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Abstrakt

ZAKOPCAN, Michal: Matematické spracovanie linedrne-kvadratickej aprozimdcie v RBC
modeloch, Dizertacna praca, Univerzita Komenského v Bratislave, Fakulta matematiky, fy-
ziky a informatiky, Katedra aplikovanej matematiky a Statistiky, Veduci prace: prof. RNDr.
Pavel Brunovsky, DrSc., Bratislava, 2009

V tejto dizertacnej praci sa zaoberame linearne-kvadratickou aproximéaciou ako nastro-
jom riesenia RBC modelov. Podavame matematické odévodnenie spravnosti tejto aproximécie
a poukazujeme na konvergenciu optimalneho riadenia a jeho odozvy do rovnovazneho bodu
ulohy. Zaciatok prace je venovany prikladu jednoduchého makroekonomického modelu, v kto-
rom sa vyuziva tato aproximacia, a naslednému zovseobecneniu pre viacrozmerné premenné.
V dalsich kapitolach poddvame matematické spracovamie uvedenej problematiky. Najprv
uvadzame definiciu rovnovaznej trojice, potom sa zaoberame linearne-kvadratickymi tilohami
s diskontom a bez diskontu a nésledne tlohami s povodnou tcelovou funkciou s diskotnym
faktorom a bez neho. Délezité je, Ze sa venujeme tloham a ich aproximaciam, v ktorych vy-

stupuju v tucelovej funkcii nenulové linedrne Cleny.

Kliicové slova: rovnica dynamického programovania, nutné podmienky optimality, RBC
("Real Bussiness Cycles”) model, linedrne-kvadratickd tloha optimalneho riadenia,

aproximacia



Predhovor

Préca sa zaobera matematickym spracovanim linearne-kvadratickej aproximéacie v RBC mo-
deloch. Cielom préce je ukédzaft, Ze tato aproximécia lokdlne dostatoéne presne opisuje opti-
malne riadenie a jeho odozvu a teda je opravnené jej pouzitie a zaroven ukézat, ze optimalne
riadenia a ich odozvy konverguju k rovnovaznemu bodu tlohy. Na zaciatku zrodu tejto prace
stoji niekolko publikécii a z nich vychadzajucich diplomovych prac, v ktorych sa uvedena
aproximécia vyuziva. Méjmu skolitelovi Pavlovi Brunovskému pri ¢itani tychto prac nescha-
dzala z mysle otdzka matematickej korektnosti pouzivanej metédy a kedze mu tieto a iné
prace podobného charakteru neposkytli uspokojivii odpoved, rozhodol sa, ze by tato téma
bola vhodna na spracovanie v dizertacnej praci. Tym sa zacala nasa spolupraca, ktorej vy-

sledkom je tato praca.
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Uvod

RBC (z anglického ”"Real Bussiness Cycles”) modely sa v makroekonémii pouzivaji uz dlh-
$iu dobu. V tychto modeloch sa riesi lloha maximalizacie celozivotného tzitku domacnosti
za istych (zvy€ajne linedrnych) podmienok na stav a na vlastnosti téelovej a produkéne;
funkcie. Ide o tlohu optiméalneho programovania, v ktorej vystupuje pri tych jednoduchsich
modeloch ako riadiaca premennd spotreba doméacnosti a ako stavova premenna hodnota ka-
pitalu na hlavu alebo na efektivnu hlavu. Presnejsie ide o tilohu optiméalneho programovania
na nekonec¢nom c¢asovom horizonte s diskrétnym alebo spojitym ¢asom. My sa v nasej praci
venujeme len tym s diskrétnym casom. V praxi sa tieto tlohy riesia v okoli rovnovazneho
bodu, tj. bodu vyjadrenému napr. rovnovaznou hodnotou kapitalu a spotreby domacnosti,
v ktorom ked sa ekonomika nachadza, tak v om uZ zostava natrvalo. Ucelova funkcia sa
aproximuje na okoli tohto bodu Taylorovym polynémom druhého radu, ¢o je za predpo-
kladu zapornej definitnosti Hessovej matice ti¢elovej funkcie v tomto bode rydzokonkavna
kvadratickd funkcia. Za linearnych podmienok na stav v nasledujtcej periéde tak dostavame
linearne-kvadratickii lohu optiméalneho riadenia, ktora sa potom numericky riesi obycajne
metédou postupnych aproximacii hodnotovej funkcie.

Cielom tejto prace bude ukéazaf, Ze tato aproximadcia lokalne dostatocne presne opisuje
optimalne riadenie a jeho odozvu a teda je oprdvnené jej pouzitie a stcasne ukazaf, Ze opti-
malne riadenia a ich odozvy konverguju k rovnovaznemu bodu tlohy. Ten je pre tlohu s p6-
vodnou ucelovou funkciou a tlohu s jej kvadratickou aproximéciou rovnaky.

Préca je ¢lenend na osem kapitol. Prva kapitola je venovana motivacnému prikladu ma-
kroekonomického modelu, v ktorom sa vyuziva spominané aproximaécia, a rozsireniu pre viac-
rozmerné premenné. V nasledujucich kapitolach potom podavame matematické spracovamie
uvedenej problematiky. Najprv uvadzame definiciu rovnovaznej trojice a vyjadrenie nutnych
podmienok optimality, potom sa zaoberame linedrne-kvadratickymi tlohami s diskontom a
bez diskontu a nésledne tlohami s pévodnou tcelovou funkciou s diskontnym faktorom a bez
neho. Vsetky spomenuté pripady st rozdelené na dve ¢asti, z ktorych jedna sa venuje ticelovej

funkcii bez linedrnych c¢lenov a druha ucelovej funkcii, v ktorej linearne ¢leny vystupuju.



Kapitola 1

Linearne-kvadraticka aproximacia v
RBC modeloch

V tejto kapitole na ilustracnom priklade demonstrujeme pouzitie linedrne-kvadratickej aproxi-
macie v RBC modeloch. V tychto modeloch sa riesi iloha maximalizacie celozivotného tzitku
domé&cnosti, pri¢om sa zvycajne berie jedna reprezentativna doméacnost ako doésledok predpo-
kladu identity domacnosti. Ide o tlohu optiméalneho programovania, v ktorej vystupuje ako
riadiaca premennd obycajne spotreba domécnosti a ako stavova premennd hodnota kapitalu
na hlavu alebo na efektivnu hlavu. Tendenciou sa v poslednej dobe stava zavedenie nahod-
nej premennej do modelu ako reprezentanta nepredpovedatelnych Sokov v ekonomike a tym
odstranenie tplnej predeterminovanosti modelu. Uloha sa riesi v okoli rovnovazneho bodu,
ku ktorému potom dokonverguje optiméalne riadenie a jeho odozva. Je to bod vyjadreny napr.
rovnovaznou hodnotou kapitalu a spotreby domaécnosti, v ktorom ked sa ekonomika naché-
dza, tak v nom uz zostava natrvalo. Spravidla sa v okoli tohto bodu robi linearne-kvadraticka

aproximécia za uc¢elom zjednodusSenia tlohy, ktorti potom mozno numericky lahko zratat.

