. [1]).

Veta 3.3. Nech k1 = l1 = 0. Nech je splnený predpoklad Q3. Nech dvojica matíc (A,B) je

stabilizovateľná. Potom pre každé x0 existuje pre úlohu (U
Q
1 ) optimálne riadenie.

Dôkaz. Nech x0 je ľubovoľné. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho

odozva. Označme množinu prípustných riadení z počiatku x0 ako π(x0). Označme ďalej:

σ = sup
ω∈π(x0)

∞∑

t=0

Q1(xt, ut)

Pretože dvojica matíc (A,B) je stabilizovateľná, tak existuje matica Z a prípustné riadenie

ut = Zxt stabilizujúce systém xt+1 = Axt+But. Označme λ = maxi |λi| maximum spomedzi

absolútnych hodnôt všetkých vlastných hodnôt stabilnej matice A + BZ, potom existuje

C > 0 také, že pre každé t platí:

‖(A+BZ)t‖ ≤ Cλ
t
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Vezmime si prípustné riadenie {ut = Zxt}
∞
t=0 a postupne upravujme:

|
∞∑

t=0

Q1(xt, Zxt)| ≤
∞∑

t=0

1
2
|xT

t P1xt + 2xT
t Q

T
1 Zxt + xT

t Z
TR1Zxt|

=
∞∑

t=0

1
2
|x0

T (AT + ZTBT )
t
(P1 + 2Q

T
1 Z + Z

TR1Z)(A+BZ1)
tx0|

=
∞∑

t=0

1
2
|x0

T (AT + ZTBT )
t
(P1 + 2QT

1 Z + Z
TR1Z)(A+BZ1)

tx0|

≤
∞∑

t=0

1
2
C2λ

2t
‖(P1 + 2Q

T
1 Z + Z

TR1Z)‖‖x0‖
2

= K

∞∑

t=0

λ
2t

kde K je príslušná kladná konštanta. Z toho vyplýva, že σ je konečné číslo, a z definície

supréma vyplýva, že existuje taká postupnosť ohraničených prípustných riadení spolu s ich

odozvami (teda postupnosť postupností {{(xk
t , u

k
t )}

∞
t=0}

∞
k=0, kde x

k
0 = x0 a x

k
t+1 = F (x

k
t , u

k
t )),

že platí:
∞∑

t=0

Q1(x
k
t , u

k
t )ր σ (3.9)

pre k → ∞.

Pre túto postupnosť fixujme t, potom postupnosť {(xk
t , u

k
t )}

∞
k=0 je takisto ohraničená a

teda existuje z nej vybraná konvergentná podpostupnosť. Označme si pre každé t limitu

konvergentnej podpostupnosti ako (x∗t , u
∗
t ).

Skonštruujme konvergentnú postupnosť postupností nasledujúcim spôsobom:

Vezmime si postupnosť reálnych čísel {εt}∞t=0 konvergujúcu k nule. Pre t = 0 nájdime v po-

stupnosti {(xk
0 , u

k
0)}

∞
k=0 také k0, že (x

k0
0 , u

k0
0 ) je od (x

∗
0, u

∗
0) v príslušnej metrike vzdialené ε0

alebo menej. Opäť pre t = 1 nájdime v postupnosti {(xk
1 , u

k
1)}

∞
k=k0

také k1 ≥ k0, že (x
k1
1 , u

k1
1 )

je od (x∗1, u
∗
1) vzdialené ε1 alebo menej a súčasne (x

k1
0 , u

k1
0 ) je od (x

∗
0, u

∗
0) vzdialené ε1 alebo

menej. Vezmime postupnosť postupností {(xk
0 , u

k
0)}

∞
k=k0
, kde k začína v k0, pokračuje v k1

a ďalej všetkými k > k1. Znovu nájdime v tejto postupnosti pre t = 2 také k2 ≥ k1, že

(xk2
2 , u

k2
2 ) je od (x

∗
2, u

∗
2) vzdialené ε2 alebo menej, (x

k2
1 , u

k2
1 ) je od (x

∗
1, u

∗
1) vzdialené ε2 alebo

menej a súčasne (xk2
0 , u

k2
0 ) je od (x

∗
0, u

∗
0) vzdialené ε2 alebo menej. A tak ďalej. Dostaneme

{{(xkj

t , u
kj

t )}
∞
t=0}

∞
j=0 vybranú podpostupnosť z postupnosti postupností {{(x

k
t , u

k
t )}

∞
t=0}

∞
k=0,

ktorá konverguje k postupnosti {(x∗t , u
∗
t )}

∞
t=0 bodovo, pričom platí, že x

∗
0 = x0 a vďaka spo-

jitosti funkcie F tiež x∗t+1 = F (x
∗
t , u

∗
t ).

Označme si:

S∗
n =

n∑

t=0

Q1(x
∗
t , u

∗
t )
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a limitu (pokiaľ existuje) ako:

S∗
∞ = lim

n→∞
S∗

n

Preznačme spätne indexy kj na k, potom Sk
n značí:

Sk
n =

n∑

t=0

Q1(x
k
t , u

k
t )

a Sk
∞:

Sk
∞ = lim

n→∞
Sk

n

Máme:

lim
k→∞

Sk
∞ = σ

Pretože Q1(x, u) je záporne definitná kvadratická forma, tak pre každé k je postupnosť

{Sk
n}

∞
n=0 nerastúca, pričom platí, že S

k
n ≤ 0 pre každé n. Rovnako tak postupnosť {S∗

n}
∞
n=0

je nerastúca, pričom platí, že S∗
n ≤ 0 pre každé n. Ukážeme, že pre každé n platí: S∗

n ≥ σ.

Nech to neplatí, potom existuje také n0 a ε > 0, že pre každé n ≥ n0:

S∗
n < σ − ε

Z toho ale vyplýva, že existuje také k0, že pre každé k > k0 platí:

Sk
n0
< σ −

ε

2

pretože však {Sk
n}

∞
n=0 je pre každé k nerastúca postupnosť, tak máme pre každé k > k0 a

pre každé n ≥ n0:

Sk
n < σ −

ε

2

Z toho ďalej pre každé k > k0:

Sk
∞ < σ −

ε

2

čo je spor s predpokladom, že limk→∞ Sk
∞ = σ.

Takže máme nerastúcu postupnosť S∗
n, ktorá je zdola ohraničená hodnotou σ a teda je

konvergentná a rovnako aj S∗
∞ ≥ σ. Zároveň máme S∗

∞ ≤ σ, pretože σ je suprémum. Z toho

vyplýva, že S∗
∞ = σ.

Ďalej ukážeme, že matica M1 má všetky vlastné hodnoty ležiace mimo jednotkovej kruž-

nice a následne toto zistenie využijeme na dôkaz, že existuje jediné optimálne riešenie sys-

tému rovníc (3.3), (3.4) a teda jediné optimálne riadenie pre úlohu (UQ
1 ) s účelovou funkciou

Q1(x, u).
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Označme si:

ES = {(x0, ψ0) ∈ R
n × R

n|(xt(x0, ψ0), ψt(x0, ψ0))→ (0, 0) pre t→ ∞} (3.10)

kde (xt(x0, ψ0), ψt(x0, ψ0)) je riešenie systému rovníc (3.3), (3.4) vychádzajúce z bodu (x0, ψ0).

Veta 3.4. Nech k1 = l1 = 0. Nech je splnený predpoklad Q3. Nech dvojica matíc (A,B)

je stabilizovateľná a nech matica A1 je regulárna. Potom spektrum matice M1 neobsahuje

vlastnú hodnotu, ktorej absolútna hodnota sa rovná 1. Pre n vlastných hodnôt (vrátane ná-

sobností) platí, že |λ| < 1 a pre zvyšných n, že |λ| > 1. Navyše existuje jediná matica L1 typu

n× n taká, že pre priestor ES definovaný v (3.10) platí:

ES = {(x, ψ) ∈ R
n × R

n|ψ = L1x} (3.11)

Dôkaz. Z vety 3.3 vieme, že pre každé počiatočné x0 existuje optimálne riadenie a z vety 3.2,

že toto riadenie spolu so svojou odozvou konvergujú k bodu (0, 0) pre t→ ∞. Z toho vyplýva,

že pre každé x0 ∈ R
n existuje ψ0 ∈ R

n také, že (xt(x0, ψ0), ψt(x0, ψ0))→ (0, 0) pre t→ ∞. A

teda (x0, ψ0) ∈ ES , čo je ekvivalentné tomu, že x0 ∈ Πx(ES), kde Πx(x, ψ) značí prirodzenú

projekciu priestoru R
2n na R

n. Z toho vyplýva, že ES má rozmer aspoň n.

Pretože však matica M1 je podľa vety 3.1 symplektická a teda jej vlastné hodnoty vystu-

pujú v recipročných pároch, tak ES má dimenziu práve n.

V dôsledku linearity priestoru ES potom existuje jediná matica L1 typu n × n taká, že

priestor ES sa dá vyjadriť nasledujúco:

ES = {(x, ψ) ∈ R
n × R

n|ψ = L1x}

V nasledujúcej vete a jej dôsledku sa pozrieme na vzťahy, ktoré platia pre optimálne

riadenie a jeho odozvu.

Veta 3.5. Nech k1 = l1 = 0. Nech je splnený predpoklad Q3. Nech dvojica matíc (A,B) je

stabilizovateľná a nech matica A1 je regulárna. Potom optimálne riadenie ut môžeme vyjadriť

jednoznačne ako lineárnu funkciu stavu xt.

Dôkaz. Veta je dôsledkom vety 3.4.

Pretože pre ut platí vzťah (2.28) pre β = 1:

ut = −R−1
1 Q1xt −R−1

1 BTψt+1 (3.12)
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a pretože z predchádzajúcej vety vieme, že na priestore ES môžeme vyjadriť ψt jednoznačne

formulou:

ψt = L1xt (3.13)

tak po dosadení (3.13) do vzťahu (3.4) máme:

ψt+1 = [−(A
T
1 )

−1
P1 + (A

T
1 )

−1
L1]xt (3.14)

Dosadením (3.14) do (3.12), dostaneme:

ut = −[R−1
1 Q1 +R

−1
1 BT (AT

1 )
−1
(L1 −P1)]xt (3.15)

Označme:

Z1 = −[R−1
1 Q1 +R

−1
1 BT (AT

1 )
−1
(L1 −P1)] (3.16)

Potom máme:

ut = Z1xt (3.17)

Dôsledok 3.1. Nech k1 = l1 = 0. Nech je splnený predpoklad Q3. Nech dvojica matíc (A,B)

je stabilizovateľná a nech matica A1 je regulárna. Potom odozvy na optimálne riadenie spĺňajú

diferenčnú rovnicu:

xt+1 = (A+BZ1)xt (3.18)

kde matica (A+BZ1) je stabilná.

Dôkaz. Pretože stav v nasledujúcej perióde musí spĺňať:

xt+1 = Axt +But

tak pre odozvu na optimálne riadenie dostávame vzťah:

xt+1 = (A+BZ1)xt

Pretože pre každé x0 optimálne riadenie a jeho odozva konvergujú k nule, tak matica (A +

BZ1) musí byť stabilná.

Označme hodnotovú funkciu pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = Q1(x, u) ako

V
Q
1 , teda:

V
Q
1 (x0) = sup

ω∈π(x0)

∞∑

t=0

Q1(xt, ut) (3.19)

kde π(x0) značí množinu prípustných riadení pre túto úlohu.
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Veta 3.6. Nech k1 = l1 = 0. Nech je splnený predpoklad Q3. Nech dvojica matíc (A,B) je

stabilizovateľná a nech matica A1 je regulárna. Potom hodnotová funkcia V
Q
1 pre úlohu (U

Q
1 )

je kvadratická funkcia premennej x.

Dôkaz. Z predchádzajúceho vieme, že za týchto predpokladov existuje jediné optimálne ria-

denie a jeho odozva, pre ktoré platia vzťahy (3.17), resp. (3.18):

ut = Z1xt

xt+1 = (A+BZ1)xt

Zo vzťahu (3.18) pre optimálny stav v nasledujúcej perióde máme:

xt = (A+BZ1)
tx0 (3.20)

Vezmime si čiastočný súčet radu
∑∞

t=0Q1(xt, ut) s optimálnym stavom a riadením:

JN =
N∑

t=0

Q1(xt, ut)

Potom:

JN =
N∑

t=0

1
2
[(xt

TP1xt + 2xt
TQT
1 ut + ut

TR1ut)]

Po dosadení (3.17):

JN =
N∑

t=0

1
2
[(xt

TP1xt + 2xt
TQT
1 Z1xt + xt

TZT
1 R1Z1xt)]

Dosaďme ďalej (3.20), dostaneme:

JN =
1
2

N∑

t=0

[(x0
T (AT + ZT

1 B
T )

t
P1(A+BZ1)

tx0+

+2x0
T (AT + ZT

1 B
T )

t
QT
1 Z1(A+BZ1)

tx0+

+(AT + ZT
1 B

T )
t
ZT
1 R1Z1(A+BZ1)

tx0)]

Odtiaľ:

JN =
1
2
x0

T [
N∑

t=0

(AT + ZT
1 B

T )
t
(P1 + 2QT

1 Z1 + Z
T
1 R1Z1)(A+BZ1)

t]x0

Prejdúc k limite pre N → ∞ máme:

V
Q
1 (x0) =

1
2
x0

T [
∞∑

t=0

(AT + ZT
1 B

T )
t
(P1 + 2QT

1 Z1 + Z
T
1 R1Z1)(A+BZ1)

t]x0
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Označme:

W1 =
∞∑

t=0

(AT + ZT
1 B

T )
t
(P1 + 2Q

T
1 Z1 + Z

T
1 R1Z1)(A+BZ1)

t (3.21)

Potom:

V
Q
1 (x0) =

1
2
x0

TW1x0 (3.22)

3.2 Účelová funkcia s lineárnymi členmi

V tejto sekcii sa budeme venovať úlohe (UQ
1 ) s kvadratickou účelovou funkciou, v ktorej

vystupujú i lineárne členy, teda aspoň jeden z vektorov k1, l1 je nenulový.