1.1 Zakladny neoklasicky model rastu

Tento klasicky ilustra¢ny model sa zaoberd prerozdelovanim zdrojov v ekonomike pozosta-
vajucej z mnoho identickych, nekonec¢ne dlho zijacich domacnosti. Ide o priklad ekonomiky,
v ktorej je prerozdelenie zdrojov v dokonale konkuren¢nom prostredi identické s tym, ktoré
urci socidlny planovac¢ pri maximalizovani celozivotného tzitku doméacnosti. Predpokladame
v nom, ze domacnosti maji k dispozicii jednu jednotku produktivneho ¢asu a ky > 0 pro-
duktivneho kapitalu, ktory amortizuje konstantnou mierou 0 < § < 1. Pretoze su vsetky

domé&cnosti identické, tak mézeme vybrat jednu reprezentativnu domécnost.



V kazdej periéde t mame len jediny tovar (ide o jednosektorovy model rastu) produkovany

s vyuzitim volne dostupnej technoldgie a kapitalu:
Yt = F(kt, Zt) (11)

kde F(k,z) je produkénd funkcia, o ktorej sa zvycajne predpokladd, ze je dvakrat spojite
diferencovatelnd, ostro rasttica a rydzokonkavna v premennej k. NajcastejSie sa pouziva fun-
kcia:

F(k,z) =€"k"

Premenna z reprezentuje technologicky Sok pozorovany na zaciatku kazdej periédy a riadi sa

linedrnym Markovovym procesom prvého radu:

Zi+1 = N2 + €141 (1.2)

kde ¢; je identicky distribuovand ndhodné premennaé s nulovou strednou hodnotou a kone¢nou
varianciou.

V kazdej peridde sa vystup rozdeluje medzi beznt spotrebu ¢; a hrubé investicie ;:
Y = ¢ + iy (1.3)
Kapital sa riadi tzv. zdkonom pohybu kapitalu:
ki1 =1 —0)ky + 1y (1.4)

Ulohou socidlneho planovaca je maximalizovaf celozivotny Gzitok domacnosti:
o
EY p'U(ct) (1.5)
t=0

kde E je operétor raciondlnych oc¢akavani, g € (0,1) je diskontny faktor a funkcia U : [0, 00) —

[0,00) je dvakrat spojite diferencovatelnd, ostro rastica a rydzokonkavna, pri¢om plati:

lim 8U—(c) =00
c—0 (‘?c

Dostavame teda tlohu dynamického programovania na nekone¢nom ¢asovom horizonte:

max E Z BU (¢4)

{er}i2 =

Yt = ¢t + iy
kt—i—l = (1 — 5)]{715 + 74
241 = N2+ €441

ko, zo — dané



Vyjadrime ¢ zo vztahu (1.3) a dosadme do tcelovej funkcie, potom méme:

max E tU F(ky,z) — i
e Zﬁ s 2t it)

kt+1 = ( — 5)kt + Zt
241 = N2+ €441

ko, z9g — dané

V tejto ulohe vystupuje i ako riadiaca premenna, kapital £ je endogénnou stavovou premennou
a z je exogénnou stavovou premennou.

Oznacme si tcelovi funkciu:
fOk, z,i) = U(F(k,2) — 1)
Potom rovnica dynamického programovania (vid. [3]) pre ttato tlohu vyzera takto:
V(k,z) = max {f°(k, 2,7) + BEV (K ,2)} (1.6)

kde k', 2" predstavuji hodnoty premennych k, z v nasledujtcej periéde a V je hodnotové

funkcia definované pre podciatocné kg a zg ako:
V(kO,ZO) - {max EZﬂt kthtazt)
ii=0

Prepisme dalej stistavu rovnic pre stavové premenné v nasledujtcej peridde do tvaru:

k k
t+1 — 4 t + Bi,
Zt41 Zt

kde matica A:
a vektor B:

Najdime teraz pevny bod tejto tlohy, ktory sa pri vytvarani tohto ekonomického modelu

chape ako bod (k,Z,1), ktory spliia:

0f°(k. %, i) ﬁ((‘)fo(E,E,z‘) 0f°(k.%.i)

0 = B + ok , P Y(I —pA)! (1.7)
k= (1-0k+1 (1.8)
Z = nz (1.9)



Ide o bod, ktory vyhovuje nutnym podmienkam optimality (vid. [3]) a ak existuje opti-
malne riesenie pre tlohu socidlneho planovaca, je predpoklad, ze by ekonomika mohla k nemu
dokonvergovat.

Vsimnime si, ze rovnicu (1.7) mozeme vdaka tomu, Ze vektor B mé druhy argument nulu,
prepisat nasledujicim sposobom:
f®,50)

di

of°k,z,1)

0 ok

+5 (1-601-4)"" (1.10)

Predpokladajme, ze existuje taky bod. Oznaéme si vektor premennych (k,z,i) ako y a
pevny bod ako 7, teda nech y = (k, z,i) a§ = (k,%,4). Urobme Taylorov rozvoj druhého radu
funkcie f° v rovnovaznom bode:
of°@w 1 1f°@)

2V o2 Y (1.11)

Ply) = @) +

Pokial nahradime povodnu téelova funkciu v tlohe tymto rozvojom, dostaneme tlohu

linearne-kvadratického programovania na nekonec¢nom c¢asovom horizonte. Tato tloha ma

oproti povodnej istd vyhodu v tom, Ze optimalne riadenie je nezavislé na variancii premennej

e. Plati tu tzv. princip ekvivalencie (vid. [9]), ktory nAm umoznuje bez straty na vSeobecnosti

predpokladaf, ze variancia je nulovi a premennt € nahradit jej nulovou strednou hodnotou
a teda de facto odstréanit operdtor E z rovnice (1.6).

Rovnaky spdsob riesenia takychto alebo podobnych ekonomickych modelov aj pre viac-

rozmerné premenné sa nachadza v publikaciach [9], [11].

1.2 RieSenie podla Blancharda a Kahna

Ako sme videli v predchadzajucom pripade, RBC modely vedt na tlohy optiméalneho riadenia.
Oproti predoslému urobime teraz zovSeobecnenie na viacrozmerné premenné.
Vychéidzajme z predpokladu, ze ndhodnost vstupuje aditivne do vztahu pre stavovia pre-

mennt, ale nevyskytuje sa priamo v tcelovej funkcii. Co mézeme zapisat ako:
o0
t 20
max E E B (e, ur)
{ut}t:() t=0
Tip1 = F(xg,up) + &4

ro — dané

V tejto tlohe je z endogénna stavova premennd, ktorou je obycajne kapital, ¢ exogénna
stavova premenna, definovana ako v predchadzajucom, reprezentujica tzv. biely Sum, a u

riadiaca premenné, zvycajne spotreba. fO znaéi ti¢elovti funkciu.



Pre tuto tlohu dostavame ako nutnt podmienku pre optimalne riesenie (vid. [3]) ststavu

rovnic, v ktorej ¢ oznacuje tzv. adjungovant premennt:

Ti+1 — F(a:t,ut)—i—at (112)
0", OF(x,

po = 0 | gy, O, (1.13)
0°(a, OF(z:,

0 = ) | gy, 2L, (1.19)

Predpokladajme, ze u sa da vyjadrit z (1.14) jednoznacne ako funkcia premennych (x, 1),
teda u = g(z,1). Predpokladajme dalej, Zze pre = 1 ma sustava rovnic (1.12) az (1.14)
pevny bod (T, 7, 1), teda bod, pre ktory plati:

T = F(z,u)

0/ o . -
§ - AEAET) | GOFE o)
T xXr

Za urcitych podmienok sa dé rozsirif pevny bod ako funkcia parametra [ aj pre ( blizke
1. Dalej mézeme transformovat tento pevny bod do nuly. Potom pokial by bola funkcia F'

linedrna a funkcia f° kvadraticka, uvedeny systém sa dé prepisat do tvaru:

Tpy1 = Maxy+ NEYq + et
Yy = Pxy+ REYi

kde M, N, P a R su prislusné matice. V tomto systéme sa premenné x oznacuju ako prede-
terminované (predurcené) a 1) ako nepredeterminované (nepredurcené).

Clanok [14] sa zaoberd predpokladmi, za ktorych mé tento systém pre kazda dantt hodnotu
xo predurcenej premennej jediné rieSenie leziace na stabilnej ceste do rovnovazneho bodu.

V nasej praci overime platnost tychto predpokladov pre tlohu linedrne-kvadratického
programovania bez diskontného faktoru aj s diskontnym faktorom a pre deterministicky pri-
pad ukézeme, aky je vztah medzi optimalnym rieSenim linedrne-kvadratickej aproximécie a
optimalnym riesenim tlohy, v ktorej je funkcia F' pre stav v nasledujicej peridéde linearna a

acelova funkcia f9 je nekvadraticka so zapornou Hessovou maticou v rovnovaznom bode.



Kapitola 2

Formulacia ulohy

2.1 Rovnovazna trojica

V tejto kapitole sformulujeme typ tiloh, ktorymi sa v nasej praci hodlame zaoberat, odvodime

nutné podmienky optimality a definujeme pojem rovnovaznej trojice pre tieto tlohy.

Uvazujme nasledujicu autonémnu tilohu optimalneho programovania s diskrétnym ¢asom

na nekonecénom c¢asovom horizonte:

sup Z B Oy, ur)
=0

{ue}iZo

Tpp1 = F(xg, up) (2
xp e X CR"” (2.
u € U CR™ (2
xp — dané (2

kde 3 € (0, 1] (pre tcely prace je uzitoéné uvazovat aj pripad, ked § = 1), dalej i¢elova funkcia

f° je aspoti trikrat spojite diferencovatelns a funkcia F je linedrna v oboch argumentoch:
F(z,u) = Az + Bu+c¢

kde A je regularna matica typu n X n, matica B je typu n X m a c¢ je vektor konstant z R".
Néas bude zaujimat pripad, ked stavovd premennd x je z R™ a riadiaca premennd u z R™ a

teda mozeme postavit X = R™ a U = R™. Pre konkrétne 8 oznac¢ujme tuto tlohu (Upg).

Lubovolna postupnost {u;},;2, v R sa nazyva riadenie. Pod odozvou na riadenie {u;};°,

rozumieme postupnost {x;}7°, v R" spliiajticu podmienky (2.1) a (2.4). Riadenie w = {u;};°,

10



a jeho odozva x = {z;};2,, ktoré splitaji (2.2) a (2.3) sa nazyvaji pripustné riadenie a jeho
odozva pre tlohu (Ug). Oznacme si J(zg,w) = > o0 B fO(x4,ur). Ak sa navySe v pripustnom
riadeni w realizuje suprémum radu J(zp,w), nazyva sa optimdlne riadenie pre tuto tlohu.
Hodnotovou funkciou rozumieme funkciu V' : R” — R, ktora nam pre kazdy pociatoény
stav z( poskytne suprémum radu J(zg,w) na mnozine pripustnych riadeni, teda funkciu,

pre ktoru plati:
V(zo) = sup > _ B fO(wr, ur) (2.5)
“ =0

kde w = {u:};°, je pripustné riadenie.

Potom Bellmanova funkcionalna rovnica (vid. [3]) pre tato tlohu vyzerd takto:
V(z) = sup{f°(z,u) + BV [F(z, u)]} (2.6)

Nazyva sa tiez rovnica dynamického programovania a pre tlohu (Ug) je nutnou podmien-
kou optimality.

Daja sa vsak odvodit aj iné nutné podmienky optimality pre tato ulohu. Z vety 3.4
v [3] sa dozveddme, Ze optimalne riadenie a jeho odozva musia vyhovovat ststave (systému)

diferenénych rovnic s adjungovanou premennou ¢, € R" ¢ A0 pret =0,1,2,...:

Tep1 = (2, u)
afO(ZEt ’LLt) 8F(£L't ut)
T ) T )
0 = ou + Bt ou
afO(JEt ’LLt) 8F(£L't ut)
T ) T )
vy =  or + ﬁ¢t+1T (2.7)
za predpokladu, Zze matica % je regularna pre vsetky t.

Kedze F(xy,u) = Az + Bug + ¢, tak vlastne pozadujeme, aby bola matica A regularna.
Uvedeny predpoklad je urobeny na zaciatku kapitoly pri formulacii tilohy. Ststavu rovnic

(2.7) mozeme potom prepisat takto:

Tyy1 = Axri+ Bug+c
0f0(a:,u)
of = #+ﬁ¢;ﬂ_13
OfO(xy,
Wl = %mwaﬁ (2.8)

Pod rovnovaznym (pevnym) bodom tejto stistavy budeme rozumiet bod (Z,, ), ktory

spiﬁa:

T = AT+ Bu+c

OT — 8f0(faﬂ) + ﬁETB
ou
0 —
o = W 460 A (2.9)

11



Dostali sme 2n + m rovnic o 2n + m nezndmych. D4 sa k nej tiez dopracovat cez rovnicu
dynamického programovania. Za predpokladu, Ze existuje funkcia V spliiajica rovnicu dyna-
mického programovania (2.6), ktora je navySe diferencovatelnd, tak derivovanim (2.6) podla

u dostavame:

~Of %z, w) +58V[F(:L’,’LL)] OF (z,u)
- Ou Ox ou
Sucasne derivovanim (2.6) podla premennej x dostaneme:
oV (z)  Of°w,u) +58V[F(m,u)] OF (x,u)
or — Ox Ox Ox

o (2.10)

(2.11)

V pevnom bode mame:

T = Az +Bu+tc
r f@u) V(@)
0" = ou +6 Ox
ov(E  of'zm) oV (z)
ox N ox +5 ox

B

A (2.12)

T) . ,
Po preznaceni ¢)° = 8‘(;—;:0) ziskame systém (2.9).
Vsimnime si, ze pokial pre konkrétne /3 existuje matica (I — ﬂA)_l, kde I je jednotkova
matica, tak uvedeny systém mézeme ztzif na dve rovnice a pritom odstranit premennii .

Z tretej rovnice systému (2.9) dostavame:

—T _ 8f0(§>ﬂ) -1
o= SR (- pa)
Dosadenim do druhej mame:
ofz,m) of°(z,u) _
T ) 9 o 1
0" = 9 +0 o (I-BA) "B
Po pretransformovani:
o 8f0(faﬂ)T T T _1af0(E7U)T
0="%,  TABU-PA) =5~
Celkove mame:
T = AT+ Bu+c
0/= —\ 1 0/= —\ 1
0 = af (:E»u) —l—ﬁBT(I—ﬂAT)_laf (:L',’LL)
ou oz

Bod, ktory vyhovuje tymto dvom rovniciam, sa obyc¢ajne v ekonomickej literatire (napr.