Na začiatok si vo vete 3.7 ukážeme, za akých predpokladov prípustné riadenie a jeho

odozva konvergujú k bodu (0, 0).

Veta 3.7. Nech aspoň jeden z vektorov k1, l1 je nenulový. Nech je splnený predpoklad Q3.

Nech matica I − A je regulárna. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0

jeho odozva. Nech rad
∑∞

t=0 f
0
1 (xt, ut) konverguje. Potom postupnosť {(xt, ut)}

∞
t=0 konverguje

k bodu (0, 0) pre t→ ∞.

Dôkaz. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva. Vieme, že za pred-

pokladu regulárnosti matice I −A platí vzťah (2.22) pre β = 1:

l1 = −BT (I −AT )
−1
k1

Účelovú funkciu f01 v bode (xt, ut) môžeme potom prepísať takto:

f01 (xt, ut) = k
T
1 [xt − (I −A)−1But] +Q1(xt, ut)

Odtiaľ:

f01 (xt, ut) = kT
1 (I −A)−1[(I −A)xt −But] +Q1(xt, ut)

Upravíme:

f01 (xt, ut) = k
T
1 (I −A)−1(xt − xt+1) +Q1(xt, ut)

Ak konverguje rad
∑∞

t=0 f
0
1 (xt, ut), tak musí platiť:

lim
t→∞

f01 (xt, ut) = 0

Vyšetrime teda rad
∑∞

t=0 f
0
1 (xt, ut). Vezmime si čiastočný súčet tohto radu:

JN =
N∑

t=0

kT
1 xt + lT1 ut +Q1(xt, ut)
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Upravme:

JN =
N∑

t=0

kT
1 (I −A)−1[xt − xt+1] +

N∑

t=0

Q1(xt, ut)

= kT
1 (I −A)−1[x0 − xN+1] +

N∑

t=0

Q1(xt, ut)

Chceme ukázať, že prípustné riadenie a jeho odozva konvergujú k bodu (0, 0). Nech to neplatí.

Potom existuje ε > 0 také, že pre všetky T ≥ 0 existuje t > T také, že ‖(xt, ut)‖ ≥ ε. Pretože

{xt}
∞
t=0 je prípustné a rad

∑∞
t=0 f

0
1 (xt, ut) podľa predpokladu konverguje, tak je ohraničené,

z čoho vyplýva, že výraz kT
1 (I −A)−1[x0−xN ] je pre každé N ohraničený. Pretože kvadratická

forma Q1(x, u) je záporne definitná, tak pre každé T ≥ 0 existuje t > T a η také, že platí:

Q1(xt, ut) ≤ η < 0

Z čoho vyplýva, že JN diverguje, čo je spor s predpokladom.

V nasledujúcej vete podáme dôkaz o tom, že pre každé x0 existuje jediné optimálne

riadenie a jeho odozva pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = k

T
1 x+ l

T
1 u+Q1(x, u),

kde aspoň jeden z vektorov k1, l1 je nenulový. Navyše ukážeme, že optimálne riadenie a odozva

sú pre túto úlohu a úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = Q1(x, u) rovnaké.

Veta 3.8. Nech aspoň jeden z vektorov k1, l1 je nenulový. Nech je splnený predpoklad Q3.

Nech matica I−A je regulárna. Nech dvojica matíc (A,B) je stabilizovateľná a nech maticaA1

je regulárna. Potom pre každé x0 existuje jediné optimálne riadenie a jeho odozva pre úlohu

(UQ
1 ) a sú rovnaké ako pre úlohu (U

Q
1 ) s účelovou funkciou f

0
1 (x, u) = Q1(x, u).

Dôkaz. Nech x0 je ľubovoľné. Vieme, že za týchto predpokladov existuje jediné optimálne

riadenie a jeho odozva pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = Q1(x, u) vyjadrené

vzťahmi (3.17) a (3.18):

ut = Z1xt

xt+1 = (A+BZ1)xt

Vieme ďalej, že nutné podmienky optimality vyjadrené vzťahmi (2.23), (2.26) a (2.27)

pre β = 1 sú pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = kT

1 x + l
T
1 u +Q1(x, u) rovnaké

ako pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = Q1(x, u).

Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva pre úlohu (U

Q
1 ) s účelo-

vou funkciou f01 (x, u) = k
T
1 x+l

T
1 u+Q1(x, u). Vezmime si čiastočný súčet radu

∑∞
t=0 f

0
1 (xt, ut):

JN =
N∑

t=0

f01 (xt, ut)
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Z dôkazu predchádzajúcej vety vieme, že platí:

JN = kT
1 (I −A)−1[x0 − xN+1] +

N∑

t=0

Q1(xt, ut)

Vieme, že pre každú prípustnú odozvu, pre ktorú rad
∑∞

t=0 f
0
1 (xt, ut) konverguje, platí

xt → 0 pre t → ∞. Z toho vyplýva, že suprémum dosiahneme len pre tie prípustné riadenia

a ich odozvy, ktoré sú optimálne pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 = Q1(x, u). Keďže

také riadenie a jeho odozva sú jediné, tak pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 = kT

1 x +

lT1 u+Q1(x, u), existuje jediné optimálne riadenie a jeho odozva a sú rovnaké ako optimálne

riadenie a jeho odozva pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = Q1(x, u).

Označme hodnotovú funkciu pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = k

T
1 x+ l

T
1 u+

Q1(x, u), ako W
Q
1 , teda:

W
Q
1 (x0) = sup

ω∈π(x0)

∞∑

t=0

kT
1 xt + lT1 ut +Q1(xt, ut) (3.23)

kde π(x0) je množina prípustných riadení pre túto úlohu.

Veta 3.9. Nech aspoň jeden z vektorov k1, l1 je nenulový. Nech je splnený predpoklad Q3.

Nech matica I −A je regulárna. Nech dvojica matíc (A,B) je stabilizovateľná a nech matica

A1 je regulárna. Potom hodnotovú funkciu W
Q
1 môžeme vyjadriť nasledujúcim vzťahom:

W
Q
1 (x0) = k

T
1 (I −A)−1x0 + V

Q
1 (x0) (3.24)

Dôkaz. Nech x0 je ľubovoľné. Nech ω = {ut}
∞
t=0 je optimálne riadenie a χ = {xt}

∞
t=0 jeho

odozva. Potom z predchádzajúcej vety vieme, že optimálne riadenie a jeho odozva sú pre úlohu

(UQ
1 ) s účelovou funkciou f

0
1 (x, u) = kT

1 x + lT1 u + Q1(x, u), rovnaké ako pre úlohu (U
Q
1 )

s účelovou funkciou f01 (x, u) = Q1(x, u).

Máme:

lim
N→∞

JN = k
T
1 (I −A)−1x0 + lim

N→∞

N∑

t=0

Q1(xt, ut)

kde JN značí čiastočný súčet radu
∑∞

t=0 k
T
1 xt + lT1 ut +Q1(xt, ut).

Pre optimálne riadenie a jeho odozvu dostávame:

W
Q
1 (x0) = k

T
1 (I −A)−1x0 + V

Q
1 (x0)
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Táto veta nám vlastne hovorí , že kým kvadratická hodnotová funkcia pre úlohu (UQ
1 )

s účelovou funkciou f01 (x, u) = Q1(x, u) je pre každé x ∈ R
n určená formulou:

V
Q
1 (x) =

1
2
xTW1x

tak kvadratická hodnotová funkcia pre úlohu (UQ
1 ) s účelovou funkciou f

0
1 (x, u) = kT

1 x +

lT1 u+Q1(x, u), sa od nej líši v lineárnom člene a ak si označíme:

zT
1 = k

T
1 (I −A)−1 (3.25)

tak sa pre každé x ∈ R
n dá vyjadriť vzťahom:

W
Q
1 (x) = z

T
1 x+

1
2
xTW1x
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Kapitola 4

Lineárne-kvadratická úloha s

diskontom

V tejto kapitole sa budeme venovať úlohám lineárne kvadratického programovania s diskont-

ným faktorom. Ukážeme si v nej, že na dostatočne malom okolí bodu 1 má matica systému

nutných podmienok pre β 6= 1 spektrum vlastných hodnôt rovnako rozložené ako symplek-

tická matica M1. V ďalšom sa potom v dvoch podkapitolách budeme zaoberať lineárne-

kvadratickou úlohou s účelovou funkciou bez lineárnych členov a následne lineárne-kvadratic-

kou úlohou, v ktorej vystupuje účelová funkcia s lineárnymi členmi. Cieľom oboch podkapitol

bude nájsť predpoklady, za ktorých existujú optimálne riadenie a jeho odozva, ukázať, kedy

sú jediné a k čomu konvergujú a naformulovať pre ne vzťahy, ktorými sa riadia.

V ďalšom pre celú kapitolu predpokladajme, že sú splnené predpoklady Q1 a Q2. Nech

β ∈ O. Uvažujme úlohu (UQ
β ). Teda úlohu:

sup
{ut}∞t=0

∞∑

t=0

f0β(xt, ut)

xt+1 = F (xt, ut)

xt ∈ R
n

ut ∈ R
m

x0 − dané

Označme si:

Qβ(x, u) =
1
2
(xTPβx+ x

TQT
βu+ u

TQβx+ u
TRβu) (4.1)
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Potom môžeme funkciu f0β zapísať nasledujúcim spôsobom:

f0β(x, u) = k
T
β x+ l

T
β u+Qβ(x, u) (4.2)

Z druhej kapitoly vieme, že optimálne riadenie pre úlohu (UQ
β ) (ak existuje) musí vyho-

vovať systému rovníc (2.31), (2.32):

xt+1 = Aβxt + βBβψt+1

ψt = Pβxt + βA
T
βψt+1

Predpokladajme, že matica A1 je regulárna. Vieme, že matice Aβ spojite závisia od para-

metra β a teda existuje okolie bodu 1, označme ho O′, také, že pre β z tohto okolia je matica

Aβ tiež regulárna. Potom pre β z tohto okolia vyjadrime premennú ψt+1 z druhej rovnice

tohto systému:

ψt+1 = −
1
β
(AT

β )
−1
Pβxt +

1
β
(AT

β )
−1
ψt

Dosadením do prvej rovnice dostávame:

xt+1 = [Aβ −Bβ(A
T
β )

−1
Pβ]xt +Bβ(A

T
β )

−1
ψt

Celkovo máme:

xt+1 = [Aβ −Bβ(A
T
β )

−1
Pβ ]xt +Bβ(A

T
β )

−1
ψt (4.3)

ψt+1 = −
1
β
(AT

β )
−1
Pβxt +

1
β
(AT

β )
−1
ψt (4.4)

Teda sme odvodili systém nutných podmienok pre optimálne riešenie úlohy (UQ
β ) s účelovou

funkciou f0β(x, u) = k
T
β x+ l

T
β u+Qβ(x, u).

Označme maticu sústavy rovníc (4.3), (4.4) ako Mβ, tj.:

Mβ =

(
Aβ −Bβ(AT

β )
−1
Pβ Bβ(AT

β )
−1

− 1
β
(AT

β )
−1
Pβ

1
β
(AT

β )
−1

)

O matici M1 vieme, že je symplektická, z čoho vyplýva, že je regulárna. Vieme o nej

tiež, že jej vlastné hodnoty ležia mimo jednotkovej kružnice, presnejšie polovica (teda n) ich

leží vnútri a druhá zvonka jednotkovej kružnice. Keďže matice Mβ spojite závisia od β, tak

pre dostatočne malé okolie bodu 1 je matica Mβ pre β z tohto okolia taktiež regulárna a jej

vlastné hodnoty ležia rovnako mimo jednotkovej kružnice, pričom polovica (n) ich leží zvnútra

a druhá polovica zvonka jednotkovej kružnice a navyše n-rozmerný invariantný priestor:

ES
β = {(x, ψ) ∈ R

n × R
n|ψ = Lβx}
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kde matica Lβ je typu n× n, zodpovedajúci vlastným hodnotám matice Mβ ležiacim vnútri

jednotkovej kružnice sa rovnako ako pre β = 1 projektuje na priestor ψ = 0. Označme toto

okolie ako O′′.

Nech ρ(Mβ) označuje pre každé β ∈ O′′ maximálnu hodnotu z absolútnych hodnôt vlast-

ných hodnôt matice Mβ ležiacich vnútri jednotkovej kružnice. Nech λβ = ρ(Mβ) + ε, kde ε

je ľubovoľná dostatočne malá kladná konštanta, taká, že platí:

1

λβ

>
1
β
> 1 (4.5)

Množinu tých β ∈ O′′, pre ktoré existuje ε také, že platí (4.5) označme O′′′.

Ďalej označujme prienik O′, O′′′ a O ako Ô, potom všetky β z tohto okolia bodu 1 budú

pre nás zaujímavé pre ďalšie odvodzovanie a sústredíme na ne našu pozornosť.

Poznamenajme ešte, že pre β ∈ Ô je za predpokladu Q3 kvadratická forma Qβ(x, u)

záporne definitná.

4.1 Účelová funkcia bez lineárnych členov

Táto podkapitola sa venuje úlohám typu (UQ
β ) s účelovou funkciou Qβ(x, u). Teda úlohám,

v ktorých sú kβ, lβ nulové. Na úvod si v nej dokážeme, že za predpokladu stabilizovateľ-

nosti dvojice matíc (A,B) a predpokladu Q3 existuje pre túto úlohu pre každé x0 optimálne

riadenie.

Veta 4.1. Nech β ∈ Ô je také, že β 6= 1. Nech kβ = lβ = 0. Nech je splnený predpoklad Q3.

Nech dvojica matíc (A,B) je stabilizovateľná. Potom pre každé x0 existuje pre úlohu (U
Q
β )

optimálne riadenie.

Dôkaz. Dôkaz je takmer identický s dôkazom pre vetu 3.3 z predchádzajúcej kapitoly.

Nech x0 je ľubovoľné. Nech β ∈ Ô je ľubovoľné, také, že β 6= 1. Nech ω = {ut}
∞
t=0 je prípustné

riadenie a χ = {xt}
∞
t=0 jeho odozva. Označme množinu prípustných riadení z počiatku x0 ako

π(x0). Označme ďalej:

σβ = sup
ω∈π(x0)

∞∑

t=0

βtQβ(xt, ut)

Stabilizovateľnosť dvojice matíc (A,B) nám zaručuje, že σβ je konečné číslo. Ďalej z de-

finície supréma existuje taká postupnosť prípustných riadení spolu s ich odozvami (teda

postupnosť postupností {{(xk
t , u

k
t )}

∞
t=0}

∞
k=0, kde x

k
0 = x0 a x

k
t+1 = F (x

k
t , u

k
t )), že platí:

∞∑

t=0

βtQβ(x
k
t , u

k
t )ր σβ
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pre k → ∞.

Pre túto postupnosť fixujme t, potom postupnosť {(xk
t , u

k
t )}

∞
k=0 je ohraničená a teda exis-

tuje z nej vybraná konvergentná podpostupnosť. Označme si pre každé t limitu konvergentnej

podpostupnosti ako (x∗t , u
∗
t ).

Skonštruujme konvergentnú postupnosť postupností rovnako ako v dôkaze vety 3.3, do-

staneme {{(xkj

t , u
kj

t )}
∞
t=0}

∞
j=0 vybranú podpostupnosť z postupnosti {{(x

k
t , u

k
t )}

∞
t=0}

∞
k=0, ktorá

konverguje k postupnosti {(x∗t , u
∗
t )}

∞
t=0 bodovo, pričom platí, že x

∗
0 = x0 a vďaka spojitosti

funkcie F tiež: x∗t+1 = F (x
∗
t , u

∗
t ).

Označme si:

S∗
n =

n∑

t=0

βtQβ(x
∗
t , u

∗
t )

a limitu (pokiaľ existuje) ako:

S∗
∞ = lim

n→∞
S∗

n

Preznačme spätne indexy kj na k, potom Sk
n značí:

Sk
n =

n∑

t=0

βtQβ(x
k
t , u

k
t )

a Sk
∞:

Sk
∞ = lim

n→∞
Sk

n

Máme:

lim
k→∞

Sk
∞ = σβ

Pretože Qβ(x, u) je záporne definitná kvadratická forma a β > 0, tak pre každé k je

postupnosť {Sk
n}

∞
n=0 nerastúca, pričom platí, že S

k
n ≤ 0 pre každé n. Rovnako tak postupnosť

{S∗
n}

∞
n=0 je nerastúca, pričom platí, že S

∗
n ≤ 0 pre každé n. Ukážeme, že pre každé n platí:

S∗
n ≥ σβ.

Nech to neplatí, potom existuje také n0 a ε > 0, že pre každé n ≥ n0:

S∗
n < σβ − ε

Z toho ale vyplýva, že existuje také k0, že pre každé k > k0 platí:

Sk
n0
< σβ −

ε

2

pretože však {Sk
n}

∞
n=0 je pre každé k nerastúca postupnosť, tak máme pre každé k > k0 a

pre každé n ≥ n0:

Sk
n < σβ −

ε

2
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Z toho ďalej pre každé k > k0:

Sk
∞ < σβ −

ε

2

čo je spor s predpokladom, že limk→∞ Sk
∞ = σβ.

Takže máme nerastúcu postupnosť S∗
n, ktorá je zdola ohraničená hodnotou σβ a teda je

konvergentná a rovnako aj S∗
∞ ≥ σβ. Zároveň máme S∗

∞ ≤ σβ, pretože σβ je suprémum.

Z toho vyplýva, že S∗
∞ = σ.

Poznámka 4.1. Poznamenajme, že uvedená veta platí aj pre β z okolia O, čo je (v zmysle

inklúzie) širšie okolie ako Ô.

V nasledujúcej vete si ukážeme, že existuje jediné optimálne riešenie systému rovníc (4.3),

(4.4), ktoré konverguje k bodu (0, 0) pre t→ ∞.

Veta 4.2. Nech β ∈ Ô je také, že β 6= 1. Nech kβ = lβ = 0. Nech je splnený predpo-

klad Q3. Nech matica A1 je regulárna. Nech dvojica matíc (A,B) je stabilizovateľná. Potom

existuje jediné optimálne riešenie systému rovníc (4.3), (4.4), ktoré konverguje k bodu (0, 0)

pre t→ ∞.

Dôkaz. Zvoľme ľubovoľné β ∈ Ô také, že β 6= 1. V predchádzajúcej vete sme si ukázali,

že pre každé takéto β a pre každé x0 existuje optimálne riadenie a jeho odozva pre úlohu

(UQ
β ). Keďže postupnosť odoziev je optimálna, tak musí vyhovovať systému rovníc (4.3),

(4.4) s maticou Mβ. Tá má však n vlastných hodnôt ležiacich vnútri jednotkovej kružnice a

n vlastných hodnôt ležiacich zvonka jednotkovej kružnice, z čoho vyplýva, že riešenie tohto

systému musí konvergovať k bodu (0, 0). V opačnom prípade by existovala konštanta c > 0

taká, že pre každé t by platilo:

‖(xt, ψt)‖ ≥
c

λ
t

β

‖(x0, ψ0)‖

Pretože na Ô platí (4.5), tak by bol rad
∑∞

t=0 β
tQβ(xt, ut) divergentný, čo je spor.

Zároveň dostávame, že pre priestor ES
β definovaný v predošlom platí:

ES
β = {(x0, ψ0) ∈ R

n × R
n|(xt(x0, ψ0), ψt(x0, ψ0))→ (0, 0) pre t→ ∞}

kde (xt(x0, ψ0), ψt(x0, ψ0)) je riešenie systému rovníc (4.3), (4.4) vychádzajúce z bodu (x0, ψ0).

Takže pre každé xt je ψt určené jednoznačne vzťahom ψt = Lβxt a teda existuje jediné

optimálne riešenie systému rovníc (4.3), (4.4), ktoré konverguje k bodu (0, 0).

V ďalšom odvodíme vzťahy pre optimálne riadenie a jeho odozvu.
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Veta 4.3. Nech β ∈ Ô je také, že β 6= 1. Nech kβ = lβ = 0. Nech je splnený predpoklad Q3.

Nech matica A1 je regulárna. Nech dvojica matíc (A,B) je stabilizovateľná. Potom optimálne

riadenie ut môžeme vyjadriť jednoznačne ako lineárnu funkciu stavu xt.

Dôkaz. Veta vyplýva z predchádzajúceho tvrdenia.

Pretože pre ut platí vzťah (2.28):

ut = −R−1
β Qβxt − βR−1

β BTψt+1 (4.6)

a pretože z predchádzajúcej vety vieme, že na priestore ES
β môžeme vyjadriť ψt jednoznačne

formulou:

ψt = Lβxt (4.7)

tak po dosadení (4.7) do vzťahu (4.4) máme:

ψt+1 =
1
β
[−(AT

β )
−1
Pβ + (A

T
β )

−1
Lβ]xt (4.8)

Dosadením (4.8) do (4.6), dostaneme:

ut = −[R−1
β Qβ +R

−1
β BT (AT

β )
−1
(Lβ −Pβ)]xt (4.9)

Označme:

Zβ = −[R−1
β Qβ +R

−1
β BT (AT

β )
−1
(Lβ −Pβ)] (4.10)

Potom máme:

ut = Zβxt (4.11)

Dôsledok 4.1. Nech β ∈ Ô je také, že β 6= 1. Nech kβ = lβ = 0. Nech je splnený predpoklad

Q3. Nech matica A1 je regulárna. Nech dvojica matíc (A,B) je stabilizovateľná. Potom odozvy

na optimálne riadenie spĺňajú diferenčnú rovnicu:

xt+1 = (A+BZβ)xt (4.12)

kde (A+BZβ) je stabilná matica.

Dôkaz. Pretože stav v nasledujúcej perióde musí spĺňať:

xt+1 = Axt +But

tak pre odozvu na optimálne riadenie dostávame vzťah:

xt+1 = (A+BZβ)xt

Pretože pre každé x0 optimálne riadenie a jeho odozva konvergujú k nule, tak matica (A +

BZβ) musí byť stabilná.
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Označme hodnotovú funkciu pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = Qβ(x, u) ako

V
Q
β , teda:

V
Q
β (x0) = sup

ω∈π(x0)

∞∑

t=0

Qβ(xt, ut) (4.13)

kde π(x0) značí množinu prípustných riadení pre túto úlohu. Opäť môžeme ukázať, že hod-

notová funkcia V Q
β je kvadratická.

Veta 4.4. Nech β ∈ Ô je také, že β 6= 1. Nech kβ = lβ = 0. Nech je splnený predpoklad Q3.

Nech matica A1 je regulárna. Nech dvojica matíc (A,B) je stabilizovateľná. Potom hodnotová

funkcia V Q
β pre úlohu (U

Q
β ) je kvadratická funkcia premennej x.

Dôkaz. Z predchádzajúceho vieme, že za týchto predpokladov existuje jediné optimálne ria-

denie a jeho odozva, pre ktoré platia vzťahy (4.11), resp. (4.12):

ut = Zβxt

xt+1 = (A+BZβ)xt

Zo vzťahu (4.12) pre optimálny stav v nasledujúcej perióde máme:

xt = (A+BZβ)
tx0 (4.14)

Vezmime si čiastočný súčet radu
∑∞

t=0 β
tQβ(xt, ut) s optimálnym stavom a riadením:

JN =
N∑

t=0

βtQβ(xt, ut)

Potom:

JN =
N∑

t=0

1
2
βt[(xt

TPβxt + 2xt
TQT

βut + ut
TRβut)]

Po dosadení (4.11):

JN =
N∑

t=0

1
2
βt[(xt

TPβxt + 2xt
TQT

βZβxt + xt
TZT

β RβZβxt)]

Dosaďme ďalej (4.14), dostaneme:

JN =
1
2

N∑

t=0

βt[(x0
T (AT + ZT

β B
T )

t
Pβ(A+BZβ)

tx0+

+2x0T (AT + ZT
β B

T )
t
QT

βZβ(A+BZβ)
tx0+

+(AT + ZT
β B

T )
t
ZT

β RβZβ(A+BZβ)
tx0)]
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Odtiaľ:

JN =
1
2
x0

T [
N∑

t=0

βt(AT + ZT
β B

T )
t
(Pβ + 2Q

T
βZβ + Z

T
β RβZβ)(A+BZβ)

t]x0

prejdúc k limite pre N → ∞ máme:

V
Q
β (x0) =

1
2
x0

T [
N∑

t=0

βt(AT + ZT
β B

T )
t
(Pβ + 2Q

T
βZβ + Z

T
β RβZβ)(A+BZβ)

t]x0

Označme:

Wβ =
∞∑

t=0

βt(AT + ZT
β B

T )
t
(Pβ + 2Q

T
βZβ + Z

T
β RβZβ)(A+BZβ)

t (4.15)

Potom:

V
Q
β (x0) =

1
2
x0

TWβx0 (4.16)

4.2 Účelová funkcia s lineárnymi členmi

V tejto sekcii sa budeme venovať úlohe (UQ
β ) s kvadratickou účelovou funkciou, v ktorej

vystupujú lineárne členy. V rovnako nazvanej sekcii v predchádzajúcej kapitole sme pri do-

kazovaní existencie a jednoznačnosti využívali predpoklad regulárnosti matice I − A. Tento

predpoklad bude potrebný aj tu, pričom ho rozšírime i na matice I − βA pre vhodné β.

Platí, že ak matica I−A je regulárna potom existuje okolie bodu 1 také, že pre β z tohto

okolia je matica I − βA regulárna. Označme prienik tohto okolia s Ô ako O.

V prvej vete tejto časti pre β ∈ O dokážeme, že pre každé x0 existuje jediné optimálne

riadenie a jeho odozva pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = k

T
β x+ l

T
β u+Qβ(x, u).

Navyše ukážeme, že optimálne riadenie a odozva sú pre túto úlohu a pre úlohu (UQ
β ) s účelovou

funkciou f0β(x, u) = Qβ(x, u) rovnaké.

Veta 4.5. Nech β ∈ O. Nech β ∈ O je také, že β 6= 1. Nech aspoň jeden z vektorov kβ , lβ

je nenulový. Nech je splnený predpoklad Q3. Nech matica I − A je regulárna. Nech dvojica

matíc (A,B) je stabilizovateľná a nech matica A1 je regulárna. Potom pre každé x0 existuje

jediné optimálne riadenie a jeho odozva pre úlohu (UQ
β ) a sú rovnaké ako pre úlohu (U

Q
β )

s účelovou funkciou f0β(x, u) = Qβ(x, u).