[11]) chape ako pevny bod. Uvedend definicia sa tiez vyskytuje v prvej kapitole tejto préce.
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Pretoze nutné podmienky optimality nezarucuju existenciu optimalneho riadenia, len ho-
voria, ze ak existuje, musi vyhovovat systému (2.9), tak si teraz pre uéely préace zadefinujeme
rovnovaznu trojicu (Z, %, v), pod ktorou budeme rozumiet pevny bod systému (2.9) nutnych
podmienok optimality:

Definicia 2.1. Rovnovdzna trojica pre lohu (Ug) s 3 € (0,1] je taky bod (T,u, ), e plati:

T = AT+ Bu+c
0/= —\ I
0 = 8]’(w,u) +_ﬁ13725

ou

_ _\T

g = O parg
X

Urobme nasledujuci predpoklad:
Predpoklad Q1: Pre tilohu (U;) existuje rovnovazna trojica (T, 1, ).

V nasledujtcej vete si za pomoci tohto predpokladu ukazeme, ze existuje okolie bodu 1
také, ze rovnovazna trojica (T, 7, 1) sa d4 vyjadrif jednoznacne ako spojité funkcia parametra

3.

Oznacujme BIZT, ] uzavretu gulu v R? so stredom v bode T a polomerom ¢, tj.:

Bz,e] = {z e R?[[|x — 7| <&}

kde ||| zna¢f normu v RP. Dalej ozna¢me:
A(B,7,50) = (I-Ay-Bu-c (2.13)
_ ooz, @) _
peEEd) = B0 ey (2.14)
_ af'@,m) " _
peEmE = LD par g (215)
Potom systém rovnic pre rovnovaznu trojicu pre tlohu (Ug) s 8 € (0, 1] mo6zeme prepisat ako:
j&(ﬁ)fvﬂvab = 0
£(8,7,0,9) = 0
f3(8,7,0,9) = 0

Nech f: R xR" xR™ x R™ — R"” x R"™ x R" je vektorova funkcia definovana trojicou funkcii
(2.13), (2.14), (2.15). Oznaéme maticu parcidlnych derivacii funkcie f v bode (1,71, %1,v;)
podla premennych (Z,, 1) ako H, potom plati:

(I — A) —B 0
_ | #reaa’ orean’ T
H = Fuds T B
2f@a) T @) T AT g
Ox2 dzxou
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Urobme este jeden predpoklad:
Predpoklad Q2: Matica H je regularna.

Veta 2.1. Nech funkcia f° je C" funkcia, kde r > 3. Nech je splneny predpoklad Q1 a

pre rovnicu:

f(3,z,u,¢) =0 (2.16)
predpoklad Q2. Potom existujii také ¢1 > 0 a g9 > 0, Ze rovnica (2.16) urcuje jediné O™+
zobrazenie ¢ : B[l,e1] — B[(T, W, ), 2] také, ze p(B) = (T(B),u(B),¢(B)), pricom (1) =
Ty, wp =u(l) a P, = P(1).

Dékaz. Bod (1,%1,71,1,) vyhovuje (2.16). Na okoli tohto bodu je funkcia f spojita, rovnako
ako jej parcialna derivicia podla premennych (T,%,v), pretoze f° je aspon trikrat spojite
diferencovatelna. Kedze z predpokladu Q2 je matica H reguldrna, tak st splnené podmienky

vety o implicitnej funkcii, ¢o dokazuje tvrdenie. O

TakZe sme si ukazali, Ze existuje okolie bodu 1 také, Ze rovnovazna trojica (Z,4, ) sa da
vyjadrit jednoznacne ako funkcia parametra § prislusnej hladkosti. Zaroven z toho vyplyva,
7ze funkéna hodnota tiéelovej funkcie f° v bode (Z, %) bude na tomto okoli spojitou funkciou

. ., L. 0 0 5270 5270 2 £0
parametra (3, rovnako ako aj parcidlne derivacie %, %Lu, 88 mf2 , gxgu a 88 ufz v tomto bode.

Urobme dalsi predpoklad:

Predpoklad Q3: Hessova matica tidelovej funkcie f° v rovnovaznom (F1,1) je zaporne

definitna.

Potom, ak je splneny, existuje okolie bodu 1 také, ze pre [ z tohto okolia je Hessova
matica tcelovej funkcie fO v bode (T3, us) zaporne definitna.

Oznacujme prienik okolia bodu 1, na ktorom sa daju vyjadrif Z, @ a 1 jednozna¢ne ako
spojité funkcie 3 a sucasne na ktorom je Hessova matica aéelovej funkcie fO v bode (Ts,1ug)

zaporne definitnd, s (0, 1] ako O.
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2.2 Nutné podmienky optimality pre linearne-kvadraticka

ulohu s diskontom

Nech platia predpoklady Q1, Q2 a Q3. Nech 3 € O. Oznac¢me 0z = = — Zg, du = u — Ug.

Urobme aproximaciu funkcie fO Taylorovym polynémom do druhého radu v bode (Tg,ug):
1 1
0 0/ — T T T T AT
fale,u) = f(Tp,ug) + kgox +l56u + 5696 Pgdx + 5(595 Qpou
1 1
+§5uTQ55:U - §5uTR55u (2.17)

T _ 9f%zsup) v _ Of°(Tp,up) 9*fO(z,up) *f2(z,up) 9*fO(zs,up)
kde ky = =—50=5, I = =50 B3 = =57 Qs = —guan > Bo = —5—

je Hessovou maticou funkcie f° a teda je zdporne definitn4. Ulohu (U, 3) s kvadratickou tce-
lovou funkciou, ktora vznikla aproximaciou pévodnej ticelovej funkcie fO Taylorovym poly-
némom do druhého radu v bode (Zg,u3), budeme oznacovat ako (U, ﬁQ )

Funkciu F' moézeme tiez zapisat nasledujicim spdsobom:
F(x,u) = F(ZTg + dx,ug + du) = F(Tg,ug) + Adx + Bdu (2.18)

Uvazujme teraz systém tloh (U, ﬁQ ) pre € O. Dosadme vyjadrenie (2.17) do druhej a

tretej rovnice systému (2.9), dostaneme:

0 = lg+ BBy (2.19)

bg = kst BATYg (2.20)

Poznamka 2.1. Poznamenajme, Ze za predpokladu regquldrnosti matice I — BA plati:

— -1

Ty = (I = BAT) 'y (2.21)
Dosadenim (2.21) do (2.19), dostaneme vztah medzi lg a kg:

ls = —BBT(I — BAT) kg (2.22)

Dosadme dalej vyjadrenia (2.17) a (2.18) do systému (2.8), dostaneme:

0xpy1 = Adxy + Bouy (223)
0 = lg+ Qpdxy + Rpduy + BB Yyiq (2.24)
Py = kg+ Pz + Qhouy + BA Py (2.25)
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Oznacme 01y = Y — Eﬁ a upravujme postupne rovnicu (2.24):

= g+ Qpdxy + Rgduy + BB )41

= g+ Qpow + Rgduy + BB 11 — BB 5 + BBy

= Qpdxy + Rpduy + BBT o1 + 15 + ﬁBTEﬁ

= Qbxy + Rouy + BB dapyyq (2.26)

o o o o
|

kde posledny krok vyplyva zo vztahu (2.19).