Dôkaz. Nech x0 je ľubovoľné. Vieme, že za týchto predpokladov existuje jediné optimálne

riadenie a jeho odozva pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = Qβ(x, u) vyjadrené
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vzťahmi (4.11) a (4.12):

ut = Zβxt

xt+1 = (A+BZβ)xt

Ďalej vieme, že nutné podmienky optimality vyjadrené vzťahmi (2.23), (2.26) a (2.27) sú

pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = kT

β x+ l
T
β u +Qβ(x, u) rovnaké ako pre úlohu

(UQ
β ) s účelovou funkciou f

0
β(x, u) = Qβ(x, u). Navyše za predpokladu β ∈ O je matica I−βA

regulárna a teda platí vzťah (2.22) medzi kβ a lβ:

lβ = −βBT (I − βAT )
−1
kβ

Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva pre úlohu (U

Q
β )

s účelovou funkciou f0β(x, u) = kT
β x + lTβ u + Qβ(x, u). Vezmime si čiastočný súčet radu∑∞

t=0 β
t[kT

β xt + lTβ ut +Qβ(xt, ut)]:

JN =
N∑

t=0

βt[kT
β xt + lTβ ut +Qβ(xt, ut)]

Dosaďme za lβ vzťah (2.22), potom máme:

JN =
N∑

t=0

βtkT
β [xt − β(I − βA)−1But] +

N∑

t=0

βtQβ(xt, ut)

JN =
N∑

t=0

βtkT
β (I − βA)−1[(I − βA)xt − βBut] +

N∑

t=0

βtQβ(xt, ut)

JN =
N∑

t=0

βtkT
β (I − βA)−1[xt − βxt+1] +

N∑

t=0

βtQβ(xt, ut)

= kT
β (I − βA)−1[x0 − βN+1xN+1] +

N∑

t=0

βtQβ(xt, ut)

Aby mohla byť postupnosť {xt}
∞
t=0 prípustnou odozvou, pre ktorú rad

∑∞
t=0 β

tf0β(xt, ut)

konverguje, musí byť ohraničená a teda βNxN → 0 preN → ∞. Z toho vyplýva, že suprémum

dosiahneme len pre tie prípustné riadenia a ich odozvy, ktoré sú optimálne pre úlohu (UQ
β )

s účelovou funkciou f0β(x, u) = Qβ(x, u), keďže také riadenie a jeho odozva sú jediné, tak

pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = k

T
β x+ l

T
β u+Qβ(x, u) existuje jediné optimálne

riadenie a jeho odozva a sú rovnaké ako optimálne riadenie a jeho odozva pre úlohu (UQ
β )

s účelovou funkciou f0β(x, u) = Qβ(x, u).
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Označme hodnotovú funkciu pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = k

T
β x+ l

T
β u+

Qβ(x, u) ako W
Q
β , teda:

W
Q
β (x0) = sup

ω∈π(x0)

∞∑

t=0

βt[kT
β xt + lTβ ut +Qβ(xt, ut)] (4.17)

kde π(x0) je množina prípustných riadení pre túto úlohu.

Veta 4.6. Nech β ∈ O je také, že β 6= 1. Nech aspoň jeden z vektorov kβ, lβ je nenulový.

Nech je splnený predpoklad Q3. Nech matica I − A je regulárna. Nech dvojica matíc (A,B)

je stabilizovateľná a nech matica A1 je regulárna. Potom hodnotovú funkciu W
Q
β môžeme

vyjadriť nasledujúcim vzťahom:

W
Q
β (x0) = k

T
β (I − βA)−1x0 + V

Q
β (x0) (4.18)

Dôkaz. Nech x0 je ľubovoľné, také, že β 6= 1. Nech ω = {ut}
∞
t=0 je optimálne riadenie a

χ = {xt}
∞
t=0 jeho odozva. Potom z predchádzajúcej vety vieme, že optimálne riadenie a jeho

odozva sú pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = k

T
β x+ l

T
β u+Qβ(x, u) rovnaké ako

pre pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = Qβ(x, u).

Máme:

lim
N→∞

JN = kT
β (I − βA)−1x0 + lim

N→∞

N∑

t=0

βtQβ(xt, ut)

kde JN značí čiastočný súčet radu
∑∞

t=0 β
t[kT

β xt + lTβ ut +Qβ(xt, ut)].

Pre optimálne riadenie a jeho odozvu dostávame:

W
Q
β (x0) = k

T
β (I − βA)−1x0 + V

Q
β (x0)

Táto veta nám vlastne hovorí , že kým kvadratická hodnotová funkcia pre úlohu (UQ
β )

s účelovou funkciou f0β(x, u) = Qβ(x, u) je pre každé x ∈ R
n určená formulou:

V
Q
β (x) =

1
2
xTWβx

tak kvadratická hodnotová funkcia pre úlohu (UQ
β ) s účelovou funkciou f

0
β(x, u) = kT

β x +

lTβ u+Qβ(x, u) sa od nej líši v lineárnom člene a ak si označíme:

zT
β = k

T
β (I − βA)−1 (4.19)

tak sa pre každé x ∈ R
n dá vyjadriť vzťahom:

W
Q
β (x) = z

T
β x+

1
2
xTWβx
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Kapitola 5

Extremálne riešenia pre pôvodnú

úlohu

V tejto kapitole sa budeme zaoberať extremálnymi riešeniami pre úlohu (Uβ), tj. riešeniami,

ktoré vyhovujú nutným podmienkam optimality, ale nemusia byť optimálnymi. Budeme uva-

žovať β ľubovoľné z okolia O vrátane bodu 1.

V ďalšom pre celú kapitolu predpokladajme, že sú splnené predpoklady Q1 a Q2. Nech

β ∈ O. Uvažujme teda systém úloh (Uβ) pre β z tohto okolia:

sup
{ut}∞t=0

∞∑

t=0

βtfβ(xt, ut)

xt+1 = F (xt, ut)

xt ∈ R
n

ut ∈ R
m

x0 − dané

kde ako v predošlom fβ je Cr funkcia, pričom r ≥ 3.

V kapitole 2 sme si ukázali, že pre β ∈ O a teda aj pre β ∈ O existuje také okolie bodu

(0, 0, 0), že od systému nutných podmienok (2.34) môžeme prejsť k zredukovanému systému

(2.37), (2.38):

xt+1 = Aβxt + βBβψt+1 + č. v. r.

ψt = Pβxt + βAT
βψt+1 + č. v. r.

Riešenia, ktoré vyhovujú systému podmienok (2.34), resp. systému (2.37), (2.38) budeme

nazývať extremálnymi. Pretože uvedené systémy sú len nutnými podmienkami optimality, ne-
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znamená to, že extremálne riešenia sú aj optimálnymi. Za predpokladu, že optimálne riešenie

existuje, tak extremálne riešenie je aj optimálnym.

Predpokladajme, že matica A1 je regulárna, potom aj matice Aβ sú pre β ∈ O regulárne.

Platí nasledujúca veta.

Veta 5.1. Nech β je z O. Nech matica A1 je regulárna. Uvažujme rovnicu (2.38) zo systému

nutných podmienok optimality:

ψt = Pβxt + βA
T
βψt+1 + č. v. r. (5.1)

Potom existujú také ε1 > 0 a ε2 > 0, že pre každé β ∈ O rovnica (5.1) určuje jediné Cr−1

zobrazenie ψt+1 : B[(0, 0), ε1 ]→ B[0, ε2] také, že ψt+1(0, 0) = 0, pričom platí:

ψt+1(xt, ψt) = −
1
β
(AT

β )
−1
Pβxt +

1
β
(AT

β )
−1
ψt + č. v. r. (5.2)

Dôkaz. Nech β ∈ O je ľubovoľné. Označme:

Φ(xt, ψt, ψt+1) = −ψt +Pβxt + βAT
βψt+1 + č. v. r.

Potom platí:

Φ(0, 0, 0) = 0

Funkcia Φ(xt, ψt, ψt+1) je spojitá aj spojite diferencovateľná. Ďalej platí:

∂Φ(0, 0, 0)
∂ψt+1

= βAT
β

čo je podľa predpokladov regulárna matica. Takže sú splnené všetky podmienky vety o im-

plicitnej funkcii, čo dokazuje tvrdenie.

Z predchádzajúcej vety vyplýva, že lokálne v okolí bodu (0, 0, 0) môžeme ψt+1 vyjadriť

jednoznačne ako spojitú funkciu premenných (xt, ψt). Dosaďme toto vyjadrenie (5.2) do rov-

nice (2.37), dostaneme:

xt+1 = [Aβ −Bβ(A
T
β )

−1
Pβ]xt +Bβ(A

T
β )

−1
ψt + č. v. r. (5.3)

ψt+1 = −
1
β
(AT

β )
−1
Pβxt +

1
β
(AT

β )
−1
ψt + č. v. r. (5.4)

Označme yt = (xt, ψt) a funkciu na pravej strane predchádzajúceho systému ako Gβ ,

potom môžeme písať:

yt+1 = Gβ(yt) (5.5)

Alebo tiež:

yt+1 =Mβyt + č. v. r. (5.6)
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Predpokladajme, že sú splnené nasledujúce predpoklady: predpoklad Q3, matica I−A je

regulárna, matica A1 je regulárna a dvojica matíc (A,B) je stabilizovateľná. Potom pre každé

β z O o matici Mβ platí, že je regulárna a teda invertovateľná a jej vlastné hodnoty ležia

rovnako ako pri matici M1 mimo jednotkovej kružnice, pričom polovica (n) ich leží zvnútra a

druhá polovica zvonka jednotkovej kružnice. Navyše n-rozmerný invariantný priestor ES
β zod-

povedajúci vlastným hodnotám matice Mβ ležiacim vnútri jednotkovej kružnice sa rovnako

ako pre β = 1 projektuje na priestor ψ = 0.

Označme si:

W S
β (0) = {y ∈ Ω|Gt(y)→ 0 pre t→ ∞ a Gt(y) ∈ Ω pre každé t ≥ 0} (5.7)

kde Gt(y) je zložené zobrazenie pozostávajúce z t-krát aplikovaného zobrazenia G na y a Ω

je okolie bodu 0. V tomto prípade predstavuje bod 0 nulový vektor z priestoru R
2n.

Podľa vety 1.4.2 z [15] pre Ω dostatočne malé W S
β (0) je C

r−1 varietou, ktorá sa nazýva

lokálna stabilná varieta bodu 0 a platí, že dotykový priestor k W S
β (0) v bode 0 je E

S
β a

trajektórie všetkých bodov neležiacich na W S
β (0) opustia Ω. Ďalej platí nasledujúce tvrdenie:

Veta 5.2. Nech β je z O. Nech sú ďalej splnené nasledujúce predpoklady: predpoklad Q3,

matica I −A je regulárna, matica A1 je regulárna a dvojica matíc (A,B) je stabilizovateľná.

Potom W S
β (0) môžeme vyjadriť nasledujúcim spôsobom:

W S
β (0) = {y = (x, ψ) ∈ Ω|ψ = hβ(x)} (5.8)

kde hβ(x) = Lβx+ č. v. r..

Dôkaz. Nech β ∈ O je ľubovoľné. Vieme, že priestor ES
β môžeme vyjadriť nasledujúcim

spôsobom:

ES
β = {y = (x, ψ)|ψ = Lβx}

Urobme transformáciu premenných (xt, ψt):

(
xt

ψt

)

= Cβ

(
ζt

ξt

)

takú, že platí: (
ζt+1

ξt+1

)
= C−1

β MβCβ

(
ζt

ξt

)
= Λβ

(
ζt

ξt

)

kde pre maticu Λβ platí:

Λβ =

(
MS

β 0

0 MU
β

)

44



a matice MS
β , M

U
β sú Jordanove kánonické formy prislúchajúce k vlastným hodnotám matice

Mβ s |λ| < 1, resp. |λ| > 1.

Ak ψ = Lβx, tak dostaneme: (
xt

Lβxt

)
= Cβ

(
ζt

0

)

Označme:

Cβ =

(
C11β C12β

C21β C22β

)

Potom máme:

xt = C
11
β ζt (5.9)

a:

Lβxt = C21β ζt (5.10)

Keďže pre každé ζ existuje jediné x, tak z (5.9) vyplýva, že matica C11β je regulárna, a teda

dostávame:

ζt = [C
11
β ]

−1
xt (5.11)

Dosadením (5.11) do (5.10) máme:

Lβ = C
21
β [C

11
β ]

−1
(5.12)

Vieme, že za predpokladov vety existuje lokálna stabilná varieta W S
β (0). Na stabilnej variete

platí, že ξ = gβ(ζ), kde funkcia gβ je taká, že
gβ(ζ)
‖ζ‖ → 0, ∂gβ(ζ)

∂ζ
→ 0 pre ζ → 0, z čoho vyplýva,

že: (
xt

ψt

)

= Cβ

(
ζt

gβ(ζt)

)

A teda:

xt = C11β ζt +C12β gβ(ζt) (5.13)

ψt = C21β ζt +C22β gβ(ζt) (5.14)

Následne môžeme potom podľa vety o implicitnej funkcii z rovnice (5.13) vyjadriť ζt jedno-

značne ako funkciu xt:

ζt = [C
11
β ]

−1
xt + č. v. r. (5.15)

Dosadením (5.15) do (5.14) dostávame:

ψt = C
21
β [C

11
β ]

−1
xt + č. v. r. (5.16)
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Pretože platí (5.12), tak W S
β (0) môžeme vyjadriť nasledujúcim spôsobom:

W S
β (0) = {y = (x, ψ) ∈ Ω|ψ = hβ(x)}

kde hβ(x) = Lβx+ č. v. r.

Predchádzajúca veta hovorí, že ak (x0, ψ0), kde ψ0 = hβ(x0), leží v W S
β (0), potom celá

trajektória (xt(x0, ψ0), ψt(x0, ψ0)) leží v W S
β (0) a konverguje do bodu (0, 0). Teraz si povieme

niečo o vzťahu pre extremálne riadenie a jeho odozvu.

Veta 5.3. Nech β je z O. Nech sú ďalej splnené nasledujúce predpoklady: predpoklad Q3,

matica I −A je regulárna, matica A1 je regulárna a dvojica matíc (A,B) je stabilizovateľná.

Nech (x0, ψ0) ∈ Ω, potom extremálne riadenie môžeme vyjadriť jednoznačne ako funkciu

stavovej premennej xt vzťahom:

ut = Zβxt + č. v. r. (5.17)

Dôkaz. Pretože pre ut platí vzťah (2.36):

ut = −R−1
β Qβxt − βR−1

β BTψt+1 + č. v. r. (5.18)

a pretože z predchádzajúcej vety vieme, že na priestore W S
β môžeme vyjadriť ψt jednoznačne

formulou:

ψt = Lβxt + č. v. r. (5.19)

tak po dosadení (5.19) do vzťahu (5.4) máme:

ψt+1 =
1
β
[−(AT

β )
−1
Pβ + (A

T
β )

−1
Lβ]xt + č. v. r. (5.20)

Dosadením (5.20) do (5.18), dostaneme:

ut = Zβxt + č. v. r.

Dôsledok 5.1. Nech β je z O. Nech sú ďalej splnené nasledujúce predpoklady: predpoklad Q3,

matica I −A je regulárna, matica A1 je regulárna a dvojica matíc (A,B) je stabilizovateľná.

Nech (x0, ψ0) ∈ Ω, potom odozvy na extremálne riadenie spĺňajú diferenčnú rovnicu:

xt+1 = (A+BZβ)xt + č. v. r. (5.21)

kde (A+BZβ) je stabilná matica.
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Dôkaz. Pretože stav v nasledujúcej perióde musí spĺňať:

xt+1 = Axt +But

tak dosadením vzťahu (5.17) za ut pre odozvu na optimálne riadenie dostávame vzťah (5.21).

Pretože pre každé x0 optimálne riadenie a jeho odozva konvergujú k nule, tak matica (A +

BZβ) musí byť stabilná.

Doteraz sme hovorili len o extremálnych riešeniach, pretože ukázať existenciu optimálneho

riešenia pre úlohu (Uβ) je veľmi ťažké. Neskôr ukážeme, za akých predpokladov optimálne

riešenie pre úlohu (Uβ) existuje. Pre účely nasledujúcej vety však môžeme predpokladať, že

existuje a teda extremálne riešenie je súčasne aj optimálnym. Keďže na variete W S
β (0) je je-

diné, tak aj optimálne riešenie je jediné. V nasledujúcej vete si odvodíme vzťah pre hodnotovú

funkciu úlohy (Uβ).

Označme hodnotovú funkciu pre úlohu (Uβ) s účelovou funkciou fβ(x, u) ako WP
β , teda:

WP
β (x0) = sup

ω∈π(x0)

∞∑

t=0

βtfβ(xt, ut) (5.22)

kde π(x0) značí množinu prípustných riadení pre túto úlohu.

Veta 5.4. Nech β je z O. Nech sú ďalej splnené nasledujúce predpoklady: predpoklad Q3,

matica I −A je regulárna, matica A1 je regulárna a dvojica matíc (A,B) je stabilizovateľná.

Nech (x0, ψ0) ∈ Ω a nech pre úlohu (Uβ) existuje optimálne riadenie, potom môžeme WP
β (x0)

vyjadriť vzťahom:

WP
β (x0) =W

Q
β (x0) + č. v. r. (5.23)

Dôkaz. Z predchádzajúceho vieme, že za týchto predpokladov existuje na variete W S
β (0)

jediné extremálne riešenie dávajúce jediné extremálne riadenie, pre ktoré platia vzťahy (5.17),

resp. (5.21):

ut = Zβxt + č. v. r.

xt+1 = (A+BZβ)xt + č. v. r.

Keďže predpokladáme existenciu optimálneho riešenia, tak extremálne riešenie je optimál-

nym. Zo vzťahu (5.21) pre optimálny stav v nasledujúcej perióde máme:

xt = (A+BZβ)
tx0 + č. v. r. (5.24)

Vezmime si čiastočný súčet radu
∑∞

t=0 β
tfβ(xt, ut) s optimálnym stavom a riadením:

JN =
N∑

t=0

βtfβ(xt, ut)
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Potom:

JN =
N∑

t=0

βt[kT
β xt + l

T
β ut +

1
2
(xt

TPβxt + 2xt
TQT

βut + ut
TRβut) + č. v. r.]

Po úprave:

JN = k
T
β (I − βA)−1[x0 − βN+1xN+1] +

N∑

t=0

βt[Qβ(xt, ut) + č. v. r.]

Venujme sa teraz funkcii Qβ(x, u)+č. v. r.. Označme ju K(x, u). Dosaďme za ut vzťah (5.17),

dostaneme:

K(xt, ut) = xT
t (Pβ + 2Q

T
βZβ + Z

T
β RβZβ)xt + č. v. r.

Pretože pre xt platí (5.24), máme:

K(xt, ut) = xT
0 [(A

T + ZT
β B

T )
t
(Pβ + 2Q

T
βZβ + Z

T
β RβZβ)(A+BZβ)

t]x0 + č. v. r.

Prejdúc potom k limite pre N → ∞ pre JN a použijúc označenie (4.15), dostávame:

WP
β (x0) = k

T
β (I − βA)−1x0 + x

T
0Wβx0 + č. v. r.

A teda máme:

WP
β (x0) =W

Q
β (x0) + č. v. r.

Z predchádzajúceho vidíme, že ak by existovalo optimálne riadenie a jeho odozva a teda aj

optimálne riešenie systému rovníc (5.3), (5.4), tak by sa vzťah pre toto riadenie líšil od vzťahu

pre optimálne riadenie úloh (UQ
β ) len v členoch vyššieho ako prvého rádu a rovnako to platí aj

pre vzťah (5.21) pre optimálnu odozvu. Zároveň hodnotová funkcia by sa líšila od hodnotovej

funkcie pre úlohu (UQ
β ) s účelovou funkciou k

T
β x+ l

T
β u+Qβ(x, u) len v členoch vyššieho ako

druhého rádu.

Spomínali sme však, že ukázať existenciu optimálneho riadenia je pre úlohu (Uβ) veľmi

náročná úloha. Nasledujúce dve kapitoly by čiastočne mohli uspokojiť našu zvedavosť v tomto

smere.
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Kapitola 6

Rovnica dynamického

programovania a jej riešenie

metódou postupných aproximácií

6.1 Rovnica dynamického programovania

Táto kapitola predstavuje zhrnutie práce [7] a poslúži ako odrazový mostík pre ďalšie odvo-

dzovanie v nasledujúcej kapitole.

Uvažujme autonómnu úlohu optimálneho programovania na nekonečnom časovom hori-

zonte s diskrétnym časom. Označujme túto úlohu ako (Pβ):

sup
{ut}∞t=0

∞∑

t=0

βtf0(xt, ut)

xt+1 = F (xt, ut) (6.1)

xt ∈ X ⊆ R
n (6.2)

ut ∈ U ⊆ R
m (6.3)

x0 ∈ X (6.4)

kde β ∈ (0, 1), f0 : Rn×R
m → R, F : Rn×R

m → R
n sú dané funkcie a x0 je daný počiatočný

stav.

Prípustné riadenie ω = {ut}
∞
t=0 pre túto úlohu a jeho odozva χ = {xt}

∞
t=0 musia spĺňať

podmienky (6.2), resp. (6.3).

Pre každé x ∈ X označme:

Γ(x) = {u ∈ U |F (x, u) ∈ X} (6.5)
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potom je zrejmé, že podmienky (6.2) a (6.3) sa dajú ekvivalentne prepísať ako: ut ∈ Γ(xt)

pre všetky t = 0, 1, 2, ... Teda môžeme povedať, že ω je prípustné riadenie pre úlohu (Pβ)

práve vtedy, keď so svojou odozvou χ pre všetky t = 0, 1, 2, ... spĺňa:

ut ∈ Γ(xt)

Pre daný počiatočný stav x0 ∈ X môžeme tiež definovať π(x0) ako množinu riadení

prípustných zo stavu x0, tj.:

π(x0) = {{ut}
∞
t=0|ut ∈ Γ(xt), xt+1 = F (xt, ut); t = 0, 1, 2, ...}

Teraz zavedieme predpoklad, ktorý nám zabezpečí, aby π(x0) 6= ∅ pre každé x0 ∈ X:

Predpoklad P1: Γ(x) 6= ∅ pre každé x ∈ X

Budeme esťe vyžadovať, aby aj limita v účelovej funkcii skutočne existovala. Zavedieme

ďalší predpoklad:

Predpoklad P2: Pre každé x0 ∈ X a pre každé ω ∈ π(x0) existuje

lim
n→∞

n∑

t=0

βtf0(xt, ut)

Poznamenajme, že predpoklad P2 sa dá zabezpečiť napríklad podmienkou ohraničenosti

funkcie f0 a požiadavkou, aby β ∈ (0, 1) (tá je však splnená, lebo vystupuje už v zadaní

úlohy).

Pre každé k = 0, 1, 2, ... definujme funkciu Jk : X × π(x0)→ R ako:

Jk(x0, ω) =
k∑

t=0

βtf0(xt, ut)

S využitím predpokladu P2 môžeme tiež definovať funkciu J : X × π(x0)→ R nasledovne:

J(x0, ω) = lim
k→∞

Jk(x0, ω)

Napokon definujme hodnotovú funkciu V ∗ : X → R ako:

V ∗(x0) = sup
ω∈π(x0)

J(x0, ω)

Uvažujme ďalej funkcionálnu rovnicu v nasledujúcom tvare:

V (x) = sup
u∈Γ(x)

{f0(x, u) + βV [F (x, u)]} (6.6)

Potom podľa [7] platia tieto tvrdenia:

50



Veta 6.1. Nech sú splnené predpoklady P1 a P2, potom hodnotová funkcia V ∗ spĺňa (6.6).

Veta 6.2. Nech sú splnené predpoklady P1 a P2. Ak V je riešením (6.6) a spĺňa pre každé

x0 ∈ X a pre každé ω ∈ π(x0):

lim
t→∞

βtV (xt) = 0 (6.7)

potom V = V ∗, tj. V je hodnotovou funkciou.

Veta 6.3. Nech sú splnené predpoklady P1 a P2. Nech ω∗ ∈ π(x0) je optimálne riadenie

pre počiatočný stav x0. Potom pre t = 0, 1, 2, .. platí:

V ∗(x∗t ) = f
0(x∗t , u

∗
t ) + βV

∗[F (x∗t , u
∗
t )] (6.8)

Veta 6.4. Nech sú splnené predpoklady P1 a P2. Nech ω∗ ∈ π(x0) je prípustné riadenie

z počiatočného stavu x0 spĺňajúce vzťah (6.8) a podmienku:

lim sup
t→∞

βtV ∗(x∗t ) ≤ 0 (6.9)

Potom ω∗ je optimálne riadenie pre úlohu (Pβ).

V predchádzajúcom sme definovali Γ(x) = {u ∈ U |F (x, u) ∈ X} pre každé x ∈ X, ďalej

môžeme definovať esťe i Γ∗(x) ⊆ Γ(x) ako:

Γ∗(x) = {u ∈ Γ(x)|V ∗(x) = f0(x, u) + βV ∗[F (x, u)]} (6.10)

Potom veta (6.3) hovorí, že pre každé optimálne riadenie platí, že ut ∈ Γ∗(xt) pre každé

t = 0, 1, 2, ... a veta (6.4) vraví, že pokiaľ ľubovoľné riadenie pre každé t = 0, 1, 2, ... spĺňa

ut ∈ Γ∗(xt) a podmienku (6.9), potom je optimálne.

6.2 Metóda postupných aproximácií

V tejto časti sa pozrieme na to, ako riešiť rovnicu dynamického programovania (6.6) pre úlohu

(Pβ). Rovnica (6.6) je funkcionálna rovnica, v ktorej ako neznáma vystupuje funkcia V .

Preto sa budeme zaoberať predpokladmi, ktoré nám zabezpečia existenciu a jednoznačnosť

hodnotovej funkcie ako riešenia tejto rovnice.

Klasický prístup k tomuto problému je metóda postupných aproximácií. Začneme tak, že

si vezmeme počiatočnú voľbu, nejakú funkciu V0. Potom definujeme novú funkciu V1 danú

formulou:

V1(x) = sup
u∈Γ(x)

{f0(x, u) + βV0[F (x, u)]}

Pokiaľ V1(x) = V0(x) pre každé x ∈ X, potom V0 je riešením (6.6).
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Predpokladajme, že V1(x) 6= V0(x), potom použijeme V1 ako novú voľbu a zadefinujeme

ďalšiu funkciu V2 danú:

V2(x) = sup
u∈Γ(x)

{f0(x, u) + βV1[F (x, u)]}

Takto môžeme definovať postupnosť funkcií {Vk}
∞
k=0 rekurentne danú vzťahom:

Vk+1(x) = sup
u∈Γ(x)

{f0(x, u) + βVk[F (x, u)]} (6.11)

pre k = 0, 1, 2, ... A môžeme dúfať, že konverguje k funkcii V vyhovujúcej (6.6). Ak by sme

navyše ukázali, že limk→∞ Vk je rovnaká pre všetky počiatočné V0, bola by jedinou funkciou

spĺňajúcou (6.6).

Definujme teda pre každú funkciu V : X → R novú funkciu TV : X → R ako:

TV (x) = sup
u∈Γ(x)

{f0(x, u) + βV [F (x, u)]} (6.12)

Potom rekurentný vzťah môžeme prepísať do tvaru:

Vk+1(x) = TVk(x)

Keď to mamé takto zapísané, vidíme, že je potrebné nájsť takú množinu funkcií C, ktorú

operátor T zobrazuje do seba, a že nájdenie pevného bodu zobrazenia T , tj. funkcie V ∈ C

takej, že V = TV , je ekvivalentné nájdeniu riešenia (6.6). Metóda postupných aproximácií je

spôsob ako konštruovať tento pevný bod.

Teraz si zavedieme niekoľko definícií:

Definícia 6.1. Množinová funkcia Γ : X → U sa nazýva polospojitá zdola v bode x ∈ X, ak

Γ(x) je neprázdna a ak pre každé u ∈ Γ(x) a každú postupnosť {xn}
∞
n=1 bodov z X s limitným

bodom x ∈ X existuje prirodzené číslo N ≥ 1 a postupnosť {un}
∞
n=1 taká, že un ∈ Γ(xn)

pre každé n ≥ N a un → u. (Ak Γ(z) je neprázdna pre každé z ∈ X, potom je vždy možné

vziať N = 1.)

Definícia 6.2. Množinová funkcia Γ : X → U sa nazýva polospojitá zhora v x ∈ X, ak Γ(x)

je neprázdna a pre každú postupnosť {xn}
∞
n=1 bodov z X s limitným bodom x ∈ X a každú

postupnosť {un}
∞
n=1 takú, že un ∈ Γ(xn) pre každé n existuje konvergentná podpostupnosť

postupnosti {un}
∞
n=1, ktorej limita u je z Γ(x).