Urobme postupnost aprav i pre rovnicu (2.25):
v = kg + Pgoxy + Qhouy + BA 4y

Sy = Pgduy + Qhous + BAT 801 + kg — P+ FA g
51y Pgbay + Qhous + BAT Sube (2.27)

kde opét posledny krok vyplyva zo vztahu (2.20).
Celkovo sme dostali systém nasledujucich rovnic (2.23), (2.26), (2.27):

(5xt+1 = A(SI‘t + Béut
0 Qpdxt + Rgduy + BB 0114
BN Pabay + Qhous + BAT 6upy 1

Vidime, ze kg, l3 je mozné odstranif zo systému rovnic (2.23), (2.24) a (2.25) a teda
linedrne ¢leny nevstupuju do vztahov, ktoré musi spliiat optimélne riadenie a jeho odozva.
Inymi slovami nutné podmienky optimality st rovnaké pre tlohu (U g ) s ucelovou funkciou
s nenulovymi i nulovymi linedrnymi ¢lenmi.

Pretoze matica Rg je zaporne definitna, moézeme vyjadrif z rovnice (2.26) du; ako linearnu

funkciu premennych dz; a diy41 a totiz:
Sur = —R5'Qpdw; — BR; BT 6y iy (2.28)
Dosadme (2.28) do (2.23) a (2.27), dostaneme:

0ris1 = (A— BR;'Qp)dx; — BBRy' BT 611 (2.29)
oYy = (Ps—QhR;'Qp)om + AT — QR B ) oy (2.30)

Oznac¢me Py = (Pg — Q4 R;'Qp), Bg = —BR;'B” a Ay = (A— BR;'Qp), potom:

533“_1 = Ag(SZL't + ﬁBg5¢t+1 (2.31)
Sy Pgox; + BAf 641 (2.32)
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2.3 Nutné podmienky optimality pre pévodnua tlohu

V dalsom budeme pouzivat nasledujiice skratené oznacovanie:
Nech f(z) je CP funkcia v okoli bodu T a f,(x) je jej Taylorov polyném stupna r < p, potom
skratka ¢. v. r. reprezentuje zvysok p(x) polynému f,(x), tj. o(z) je CP a plati:
P (@) _
OxJ

pre 7 =0,1,...,7.
Nech st stéle splnené predpoklady Q1, Q2 a Q3. Vratme sa k systému tloh (Ug) pre 5 € O.

Ucelovi funkciu f° mézeme rozpisat nasledujiicim spdsobom:
_ 1 1
folwu) = fOTp,Ts) + ko + du + 62" Pz + o' Qj0u
1 1
+§5UTQ55ZL' + §5uTR55u +¢ v.r. (2.33)

T _ 0f°@sus) T _ Of°zps.us) 9* [ (,up) > f°(Tp,up) 9?0z p,up)
kdekﬁz 6§ﬁ’15: 85B’P6: 8x§ﬁ’QIB: 8u8ﬁxﬁ’R5: 8u§ﬁa

i
Qs Rg

Je jasné, Ze rovnovazna trojica (Eﬁ,ﬂg,aﬁ) je rovnaka pre tlohu (Ug) ako i ulohu (UﬁQ),
a Ze pre 5 platia vztahy (2.19), (2.20).
Po dosadeni vyjadrenia (2.33) do systému (2.8), dostéavame:

matica:

je zaporne definitna.

6':Ut+1 = A(;.:Ut + Béut
0 = Qpdwy + Raduy + BBT o1 + ¢ vt
Sy = Pgdwy+ Qhous + BAT 01 + €. vt (2.34)

V nasledujtcej vete si za pomoci vety o implicitnej funkcii ukdzeme, Ze z druhej rovnice
systému (2.34) sa na dostatoéne malom okoli bodu (0,0, 0) d& du; vyjadrit jednoznaéne ako

funkcia premennych dx; a 01y 1.

Veta 2.2. Nech funkcia fO je C" funkcia, kde r > 3. Nech 3 € O. Uvazujme druhi rovnicu
systému (2.34):
0 = Qgdxy + Rgduy + BB 6¢pys1 + ¢ v. 1. (2.35)

Potom existujii také ¢ > 0 a g9 > 0, Ze rovnica (2.85) urcuje jediné C"~' zobrazenie
duy = B[(0,0),e1] — B[0,¢e2] také, Ze dut(0,0) = 0, pricom plati:

Sug (64, 0hyy1) = —Rngﬁaxt — 5RngT5¢t+1 +¢ v (2.36)
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Dokaz. Oznacme vyraz na pravej strane rovnice (2.35) ako ®(dz, du), potom musi platit:
®(0,0) = 0

Funkcia ®(dz,du) je spojita aj spojite diferencovatelna, pretoze f° je aspon trikrat spojite

diferencovatelna funkcia. Dalej plati:

99(0,0)

“ou R

¢o je zaporne definitnd matica a teda regularna matica. Tym padom st vSetky podmienky

vety o implicitnej funkcii splnené, ¢o dokazuje tvrdenie. O

Dosadenim (2.36) do prvej a tretej rovnice systému (2.34), dostaneme:

(5xt+1 = Agéwt + ﬂBg(ST/Jt_H +¢. v.r. (237)
Sy Pyow; + BAFOYrs1 +E v 1. (2.38)

Vidime, Ze s pouzitim transformdcie dx = x — Tg, du = u — ug, 6Yr = Py — g mdzeme
rovnovaznu trojicu (Tg, ﬂg,ﬂﬁ) bez ujmy na vSeobecnosti posunit do bodu (0,0, 0). Rovnako

mozeme miesto Géelovej funkcie fO braf ako tcelovi funkciu funkciu fs definovant vztahom:
fﬁ(gj>u) = fo(x>u) _f0(§ﬁ7ﬂﬁ) (239)

Resp. pri tlohach (UﬁQ ) moZeme miesto fg brat ako tcéelova funkciu funkciu 0 fg definovant

vztahom:
518 = f8(z,u) — fO(Tp,up) (2.40)

Je to preto, lebo pri derivovani nezalezi na posune o konsStantu a teda nutné podmienky
optimality st pre obe dvojice funkcii rovnaké. Z toho vyplyva, ze vSetky doposial odvodené
vztahy platia aj pre funkciu fg, resp. v tlohach (U, ﬁQ ) pre funkciu 0 fg
Aby sme sa vyhli neustdlemu vypisovaniu J, preznac¢ime spétne dx na x, du na u, 0¥ na
ad fg na fg. Oznacenie funkcie f3 ponechame. Pod funkciou F' budeme rozumief funkciu
definovani vztahom:
F(z,u) = Az + Bu

Oznacenie ulohy s tcelovou funkciou fg a funkciou F' definovanou predchadzajicim vzta-
hom ponechame ako (U ﬁQ ) a ulohy s tcelovou funkciou fg a funkciou F' definovanou predcha-

dzajicim vztahom ponechdme ako (Upg).
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Kapitola 3
Linearne-kvadraticka tloha pre =1

V tejto kapitole sa budeme venovat tlohdm linedrne-kvadratického programovania bez dis-
kontného faktoru. UkdZeme si v nej, za akych predpokladov mozno systém doposial odvode-
nych nutnych podmienok prepisat na systém so symplektickou maticou a v dalSom potom
vyuzijeme niektoré jej vlastnosti. Kapitola je ¢lenena na dve casti. Prva podkapitola sa za-
oberd linearne-kvadratickou tlohou s uc¢elovou funkciou bez linedrnych ¢lenov a druhé potom
linedrne-kvadratickou tlohou, v ktorej vystupuje tcéelovd funkcia aj s nimi. Cielom oboch
podkapitol bude ndjst predpoklady, za ktorych existuju optimélne riadenie a jeho odozva,

ukazat, kedy su jediné a k ¢omu konverguju a naformulovat pre ne vztahy, ktorymi sa riadia.