Definícia 6.3. Množinová funkcia Γ : X → U sa nazýva spojitá v x ∈ X, ak je v x polospojitá

zhora i zdola. Γ : X → U sa nazýva spojitá na X, ak je spojitá v každom x ∈ X.
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Γ definované v (6.5) je množinová funkcia na X. Rovnako tak Γ∗ definované v (6.10). My

budeme Γ nazývať korešpondencia a Γ∗ optimálna korešpondencia.

Definíciu spojitosti množinovej funkcie využijeme v nasledujúcich predpokladoch:

Predpoklad P3: Množina X ⊆ R
n je konvexná a Γ : X → U je spojitá na X a pre každé

x ∈ X neprázdna a kompaktná.

Predpoklad P4: Funkcia f0 je ohraničená a spojitá.

Predpoklad P5: Funkcia F je spojitá.

Za platnosti predpokladov P3 a P4 platia i predpoklady P1 a P2. Vieme, že za pred-

pokladov P1 a P2 platia vety (6.1), (6.2), (6.3) a (6.4) z prvej časti. A podľa [7] platí toto

tvrdenie:

Veta 6.5. Nech sú splnené predpoklady P3, P4 a P5 a nech C(X) je priestor spojitých

ohraničených funkcií f : X → R so suprémovou normou, označujme ju ‖·‖. Potom operátor

T zobrazuje priestor C(X) do seba, tj. T : C(X)→ C(X), T má jediný pevný bod V ∈ C(X)

a pre každé V0 ∈ C(X) platí:

‖T kV0 − V ‖ ≤ βk‖V0 − V ‖ (6.13)

pre k = 0, 1, 2, ... Naviac pri danom V je Γ∗ : X → U polospojitá zhora na X a pre každé

x ∈ X kompaktná.

Dôsledok 6.1. Nech platia predpoklady P3, P4 a P5, potom jediné riešenie Bellmanovej

rovnice (6.6) v priestore C(X) je hodnotová funkcia pre úlohu (Pβ).

Dôkaz. Vieme, že za týchto predpokladov existuje jediné riešenie funkcionálnej rovnice (6.6)

v priestore C(X). Pretože platí predpoklad P4, tak je splnený i predpoklad P2. Treba ešte

ukázať, že limt→∞ βtV (xt) = 0 pre každé x0 ∈ X a pre každé ω ∈ π(x0). Ale to platí, pretože

funkcia V ∈ C(X) a β ∈ (0, 1).

Dôsledok 6.2. Nech platia predpoklady P3, P4 a P5, potom každé prípustné riadenie z po-

čiatočného stavu x0 spĺňajúce vzťah (6.8) je optimálne.

Dôkaz. Uvedené tvrdenie je priamym dôsledkom predchádzajúceho dôsledku.

Za platnosti predpokladov P3, P4 platia predpoklady P1 a P2. Treba ešte splniť podmienku

(6.9):

lim sup
t→∞

βtV (x∗t ) ≤ 0

kde V je hodnotová funkcia pre úlohu (Pβ). Z predchádzajúceho dôsledku však vieme, že to

je splnené.
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Vidíme, že keď sú splnené predpoklady P3, P4 a P5, tak funkcionálna rovnica (6.6) má

v priestore C(X) jediné riešenie a toto riešenie je zároveň hodnotovou funkciou pre úlohu (Pβ).

A teda existuje optimálne riadenie {u∗t }
∞
t=0 pre túto úlohu, ktoré spolu so svojou odozvou

{x∗t }
∞
t=0 spĺňajú:

u∗t ∈ Γ∗(x∗t )

V ďalšom sa teraz pozrieme na niektoré vlastnosti hodnotovej funkcie a optimálnej koreš-

pondencie, ak platia nejaké ďalšie predpoklady. Zaveďme preto tieto tri nasledujúce predpo-

klady:

Predpoklad P6: Množina U ⊆ R
m je konvexná a f0 je rýdzokonkávna, tj. pre každé

(x, u), (x′, u′) ∈ X × U a pre každé θ ∈ (0, 1) platí:

f0[θ(x, u) + (1− θ)(x′, u′)] > θf0(x, u) + (1− θ)f0(x′, u′)

Predpoklad P7: Γ je konvexná v zmysle, že pre každé θ ∈ [0, 1] a pre každé x, x′ ∈ X platí:

Ak u ∈ Γ(x) a u′ ∈ Γ(x′), potom [θu+ (1− θ)u′] ∈ Γ[θx+ (1− θ)x′]

Predpoklad P8: F je lineárne zobrazenie a teda pre každé (x, u), (x′, u′) ∈ X × U a

pre každé α,β ∈ R platí:

F [α(x, u) + β(x′, u′)] = αF (x, u) + βF (x′, u′)

Potom, opäť podľa [7], platí toto tvrdenie:

Veta 6.6. Nech sú splnené predpoklady P3 až P8. Nech V spĺňa (6.6) a Γ∗ spĺňa (6.10).

Potom V je rýdzokonkávna a Γ∗ je spojitá jedno-hodnotová funkcia.

Teda sme si ukázali, že ak navyše platia predpoklady P6, P7 a P8, tak optimálna ko-

rešpondencia Γ∗ je vlastne obyčajnou (jedno-hodnotovou) funkciou, ktorú budeme v ďalšom

pre rozlíšenie označovať γ∗. Ide o tzv. riadiacu funkciu alebo sa tiež nazýva optimálna spätná

väzba.

Poznamenajme, že ak predpoklad P8 zmeníme v tom, že budeme požadovať miesto line-

árneho zobrazenia lineárnu nehomogénnu funkciu:

F (x, u) = Ax+Bu+ c

kde A,B sú dané reálne matice príslušných typov a c vektor konštánt, tak veta (6.6) ostane

v platnosti.

Nasledujúce tvrdenie ako i všetky ďalšie tvrdenia v tejto časti sú dokázané v [7].
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Veta 6.7. Nech sú splnené predpoklady P3 až P8. Nech V spĺňa (6.6) a γ∗ spĺňa (6.10).

Nech C ′(X) je množina ohraničených, spojitých, konkávnych funkcií f : X → R a nech

V0 ∈ C
′(X). Nech Vk a γk sú pre k = 0, 1, 2, ... definované vzťahmi:

Vk+1 = TVk

γk(x) = argmaxu∈Γ(x){f
0(x, u) + βVk[F (x, u)]}

Potom γk → γ∗ bodovo. Ak X je kompakt, tak γk → γ∗ rovnomerne.

Ešte sa pozrieme na to, ako zabezpečiť kompaktnosť a spojitosť korešpondencie Γ v pred-

poklade P3, teda na to, čo musí platiť pre množiny X a U , resp. pre graf korešpondencie,

aby boli spomínané vlastnosti splnené.

Veta 6.8. Nech X ⊆ R
n je uzavretá množina, nech U ⊆ R

m je kompaktná množina. Nech

sú splnené predpoklady P1 a P5. Potom Γ(x) je pre všetky x ∈ X kompaktná.

Poznamenajme, že táto veta platí aj bez predpokladu P1, pretože i prázdna množina je

kompakt.

V ďalšom sa budeme zaoberať spojitosťou korešpondencie Γ. Bude nás zaujímať, za akých

predpokladov je Γ polospojitá zhora a zdola. Na to využijeme nejaké vlastnosti jej grafu, teda

množiny:

G = {(x, u) ∈ X × U |u ∈ Γ(x)}

Veta 6.9. Nech platí predpoklad P1 a nech G je graf korešpondencie Γ. Nech G je uzavretá

množina a nech pre ľubovoľnú ohraničenú množinu X̂ ⊂ X je množina Γ(X̂) tiež ohraničená.

Potom korešpondencia Γ je polospojitá zhora a pre každé x ∈ X je množina Γ(x) kompaktná.

Veta 6.10. Nech platí predpoklad P1 a nech G je graf korešpondencie Γ. Nech G je konvexná

množina, nech pre ľubovoľnú ohraničenú množinu X̂ ⊆ X existuje ohraničená množina Û ⊆ U

taká, že pre všetky x ∈ X̂ platí: Γ(x)
⋂
Û 6= ∅ a nech pre každé x ∈ X existuje ε > 0 také, že

množina B[x, ε]
⋂
X je uzavretá a konvexná. Potom je korešpondencia Γ polospojitá zdola.
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Kapitola 7

Existencia hodnotovej funkcie a

optimálneho riadenia

V tejto podkapitole sa budeme zaoberať úlohou (Uβ) naformulovanou na začiatku kapitoly

2. Ukážeme, že za platnosti určitých predpokladov má táto úloha jedinú hodnotovú funkciu

a že optimálna korešpondencia je spojitou jedno-hodnotovou funkciou stavu.

Uvažujme teda úlohu (Uβ):

max
{ut}∞t=0

∞∑

t=0

βtf0(xt, ut)

xt+1 = F (xt, ut)

xt ∈ X ⊆ R
n

ut ∈ U ⊆ R
m

x0 ∈ X

kde β je tentokrát z (0, 1).

Ide vlastne o úlohu (Pβ) s lineárnou funkciou F a s podmienkou, že účelová funkcia f0

je rýdzokonkávna (rýdzu konkávnosť účelovej funkcie predpokladáme navyše oproti predchá-

dzajúcemu) a trikrát spojite diferencovateľná. Len poznamenajme, že pre tvrdenia dokázané

v tejto kapitole si vystačíme so spojitou rýdzokonkávnou funkciou f0.

Nech Vβ značí hodnotovú funkciu pre túto úlohu a príslušné β. Urobme predpoklad:

Predpoklad P10: Množiny X a U sú konvexné a kompaktné.

Potom pre takto definované funkcie f0 a F budú platiť nasledujúce dve vety. Najprv si

však dokážeme lemu, ktorá nám pomôže pri dokazovaní ich platnosti.
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Lema 7.1. Nech platí predpoklad P1 a P10. Nech f0 je spojitá rýdzokonkávna funkcia a nech

F je lineárna v oboch argumentoch. Potom Γ(x) definovaná v (6.5) je spojitá a pre každé

x ∈ X kompaktná a konvexná.

Dôkaz. Na dôkaz kompaktnosti a spojitosti potrebujeme, aby boli splnené predpoklady viet

(6.8), resp. (6.9) a (6.10). Konvexnosť ukážeme priamo.

Pretože množiny X a U sú kompaktné a funkcia F je lineárna a teda aj spojitá, sú splnené

predpoklady vety (6.8) a teda pre každé x ∈ X je Γ(x) kompaktná. Z toho tiež vyplýva, že

graf korešpondencie G je uzavretá množina. Ukážeme, prečo:

PretožeX a U sú kompaktné, tak sú uzavreté a ohraničené. Nech postupnosť {(xk, uk)}
∞
k=1

z G je konvergentná s limitným bodom (x, u). Pre každé k = 1, 2, ... platí, že uk ∈ Γ(xk), tj.

uk ∈ U je také, že F (xk, uk) ∈ X. Pretože funkcia F je spojitá, platí:

lim
k→∞

F (xk, uk) = F ( lim
k→∞

xk, lim
k→∞

uk) = F (x, u)

Keďže X je uzavretá, tak F (x, u) ∈ X. Pretože U je uzavretá, tak u ∈ U . Z toho vyplýva, že

u ∈ Γ(x) a teda (x, u) je z G. Graf G je teda uzavretá množina.

Navyše pre ľubovoľnú ohraničenú množinu X̂ ⊂ X je množina Γ(X̂) taktiež ohraničená,

lebo je podmnožinou množiny U , ktorá je ohraničená. Sú teda splnené i predpoklady vety

(6.9).

Ukážeme ďalej, že sú splnené predpoklady vety (6.10). Najprv ukážeme, že Γ je konvexná.

Z toho potom bude vyplývať, že i jej graf G je konvexná množina.

Γ je pre lineárnu funkciu F definovaná ako Γ(x) = {u ∈ U |[Ax+Bu+ c] ∈ X}. Pre ľu-

bovoľné θ ∈ [0, 1] a pre každé x, x′ ∈ X ak u ∈ Γ(x) a u′ ∈ Γ(x′), tak [Ax + Bu + c] ∈ X a

[Ax′ +Bu′ + c] ∈ X. Chceme ukázať, že [θu+ (1− θ)u′] leží v Γ[θx+ (1− θ)x′]. Platí:

A[θx+ (1− θ)x′] +B[θu+ (1− θ)u′] + c = θ[Ax+Bu+ c] + (1− θ)[Ax′ +Bu′ + c]

Pretože množina X je konvexná, tak:

{θ[Ax+Bu+ c] + (1− θ)[Ax′ +Bu′ + c]} ∈ X

A teda [θu+ (1− θ)u′] ∈ Γ[θx+ (1− θ)x′].

Ďalej platí, že pre ľubovoľnú ohraničenú množinu X̂ ⊆ X existuje ohraničená množina

Û ⊆ U taká, že pre všetky x ∈ X̂ platí: Γ(x)
⋂
Û 6= ∅, a totiž samotné U .

Posledný predpoklad vety (6.10), že pre každé x ∈ X existuje ε > 0 také, že množina

B(x, ε)
⋂
X je uzavretá a konvexná, je splnený vďaka kompaktnosti a konvexnosti množiny

X.

Takže Γ je kompaktná a polospojitá zhora i zdola a teda je spojitá.
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Veta 7.1. Nech platí predpoklad P1 a P10. Nech f0 je spojitá rýdzokonkávna funkcia a nech

F je lineárna v oboch argumentoch. Potom operátor T definovaný v (6.12) zobrazuje priestor

C(X) do seba, tj. T : C(X) → C(X), T má jediný pevný bod Vβ ∈ C(X) a pre každé

V0 ∈ C(X) platí:

‖T kV0 − Vβ‖ ≤ βk‖V0 − Vβ‖

pre k = 0, 1, 2, .... Naviac pri danom Vβ je optimálna korešpondencia Γ∗, definovaná v (6.10),

kompaktná a polospojitá zhora.