V dalsom pre celu kapitolu predpokladajme, Ze je splneny predpoklad Q1.
Nech = 1. Uvazujme tlohu (UIQ ). Teda tlohu:

o0
sup Zf{)(wtaut)
t=0

{ue}iZo

Ti4+1 = F(xm Ut)
Ty € R"
u € R™

ro — dané

Oznacme si:
1
Qi(z,u) = §(xTP1w + 27 QTu+ u" Qi + u” Ryu) (3.1)

Potom moézeme funkciu f{ zapisat nasledujticim spésobom:

f(w,u) = bz + [ u+ Q(z,u) (3-2)
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Z predchadzajicej kapitoly vieme, Ze optimélne riadenie pre tlohu (UIQ ) (ak existuje)

musi vyhovovat systému rovnic (2.31), (2.32) pre § = 1:

Tir1 = Aqjxg +Bii
Py Pz + AT Y1

Predpokladajme, Ze matica A; je regularna, potom vieme vyjadrit ¢, 1 z druhej rovnice:

Vet = —(AT) 'Pray + (AT) Ny

Dosadenim do prvej rovnice dostavame:

-1 -1

Ti01 = [A1 — Bi(A]) Pila + Bi(A]) iy

Celkovo mame:

-1 -1

i1 = [A]—By(AT) Pyla + B (AT Ty, (3.3)
Y1 = —(AD) Pz + (AT) 'y, (3.4)

Teda sme za predpokladu, Ze matica A; je regularna, odvodili sastavu diferenc¢nych rov-
nic, ktora je nutnou podmienkou pre optimélne riesenie ulohy (UIQ ) s ucelovou funkciou
2z, u) = Q(x,u), ale zéroven aj s ucelovou funkciou f{(z,u) = kf'z + 1Tu + Q;(x,u).
V dalSom si ukazeme, Ze matica tejto sustavy je symplekticka.

Hovorime, Ze matica M typu 2n x 2n je symplekticka, ked spliia podmienku:

MTQM = Q

=(50)

a matica [ je jednotkova matica typu n X n.

kde 2 je matica:

Vlastné hodnoty symplektickej matice vystupuja v recipro¢nych paroch, tj. ak A je vlastna
hodnota matice M, tak aj + je vlastnd hodnota matice M (vid. [13]). Takze ak [A| < 1, potom
|%| > 1. Ak vlastnd hodnota A lezi na jednotkovej kruznici, potom aj vlastnd hodnota % lezi
na jednotkovej kruznici.

Dalej plati veta (vid. [13]), Ze blokova matica M typu 2n x 2n dané ako:

v=(e0)
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kde matice A, B, C' a D st typu n xn, je symplekticka prave vtedy, ked st splnené nasledujtce

tri podmienky:

ATp-cTB = 1 (3.5)
ATc = oTA (3.6)
DB = B'D (3.7)

Ozna¢me maticu systému rovnic (3.3), (3.4):
-1 -1
A; - Bi(AT) Py By(A])
M = Ty—1 7y—1
—(A1) Pu (A1)
V nasledujtcej vete ukazeme, ze M je symplektické.

Veta 3.1. Nech matica Ay je reguldrna. Potom matica My systému rovnic (3.3), (3.4) je
symplektickd.

Dokaz. Dokaz bude pozostavat z overenia podmienok (3.5)-(3.7).
Najprv overme podmienku (3.5):

AT - Py (A) B T + PrA) BiAD) ] =

I
I =1
Teraz podmienku (3.6):
_ 1 _ 1
—[AT = P1(A)'ByJ[(A]) Py = —P1 + Py(A)) 'By(A]) Py

¢o je symetrickd matica.
A napokon podmienku (3.7):

-1 -1

(A1)'Bi(A]) ] = (A1) 'By(A])

¢o je tiez symetrickd matica. O

3.1 Ucelova funkcia bez linearnych élenov

Tato podkapitola sa venuje tlohdam typu (UIQ ) s ucelovou funkciou Q;(x,u). Za predpokladu
Q3 je kvadraticka forma Q;(x,u) zaporne definitna.

V nasledujtcej vete si ukdzeme, za akych predpokladov pripustné riadenie pre tlohu (U- 1Q )
s ucelovou funkciou f{(z,u) = Q(x,u) spolu so svojou odozvou konvergujt k bodu (0,0)

pre t — 0.
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Veta 3.2. Nech k1 = 0 a l; = 0 a teda tcelovd funkcia fO(z,u) = Q,(x,u). Nech je spl-
neny predpoklad Q3. Nech w = {u;};°, je pripustné riadenie a x = {x:};2, jeho odozva.
Nech rad Y32 (w4, ur) konverguje. Potom postupnost {(xs,ur)}oo, konverguje k bodu (0,0)

pre t — 0.

Dokaz. Nech w = {u};=, je pripustné riadenie a x = {z¢};~, jeho odozva. Ak konverguje

rad Y ;%0 f(@, uy), tak musi platit:
Jim P (g, ) =0 (3:8)

Pretoze fY(z,u) = Qq(z,u) a Q;(z,u) je podla predpokladu Q3 zaporne definitn4 kvadra-
ticka forma, tak Q;(z,u) dosahuje nulu len v bode (0,0). To dokazuje tvrdenie. O

V dalSej vete dokdzeme, ze pre kazdé x( existuje pre tlohu (UlQ ) s tcelovou funkciou
f2(x,u) = Qq(x,u) optimélne riadenie. Budeme nato potrebovat definiciu stabilizovatelnosti
paru matic.

Hovorime, Ze A\ je nekontrolovatelnd vlastnd hodnota paru (dvojice) matic (A, B), kde
matica A je typu n X n a matica B je typu n X m, ak existuje riadkovy vektor w # 0 taky,
ze wA = Aw a sicasne wB = 0.

Hovorime, Ze dvojica matic (A, B) je stabilizovatelnd, ak existuje matica Z taka, ze matica
A + BZ je stabilnd, tj. vSetky jej vlastné hodnoty st v absolutnej hodnote mensie ako 1.
Alternativne dvojica matic (A, B) je stabilizovatelna préve vtedy, ked st nestabilné vlastné

hodnoty paru (A, B), tj. tie, pre ktoré |A| > 1, kontrolovatelné (blizsie vid. [1]).