Dôkaz. Ukážeme, že sú splnené predpoklady vety (6.5).

Predpoklad P3 požaduje, aby bola množina X konvexná, to je splnené, pretože sme spra-

vili predpoklad P10. Ďalej požaduje, aby Γ bola spojitá a pre každé x ∈ X kompaktná. To

vyplýva z predchádzajúcej lemy (7.1). Pretože platí predpoklad P1, tak Γ je pre každé x ∈ X

neprázdna.

Predpoklad P4 požaduje, aby bola funkcia f0 spojitá a ohraničená. Pretože o funkcii f0

predpokladáme, že je spojitou rýdzokonkávnou funkciou navyše definovanou na kompakte

X × U , tak sú obe podmienky splnené.

A rovnako je splnený aj predpoklad P5, pretože funkcia F je lineárna a teda i spojitá.

Takže sú splnené všetky predpoklady vety (6.5), čo dokazuje tvrdenie.

Z predchádzajúcej podkapitoly z dôsledku (6.1) vieme, že jediné riešenie rovnice (6.6) je

hodnotová funkcia pre úlohu (Pβ) a teda je ňou aj pre úlohu (Uβ). A z dôsledku (6.2), že

každé prípustné riadenie také, že ut ∈ Γ∗(xt), je optimálne pre túto úlohu.

Veta 7.2. Nech platí predpoklad P1 a P10. Nech f0 je spojitá rýdzokonkávna funkcia a nech

F je lineárna v oboch argumentoch. Nech Vβ spĺňa (6.6) a Γ∗ spĺňa (6.10). Potom Vβ je

rýdzokonkávna a Γ∗ je spojitá jedno-hodnotová funkcia.

Dôkaz. Ukážeme, že sú splnené predpoklady vety (6.6).

Z dôkazu predchádzajúcej vety (7.1) vieme, že sú splnené predpoklady P3, P4, P5. Treba

teda ukázať, že sú splnené i predpoklady P6, P7, P8. Pretože U je konvexná a funkcia f0

rýdzokonkávna, tak je splnený predpoklad P6. Z lemy (7.1) máme, že Γ je konvexná a teda

je splnený i predpoklad P7. A z poznámky za vetou (6.6) vyplýva, že veta (6.6) platí aj

pre lineárnu nehomogénnu funkciu F . Všetky predpoklady vety (6.6) sú splnené, čo dokazuje

tvrdenie.

Z predchádzajúcich dvoch viet vidno, že pokiaľ riešime úlohu (Uβ) na konvexných a kom-

paktných množinách, nielenže sa metódou postupných aproximácií (za predpokladu, že štar-

tovacia funkcia V0 ∈ C ′(X)) dopracujeme k hľadanej hodnotovej funkcii, ktorá je taktiež
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rýdzokonkávna, ale súčasne získame aj optimálnu korešpondenciu Γ∗, ktorá je spojitou jedno-

hodnotovou funkciou stavu.

V kapitole 2 sme spomínali, že množiny X, U sú položené ako celé R
n, resp. R

m, tj.

X = R
n a U = R

m. Pretože však túto úlohu riešime lokálne v okolí rovnovážneho (xβ, uβ),

za istých ďalších predpokladov môžeme tieto množiny zúžiť na kompaktné a konvexné okolia

rovnovážneho xβ, resp. uβ.

Predpokladajme, že sú splnené predpoklady Q1 a Q2. Zvoľme β z O.

Predpokladajme ďalej, že dvojica matíc (A,B) je stabilizovateľná, potom existuje matica Zβ

taká, že matica A+BZβ je stabilná. Označme si Hβ = A+BZβ. Potom teda Hβ je stabilná.

Nech ďalej λ = maxi |λi| označuje maximum spomedzi absolútnych hodnôt vlastných hodnôt

matice Hβ. Potom existuje α > 0 také, že λ ≤ α < 1.

Skonštruujme novú normu v R
n ako:

‖x‖n =
∞∑

i=0

1
αi

‖H i
βx‖ (7.1)

kde ‖·‖ je ľubovoľná norma v R
n. Dá sa ukázať, že norma definovaná v (7.1) spĺňa všetky

vlastnosti normy. Navyše máme:

‖Hβx‖n =
∞∑

i=0

1
αi

‖H i+1
β x‖

= α(
∞∑

i=0

1
αi+1

‖H i+1
β x‖)

= α(
∞∑

i=1

1
αi

‖H i
βx‖)

≤ α(
∞∑

i=0

1
αi

‖H i
βx‖)

= α‖x‖n

Nech γ0 = K0‖x0 − xβ‖n, kde K0 ≥ 1 je ľubovoľná dostatočne veľká konštanta. Pre daný

počiatočný stav x0 definujme množinu X nasledujúcim spôsobom:

X = {x ∈ R
n|‖x− xβ‖n ≤ γ0} (7.2)

Nech σ0 = supx∈X{K1‖Zβ(x− xβ)‖}, kde K1 ≥ 1 je ľubovoľná dostatočne veľká kon-

štanta. Pre daný počiatočný stav x0 definujme tiež množinu U ako:

U = {u ∈ R
m|‖u− uβ‖ ≤ σ0} (7.3)
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Získali sme kompaktné a konvexné množiny. Navyše si v nasledujúcej vete ukážeme, že

pre takto definované množiny je splnený predpoklad P1.

Veta 7.3. Nech množiny X a U sú definované vzťahmi (7.2), resp. (7.3). Potom je splnený

predpoklad P1.

Dôkaz. Predpoklad P1 je splnený vtedy, keď pre každé x ∈ X volíme u ∈ U tak, aby platilo:

‖A(x− xβ) +B(u− uβ)‖n ≤ γ0

Ukážeme, že to je splnené. Nech x je ľubovoľné ležiace v X. Zvoľme si u, tak, že u−uβ =

Zβ(x− xβ). Potom u leží v U .

Máme:

A(x− xβ) +B(u− uβ) = A(x− xβ) +BZβ(x− xβ) = Hβ(x− xβ)

Ďalej dostávame:

‖Hβ(x− xβ)‖n ≤ α‖x− xβ‖n ≤ αγ0 < γ0

čo dokazuje tvrdenie.

Množiny X a U definované v (7.2), resp. (7.3) spĺňajú predpoklady P1 a P10, tj. predpo-

klady viet 7.1 a 7.2 a teda pre ne existuje jediná rýdzokonkávna hodnotová funkcia riešiaca

(6.6) a optimálna korešpondencia, ktorá je jedno-hodnotovou funkciou stavu. Inými slovami

existuje pre ne optimálne riadenie ako funkcia stavovej premennej.

Dá sa ukázať (viď. veta [6]), že hodnotová funkcia je pre úlohu (Uβ) za predpokladov

spojitej diferencovateľnosti účelovej funkcie f0 a plnej hodnosti matice B diferencovateľná

a jej prvá derivácia sa rovná prvej derivácii funkcie f0 v každom bode zvnútra X. Kolektív

autorov [6] však pracuje s úlohou (Uβ) ako s úlohou hľadania supréma na množine nekoneč-

ných postupností, kde sa riadiacou premennou stáva stav v nasledujúcej perióde generovaný

z príslušnej korešpondencie. Tým sa samozrejme zužuje trieda úloh, s ktorou chceme pracovať.

Preto pre účely práce predpokladajme, že hodnotová funkcia Vβ je diferencovateľná. Po-

tom rovnica dynamického programovania pre túto funkciu vyzerá nasledovne:

Vβ(x) = sup
u∈Γ(x)

{f0(x, u) + βVβ [F (x, u)]}

Poznamenajme, že súčet funkcií f0(x, u) + βVβ[F (x, u)] je spojitá funkcia a keďže Γ(x) je

pre každé x ∈ X kompaktná, tak maximum sa dosahuje a teda vlastne hľadáme maximum

tejto funkcie.

Nech maximalizujúce u leží vo vnútri množiny Γ(x), potom derivácia pravej strany podľa u

sa musí rovnať 0:

0T =
∂f0(x, u)

∂u
+ β

∂Vβ [F (x, u)]
∂x

∂F (x, u)
∂u

(7.4)
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Pokiaľ potom derivujeme rovnicu dynamického programovania podľa premennej x, tak do-

stávame:
∂Vβ(x)
∂x

=
∂f0(x, u)

∂x
+ β

∂Vβ [F (x, u)]
∂x

∂F (x, u)
∂x

(7.5)

Tu však narážame na ešte väčšiu ťažkosť. Hodnotová funkcia je definovaná pre každé

x ∈ X, vo všeobecnosti je však ťažké zabezpečiť predpoklad, aby maximalizujúce u ležalo

vo vnútri množiny Γ(x).

Tento predpoklad je nevyhnutný na zabezpečenie splnenia nutných podmienok optimality,

bez neho nutné podmienky optimality neplatia, resp. nie je možné ich odvodiť (viď. [3]).

Na stránkach nasledujúcej kapitoly sa pozrieme nato, či možno ukázať existenciu opti-

málneho riadenia iným spôsobom než je prístup z tejto kapitoly.
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Kapitola 8

Existencia optimálneho riadenia pre

pôvodnú úlohu

Uvažujme teda systém úloh (Uβ), kde β ∈ O (vrátane 1). V ďalšom pre celú kapitolu pred-

pokladajme, že sú splnené predpoklady Q1 a Q2. Účelovú funkciu fβ môžeme rozpísať nasle-

dujúcim spôsobom:

fβ(x, u) = k
T
β x+ l

T
β u+Qβ(x, u) + č. v. r.

Označme:

Ω = {(x, u) ∈ R
n × R

m | ‖x‖ ≤ η, ‖u‖ ≤ η} (8.1)

Uvažujme najprv β = 1 a označme úlohu (U1), ktorú riešime na okolí Ω bodu (0, 0) ako

U1(x0, η), kde x0 je daný počiatočný stav tejto úlohy.

Veta 8.1. Nech β = 1. Nech k1 = l1 = 0. Nech sú ďalej splnené nasledujúce predpoklady:

predpoklad Q3, matica I −A je regulárna, matica A1 je regulárna a dvojica matíc (A,B) je

stabilizovateľná. Potom existuje η1 > 0 a ε > 0 také, že pre každé ‖x0‖ < ε existuje optimálne

riadenie pre úlohu U1(x0, η1) a je rovné jedinému extremálnemu riadeniu z bodu x0.

Dôkaz. Nech je splnený predpoklad Q3, potom existuje η1 > 0 také, že na okolí Ω defino-

vaného v (8.1) s η = η1 je funkcia f1(x, u) rýdzokonkávna a platí: f1(x, u) ≤ 0 pre každé

(x, u) z Ω. Pri dokazovaní existencie optimálneho riadenia sa obmedzíme na postupnosti prí-

pustných riadení a ich odoziev z tohto okolia, z čoho vyplýva, že každá takáto postupnosť

{(xt, ut)}∞t=0} je ohraničená. Z toho ale vyplýva, že rovnakým spôsobom ako v dôkaze vety

3.3 možno skonštruovať optimálne riadenie a teda optimálne riadenie na množine Ω existuje.

Ešte musíme ukázať, že sa rovná jedinému extremálnemu riadeniu z bodu x0.

Zvoľme η2 < η1. Potom existuje γ < 0 také, že f1(x, u) ≤ γ, ak η1 ≥ ‖x‖ ≥ η2 alebo

η1 ≥ ‖u‖ ≥ η2.
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Označme množinu prípustných riadení z počiatku x0 ako π(x0).

Pretože dvojica matíc je stabilizovateľná, tak existuje matica Z taká, že A + BZ je sta-

bilná matica. A teda pre x0 dostatočne malé existuje v π(x0) stabilizujúce prípustné riadenie

ut = Zxt a jeho odozva. Označme:

γ(x0) =
∞∑

t=0

f1(xt, Zxt)

Ďalej existuje také ε > 0, kde ε < η2, že pre stabilizujúce riadenie a jeho odozvu platí:

γ0 > γ

pre ‖x0‖ < ε.

Z toho vyplýva, že pre optimálne riadenie a jeho odozvu {(x∗t , u
∗
t )}

∞
t=0 pre úlohu U1(x0,Ω)

musí pre každé t platiť:

‖x∗t‖ < η2, ‖u∗t ‖ < η2

Takže hodnoty optimálneho riadenia sú vnútornými bodmi množiny ‖u‖ ≤ η1 a preto musia

spĺňať nutné podmienky optimality vyjadrené v (2.34) pre β = 1.

Navyše z vety (5.2) vyplýva, že ak ε je dostatočne malé, potom existuje jediné extremálne

riadenie a jeho odozva, pre ktoré platí:

‖xt‖ < η2, ‖ut‖ < η2

čo bolo treba dokázať.

V nasledujúcich dvoch vetách teraz ukážeme, za akých predpokladov konverguje prípustné

riadenie pre úlohu U1(x0, η1) s účelovou funkciou f1(x, u) = kT
1 x + l

T
1 u +Q1(x, u) + č. v. r.

do 0 a kedy existuje optimálne riadenie pre túto úlohu a čomu sa rovná.

Veta 8.2. Nech β = 1. Nech aspoň jeden z vektorov k1, l1 je nenulový. Nech sú ďalej splnené

nasledujúce predpoklady: predpoklad Q3, matica I−A je regulárna, matica A1 je regulárna a

dvojica matíc (A,B) je stabilizovateľná. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0

jeho odozva pre úlohu U1(x0, η1). Nech rad
∑∞

t=0 f1(xt, ut) konverguje. Potom postupnosť

{(xt, ut)}∞t=0 konverguje k bodu (0, 0) pre t→ ∞.

Dôkaz. Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva pre úlohu

U1(x0, η1). Vieme, že za predpokladu regulárnosti matice I −A platí vzťah (2.22) pre β = 1:

l1 = −BT (I −AT )
−1
k1

63



A teda účelovú funkciu môžeme upraviť do podoby:

f1(xt, ut) = kT
1 (I −A)−1(xt − xt+1) +Q1(xt, ut) + č. v. r.