Veta 3.3. Nech k1 = 13 = 0. Nech je splneny predpoklad Q3. Nech dvojica matic (A, B) je

stabilizovatelnd. Potom pre kaZdé xy existuje pre ulohu (UlQ) optimdlne riadenie.

Dokaz. Nech xg je Tubovolné. Nech w = {u;};2, je pripustné riadenie a x = {z¢};-, jeho

odozva. Ozna¢me mnozinu pripustnych riadeni z pociatku z¢ ako 7(xp). Oznac¢me dalej:

o= sup ZQl(azt,ut)

wem(zo) 1—q

Pretoze dvojica matic (A4, B) je stabilizovatelnd, tak existuje matica Z a pripustné riadenie
us = Zxy stabilizujice systém 441 = Ax; + Buy. Oznaéme \ = max; |\;| maximum spomedzi
absolttnych hodnot vSetkych vlastnych hodnét stabilnej matice A + BZ, potom existuje
C > 0 také, Ze pre kazdé t plati:

(A + B2)| < X'
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Vezmime si pripustné riadenie {u; = Zz;}7°, a postupne upravujme:
o0 o0 1
> Qi Zay)| < Y 5@3“ Pray 4 20T QT Zay + 2T ZT Ry Zay|

t=0 t=0
o

1
= Y Glw"(AT+ ZT BT (P, +2QTZ + ZTR1Z)(A + BZy) x|
t=0

o
1
- ¥ Flmo" (AT + ZTBTY (P, +2QTZ + ZT R\ Z)(A + BZy) 0|
t=0

o0

1 -2
> 502>\ 1(PL+2Q] Z+ Z" Ry Z) | || wo|?
t=0

e
t=0

kde K je prislusna kladna konstanta. Z toho vyplyva, Ze o je konecné Cislo, a z definicie

IN

supréma vyplyva, Ze existuje takd postupnost ohranic¢enych pripustnych riadeni spolu s ich
odozvami (teda postupnost postupnosti {{(zf, uf)};2}7 o, kde zf = zg a af,; = F(af, uf)),

ze plati:
ZQl(xfan) /o (3.9)
t=0

pre k — oc.

Pre tuto postupnost fixujme ¢, potom postupnost {(xf,uf)}zozo je takisto ohranicend a
teda existuje z nej vybrand konvergentnd podpostupnost. Ozna¢me si pre kazdé ¢ limitu
konvergentnej podpostupnosti ako (z}, u;).

Skonstruujme konvergentni postupnost postupnosti nasledujticim spdsobom:

Vezmime si postupnost redlnych ¢isel {;}7°, konvergujicu k nule. Pre ¢ = 0 najdime v po-

stupnosti {(zf, uf)}, také ko, ze (280 uf®) je od (zf,ul) v prislusnej metrike vzdialené &g

alebo menej. Opif pre t = 1 najdime v postupnosti {(z%, u’f)}zozko také ki1 > ko, Ze (:E]fl,ulfl)
je od (z7,u}) vzdialené £ alebo menej a sucasne (:E'Sl,ugl) je od (z§,ug) vzdialené 1 alebo
menej. Vezmime postupnost postupnosti {(wlg,ulg)}zc’:ko, kde k zac¢ina v kg, pokracuje v ki
a dalej vSetkymi k > ki. Znovu najdime v tejto postupnosti pre ¢ = 2 také ko > ki, Ze
(252 ub?) je od (x5, u}) vzdialené e, alebo menej, (z52,u?) je od (2, u}) vzdialené e, alebo
menej a sucasne (52, ub?) je od (3, uj) vzdialené ey alebo menej. A tak dalej. Dostaneme
{{(mfj,ufj)}ﬁo}ﬁo vybrant podpostupnost z postupnosti postupnosti {{(z¥,uf)}2,}22,,
ktora konverguje k postupnosti {(z},u;)};2, bodovo, pricom plati, Ze x5 = zp a vdaka spo-
jitosti funkcie F tiez x},, = F'(x}, uf).

Oznacéme si:



a limitu (pokial existuje) ako:

* : *
S5 = lim S},
n—oo

Preznacme spétne indexy k; na k, potom Sk znagi:

t=0

a Sk
S* = lim SF
n—oo
Mame:

lim S* =&
k—o0

Pretoze Q;(x,u) je zdporne definitna kvadratickd forma, tak pre kazdé k je postupnost
{Sk o herastuca, pricom plati, ze Sk < 0 pre kazdé n. Rovnako tak postupnost {5 0

je nerastuca, pricom plati, ze S < 0 pre kazdé n. Ukazeme, Ze pre kazdé n plati: S > o.

Nech to neplati, potom existuje také ng a € > 0, ze pre kazdé n > ng:
Sy <o—e¢

7Z toho ale vyplyva, Ze existuje také kg, ze pre kazdé k > kg plati:

9
S7I§O<U_§

pretoze vsak {Sﬁ};‘;o je pre kazdé k nerastiica postupnost, tak mame pre kazdé k > ko a

pre kazdé n > ng:

€
Sk - =
n<o—
Z toho dalej pre kazdé k > kq:
k _ £
Sy <o 5

¢o je spor s predpokladom, ze limy_. Sfjo =o0.
Takze mame nerastticu postupnost S, ktora je zdola ohranic¢ena hodnotou o a teda je
konvergentna a rovnako aj S’ > o. Zaroven mame S} < o, pretoze o je suprémum. Z toho

vyplyva, ze Si, = o. O

Dalej ukadZeme, Ze matica M; mé vietky vlastné hodnoty leziace mimo jednotkovej kruz-
nice a nasledne toto zistenie vyuzijeme na dokaz, Ze existuje jediné optimalne riesenie sys-
tému rovnic (3.3), (3.4) a teda jediné optimélne riadenie pre ilohu (UlQ ) s ucelovou funkciou

Ql(x7u)'
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Oznacme si:

ES = {(20,%0) € R™ x R"|(4(x0,%0), ¥t (z0,%0)) — (0,0) pre t — oo} (3.10)
kde (x¢(xo,10), ¥t (x0,10)) je rieSenie systému rovnic (3.3), (3.4) vychadzajuce z bodu (xg, 1p).

Veta 3.4. Nech ki = I3 = 0. Nech je splneny predpoklad Q3. Nech dvojica matic (A, B)
je stabilizovatelnd a mech matica Ay je requldrna. Potom spektrum matice My meobsahuje
vlastni hodnotu, ktorej absolitna hodnota sa rovnd 1. Pre n vlastngch hodnét (vrdtane nd-
sobnosti) plati, Ze |\| < 1 a pre zvysnych n, Ze |\| > 1. Navyse ezistuje jedind matica Ly typu

n x n takd, e pre priestor E° definovany v (5.10) plati:
EY = {(2,¢)) € R" x R"|¢) = Ly} (3.11)

Dokaz. 7 vety 3.3 vieme, ze pre kazdé pociatocné x( existuje optimélne riadenie a z vety 3.2,
Ze toto riadenie spolu so svojou odozvou konverguji k bodu (0, 0) pre t — co. Z toho vyplyva,
Ze pre kazdé xy € R" existuje ¢y € R™ také, ze (x¢(xg,%0), ¥t (x0,10)) — (0,0) pre t — co. A
teda (xg,10) € E°, ¢o je ekvivalentné tomu, ze x¢ € II,(E®), kde I, (x, 1)) znadi prirodzent
projekciu priestoru R?” na R”. Z toho vyplyva, ze E° méa rozmer aspoii n.