Vezmime si čiastočný súčet radu
∑∞

t=0 f1(xt, ut):

JN =
N∑

t=0

[kT
1 (I −A)−1(xt − xt+1) +Q1(xt, ut) + č. v. r.]

Upravme:

JN =
N∑

t=0

kT
1 (I −A)−1[xt − xt+1] +

N∑

t=0

[Q1(xt, ut) + č. v. r.]

= kT
1 (I −A)−1[x0 − xN+1] +

N∑

t=0

[Q1(xt, ut) + č. v. r.]

Chceme ukázať, že prípustné riadenie a jeho odozva konvergujú k bodu (0, 0). Nech to neplatí.

Potom existuje ε′ > 0 také, že pre všetky T ≥ 0 existuje t > T také, že ‖(xt, ut)‖ ≥ ε′. Pretože

{xt}
∞
t=0 je ohraničené, tak výraz k

T
1 (I −A)−1[x0 − xN ] je pre každé N ohraničený. Pretože

funkcia Q1(x, u) + č. v. r. je na Ω rýdzokonkávna s maximom v bode (0, 0) rovným 0, tak

pre každé T ≥ 0 existuje t > T a K < 0 také, že platí:

[Q1(xt, ut) + č. v. r.] ≤ K < 0

Z čoho vyplýva, že JN diverguje, čo je spor s predpokladom.

Veta 8.3. Nech β = 1. Nech aspoň jeden z vektorov k1, l1 je nenulový. Nech sú ďalej splnené

nasledujúce predpoklady: predpoklad Q3, matica I−A je regulárna, matica A1 je regulárna a

dvojica matíc (A,B) je stabilizovateľná. Potom existuje ε > 0 také, že pre každé ‖x0‖ < ε exis-

tuje pre úlohu U1(x0, η1) jediné optimálne riadenie a jeho odozva a sú rovnaké ako pre úlohu

U1(x0, η1) s účelovou funkciou Q1(x, u) + č. v. r.

Dôkaz. Z vety (8.1) vieme, že za týchto predpokladov existuje ε > 0 také, že pre každé

‖x0‖ < ε existuje pre úlohu U1(x0, η1) s účelovou funkciou f1(x, u) = Q1(x, u)+č. v. r. jediné

optimálne riadenie rovné extremálnemu riadeniu pre túto úlohu. Vieme tiež, že extremálne

riadenia a ich odozvy sú pre úlohu U1(x0, η1) s účelovou funkciou f1(x, u) = Q1(x, u)+č. v. r.

a pre úlohu U1(x0, η1) s účelovou funkciou f1(x, u) = kT
1 x + lT1 u + Q1(x, u) + č. v. r., kde

aspoň jeden z vektorov k1, l1 je nenulový, rovnaké.

Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva pre úlohu U1(x0, η1) s

účelovou funkciou f1(x, u) = kT
1 x+ l

T
1 u+Q1(x, u)+ č. v. r.. Vezmime si čiastočný súčet radu
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∑∞
t=0 f1(xt, ut):

JN =
N∑

t=0

f1(xt, ut)

Z dôkazu predchádzajúcej vety vieme, že platí:

JN = kT
1 (I −A)−1[x0 − xN+1] +

N∑

t=0

[Q1(xt, ut) + č. v. r.]

Pretože xN → 0 pre N → ∞, tak platí, že suprémum dosiahneme len pre tie prípustné

riadenia a ich odozvy, ktoré sú optimálne pre úlohu U1(x0, η1) s účelovou funkciou f1(x, u) =

Q1(x, u) + č. v. r., keďže také riadenie a jeho odozva sú jediné a rovnajú sa extremálnemu

riadeniu a odozve, tak dostávame tvrdenie.

Uvažujme teraz β ∈ O rôzne od 1. Potom platí nasledujúca veta [16] o existencii optimál-

neho riadenia pre úlohu (Uβ):

Veta 8.4. Nech β ∈ O rôzne od 1. Nech kβ = lβ = 0. Nech Z = X × U je konvexná a

kompaktná množina v R
n × R

m a nech funkcia fβ je rýdzokonkávna na Z. Nech ω̂ = {ût}
∞
t=0

je extremálne riadenie a χ̂ = {x̂t}
∞
t=0 jeho odozva pre úlohu s počiatočným bodom x0 ∈ X

také, že (x̂t, ût) leží v Z pre každé t. Potom ω̂, χ̂ je optimálne riadenie a jeho odozva pre úlohu

(Uβ) zúženú na Z.

Z predchádzajúceho vieme, že za predpokladu Q3 existuje také η1, že na okolí Ω defino-

vaného v (8.1) s η = η1 je funkcia fβ(x, u) rýdzokonkávna a teda veta (8.4) nám hovorí, že

pre úlohu (Uβ) zúženú na Ω existuje optimálne riadenie a jeho odozva s počiatočným x0 ta-

kým, že ‖x0‖ ≤ η1. Ďalej vieme, že za splnenia predpokladov Q3, regulárnosti matice I −A,

matice A1 a stabilizovateľnosti dvojice matíc (A,B) existuje pre úlohu (Uβ) a dostatočne

malé η1 jediné extremálne riadenie a teda toto riadenie je zároveň optimálnym.

Nech β ∈ O rôzne od 1. Označujme úlohu (Uβ) zúženú na Ω s η = η1 ako Uβ(x0, η1).

V ďalšej vete ukážeme, že pre úlohu Uβ(x0, η1) s účelovou funkciou, v ktorej je aspoň je-

den z vektorov kβ , lβ nenulový, existuje jediné optimálne riadenie a jeho odozva a rovnajú

sa optimálnemu riadeniu a jeho odozve pre úlohu Uβ(x0, η1) s účelovou funkciou, v ktorej

kβ = lβ = 0.

Veta 8.5. Nech β ∈ O rôzne od 1. Nech aspoň jeden z vektorov kβ , lβ je nenulový. Nech

sú ďalej splnené nasledujúce predpoklady: predpoklad Q3, matica I − A je regulárna, matica

A1 je regulárna a dvojica matíc (A,B) je stabilizovateľná. Potom existuje η1 > 0 také, že

pre každé ‖x0‖ < η1 existuje pre úlohu Uβ(x0, η1) jediné optimálne riadenie a jeho odozva a

sú rovnaké ako pre úlohu Uβ(x0, η1) s účelovou funkciou Qβ(x, u) + č. v. r.
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Dôkaz. Z vety (8.4) vieme, že za týchto predpokladov existuje η1 > 0 také, že pre každé

‖x0‖ < η1 existuje pre úlohu Uβ(x0, η1) s účelovou funkciou fβ(x, u) = Qβ(x, u)+č. v. r. jediné

optimálne riadenie rovné extremálnemu riadeniu pre túto úlohu. Vieme tiež, že extremálne

riadenia a ich odozvy sú pre úlohu Uβ(x0, η1) s účelovou funkciou fβ(x, u) = Qβ(x, u)+č. v. r.

a pre úlohu Uβ(x0, η1) s účelovou funkciou fβ(x, u) = kT
β x + l

T
β u + Qβ(x, u) + č. v. r., kde

aspoň jeden z vektorov kβ, lβ je nenulový, rovnaké. Navyše za predpokladu β ∈ O je matica

I − βA regulárna a teda platí vzťah (2.22) medzi kβ a lβ:

lβ = −βBT (I − βAT )
−1
kβ

Nech ω = {ut}
∞
t=0 je prípustné riadenie a χ = {xt}

∞
t=0 jeho odozva pre úlohu Uβ(x0, η1)

s účelovou funkciou f0β(x, u) = kT
β x + l

T
β u + Qβ(x, u) + č. v. r. Vezmime si čiastočný súčet

radu
∑∞

t=0 β
t[kT

β xt + lTβ ut +Qβ(xt, ut) + č. v. r.]:

JN =
N∑

t=0

βt[kT
β xt + l

T
β ut +Qβ(xt, ut) + č. v. r.]

Dosaďme za lβ vzťah (2.22), potom máme:

JN =
N∑

t=0

βtkT
β [xt − β(I − βA)−1But] +

N∑

t=0

βt[Qβ(xt, ut) + č. v. r.]

= kT
β (I − βA)−1[x0 − βN+1xN+1] +

N∑

t=0

βt[Qβ(xt, ut) + č. v. r.]

Každá postupnosť {xt}
∞
t=0 prípustných stavov je ohraničená a teda β

NxN → 0 pre N → ∞.

Z toho vyplýva, že suprémum dosiahneme len pre tie prípustné riadenia a ich odozvy, ktoré

sú optimálne pre úlohu Uβ(x0, η1) s účelovou funkciou f0β(x, u) = Qβ(x, u) + č. v. r., keďže

také riadenie a jeho odozva sú jediné, tak pre úlohu Uβ(x0, η1) s účelovou funkciou f0β(x, u) =

kT
β x+ l

T
β u+Qβ(x, u) + č. v. r. existuje jediné optimálne riadenie a jeho odozva a sú rovnaké

ako optimálne riadenie a jeho odozva pre úlohu Uβ(x0, η1) s účelovou funkciou f0β(x, u) =

Qβ(x, u) + č. v. r.
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Záver

Motiváciou práce boli makroekonomické RBC modely a ich lineárne-kvadratická aproximácia,

ktorá je ako úloha optimálneho programovania metódou postupných aproximácií numericky

ľahko riešiteľná. Vychádzali sme pritom z práce [14] od dvojice autorov Blanchard, Kahn.

V týchto modeloch sa rieši úloha maximalizácie celoživotného úžitku domácností za istých

podmienok na stav a na vlastnosti účelovej a produkčnej funkcie. My sme uvažovali ako fun-

kciu pre stav v nasledujúcej perióde lineárnu funkciu a pre účelovú funkciu sme predpokladali,

že je trikrát spojite diferencovateľná a jej Hessova matica je v rovnovážnom bode záporne

definitná. Za týchto predpokladov je možné spraviť Taylorov rozvoj do druhého rádu a teda

riešiť lineárne-kvadratickú úlohu miesto pôvodnej úlohy a navyše je účelová funkcia na do-

statočne malom okolí rovnovážneho bodu rýdzokonkávna. Predpoklad rýdzej konkávnosti

je štandardný predpoklad kladený na účelovú funkciu. Ako druhý predpoklad sa kladie pod-

mienka dvakrát spojitej diferencovateľnosti, väčšinou však býva splnený aj silnejší predpoklad

trikrát spojitej diferencovateľnosti. Na začiatku práce sme sa venovali príkladu makroekono-

mického modelu, v ktorom sa využíva lineárne-kvadratická aproximácia, a urobili rozšírenie

pre viacrozmerné premenné. V ďalšom sme potom podali matematické spracovamie uvedenej

problematiky. Uviedli sme definíciu rovnovážnej trojice a rozpísali nutné podmienky optima-

lity pre lineárne-kvadratickú aj pôvodnú úlohu. Podrobne sme spracovali lineárne-kvadratickú

úlohu s diskontom i bez diskontu, uviedli vety o existencii optimálneho riadenia, o vzťahu

pre toto optimálne riadenie a jeho odozvu ako i hodnotovú funkciu a ich dôkazy. Následne

sme prešli k úlohám s pôvodnou účelovou funkciou s diskotným faktorom a bez neho. Venovali

sme sa postupne extremálnemu riadeniu a jeho odozve a potom jeho vzťahu k optimálnemu

riadeniu a jeho odozve. Ukázali sme existenciu optimálneho riadenia, ktoré sa rovná extre-

málnemu a je jediné. Tiež sme využili niektoré poznatky z práce [7] na dôkaz existencie a

jednoznačnosti hodnotovej funkcie pre úlohu s rýdzokonkávnou účelovou funkciou a lineárnou

funkciou pre stav v nasledujúcej perióde.

Cieľom práce bolo ukázať, že použitie lineárne-kvadratickej aproximácie v makroekono-

mických RBC modeloch je lokálne dostatočne presné a teda oprávnené. Pre deterministický
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prípad sme ukázali, že za istých podmienok existuje pre úlohu s pôvodnou účelovou funkciou

zúženú na okolie rovnovážneho bodu jediné optimálne riadenie a jeho odozva, rovné extre-

málnemu riadeniu a jeho odozve a vzťah preň sa líši od optimálneho riadenia pre lineárne-

kvadratickú úlohu len v členoch vyššieho ako prvého rádu. Súčasne sme ukázali, že hodnotové

funkcie sa opäť líšia len v členoch vyššieho rádu, konkrétne druhého rádu. Navyše obe opti-

málne riadenia a ich odozvy konvergujú k rovnovážnemu bodu, ktorý je pre obidve úlohy

rovnaký. Prínosom práce je spracovanie problematiky lineárnych členov vystupujúcich v úče-

lovej funkcii a dôkaz toho, že optimálne riadenie je za istých predpokladov rovnaké pre úlohy

s účelovou funkciou, v ktorej nevystupujú, resp. sú nulové, ako i pre úlohy s účelovou fun-

kciou, v ktorej sú nenulové. V práci sme našli vzťah pre koeficienty vystupujúce pri lineárnych

členoch v hodnotovej funkcii či už pre úlohu s diskontom, či bez neho.

Celkovo sa nám podarilo splniť stanovené ciele a ukázať oprávnenosť použitia lineárne-

kvadratickej aproximácie v RBC modeloch ako i konvergenciu optimálneho riadenia a jeho

odozvy pre túto úlohu k rovnovážnemu bodu. Navyše sme ukázali, že za ľahko splniteľných

predpokladov lineárne členy vystupujúce v účelovej funkcii nemajú vplyv na optimálne ria-

denie a vzťah pre optimálne riadenie pre úlohu s účelovou funkciou, v ktorej vystupujú, je

rovnaký ako pre optimálne riadenie pre úlohu s účelovou funkciou, v ktorej nevystupujú.
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