Pretoze vSak matica M je podla vety 3.1 symplektickd a teda jej vlastné hodnoty vystu-
pujt v reciproénych paroch, tak E° mé dimenziu prave n.

V désledku linearity priestoru E° potom existuje jedind matica L; typu n x n taka, ze

priestor E° sa d4 vyjadrif nasledujico:
E® ={(z,¥) €R" x R"[¢) = Ly}
O

V nasledujtcej vete a jej dosledku sa pozrieme na vzfahy, ktoré platia pre optimdlne

riadenie a jeho odozvu.

Veta 3.5. Nech ky = 13 = 0. Nech je splneny predpoklad Q3. Nech dvojica matic (A, B) je
stabilizovatelnd a nech matica Ay je requldrna. Potom optimdlne riadenie u; moZeme vyjadrit

jednoznacne ako linedrnu funkciu stavu x;.

Dokaz. Veta je dosledkom vety 3.4.
Pretoze pre u; plati vztah (2.28) pre 5 = 1:

up = — Ry Qe — Ry BTy (3.12)
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a pretoZe z predchadzajtcej vety vieme, Ze na priestore E° mozeme vyjadrit ¢; jednoznacéne
formulou:
Y = Ly (3.13)

tak po dosadeni (3.13) do vztahu (3.4) mame:
-1 -1
Ve = [~(A]) P14 (A]) Lilz (3.14)

Dosadenim (3.14) do (3.12), dostaneme:

_ _ -1
ug = —[Ry'Q1 + Ry BT (AT) (L) — Py))ay (3.15)
Oznacéme:
_ _ -1

Zy = —[R{'Q1 + R{'BT(AT) (L1 — Py)) (3.16)

Potom mame:
Uy = leEt (3.17)
O

Daosledok 3.1. Nech ky =13 = 0. Nech je splneny predpoklad Q3. Nech dvojica matic (A, B)
je stabilizovatelnd a nech matica A; je requldrna. Potom odozvy na optimdlne riadenie splriaji

diferencni rovnicu:
Ti41 = (A + BZl)a;t (318)

kde matica (A + BZ) je stabilnd.

Dékaz. Pretoze stav v nasledujicej periéde musi spliat:
Tiy1 = Axy + By

tak pre odozvu na optimélne riadenie dostdvame vztah:

Tiy1 = (A+ BZ1)xy

Pretoze pre kazdé xy optiméalne riadenie a jeho odozva konverguju k nule, tak matica (A +
BZ;) musi byt stabilna. O

Ozna¢me hodnotovi funkciu pre tlohu (UlQ ) s icelovou funkciou f2(x,u) = Q;(z,u) ako
VlQ, teda:

VlQ(xO): sup ZQ1($t7Ut) (3.19)

wem(zo) 1—q

kde m(zp) zna¢i mnozinu pripustnych riadeni pre tato tlohu.
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Veta 3.6. Nech k1 = 13 = 0. Nech je splneny predpoklad Q3. Nech dvojica matic (A, B) je

stabilizovatelnd a nech matica Ay je requldrna. Potom hodnotovd funkcia VlQ pre ulohu (UlQ )

je kvadratickd funkcia premennej x.

Dokaz. 7 predchadzajuceho vieme, Ze za tychto predpokladov existuje jediné optimalne ria-

denie a jeho odozva, pre ktoré platia vztahy (3.17), resp. (3.18):

ug = 11y

zi41 = (A+ BZy)xy
Zo vztahu (3.18) pre optiméalny stav v nasledujucej periéde mame:

Ty = (A + BZl)t:EO

Vezmime si ¢lastoény sacet radu Y ;o Q; (24, us) s optimalnym stavom a riadenim:

N

IN = Z Ql(xtaut)

t=0

Potom:

Mz
N =

—[(x¢ TPy + 22, Ql U + Uy Rlut)]
t=0

Po dosadeni (3.17):

N
Z — :EtTpll’t + 2l‘tTQ{leEt + a:tTZlTRllet)]
t=0

I.\'.)D—‘

Dosadme dalej (3.20), dostaneme:

N
S (20" (AT + 2T BY)' Pi(A + BZy) w0+
t=0

12207 (AT + ZTBTY' QT Z1(A + BZy) wo+
+(AT + ZTBTY' ZT Ry Z1(A + BZ1)'x0)]

N —

IN =

Odtial:
N T\t
= —3:0 D (AT + 2T BT (P +2QT 71 + ZT Ry Z1) (A + BZ1) g
t=0

Prejdic k limite pre N — co mame:

1 o0
Vi(wo) = Jao" [Y (AT + 2 B") (P + 201 21 + ZT Ri22)(A + BZ1) o
t=0
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Oznacme:

Wi =3 (AT + 2T BY) (P, +2QT 21 + ZT R 1) (A + B2y (3.21)
t=0
Potom:
1
V(o) = §onW1xo (3.22)
O

3.2 TUcelova funkcia s lineArnymi ¢lenmi

V tejto sekcii sa budeme venovat tlohe (UIQ ) s kvadratickou ucelovou funkciou, v ktorej
vystupuju i linedrne ¢leny, teda aspon jeden z vektorov ki, I; je nenulovy.
Na zaciatok si vo vete 3.7 ukdzeme, za akych predpokladov pripustné riadenie a jeho

odozva konverguju k bodu (0, 0).

Veta 3.7. Nech aspon jeden z vektorov ki, l1 je nenulovy. Nech je splneny predpoklad Q3.
Nech matica I — A je reguldrna. Nech w = {u;};°, je pripustné riadenie a x = {z¢},,
jeho odozva. Nech rad > 72, fL (21, ut) konverguje. Potom postupnost {(zy,ut)}ic, konverguje
k bodu (0,0) pre t — oo.

Dokaz. Nech w = {u;};° je pripustné riadenie a x = {x;};° jeho odozva. Vieme, Ze za pred-

pokladu reguldrnosti matice I — A plati vztah (2.22) pre 5 = 1:
i =-BT(I - A" 'Ky
celova funkciu v bode (x¢,u;) mo6zeme potom prepisat takto:
le’fk'f{)bd Z isat tak
Faeue) =k [z, — (I = A) 7 Bug + Qq (e, ue)
Odtial:
F (@ ue) = k{ (T = A) T = Ay — Bug] + Qq (e, ue)

Upravime:
P u) = k(T = A) " = 2ep1) + Qu(a, w)

Ak konverguje rad Y ;<o f (24, us), tak musi platit:
lim flo(xt,ut) =0
t—00

Vysetrime teda rad Y ;o f2(¢,u). Vezmime si ¢iasto¢ny stcet tohto radu:

N

JIN = Z ki e+ 1 ue + Qq (2, ur)
=0
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Upravme:

N N
JN = Zk?([ — A)_l[azt — Z’t+1] + Z Ql(xt,ut)
=0 =0
t Nt
= k{(I - A) zo — wnia] + Z Qi (e, ue)
t=0

Chceme ukazat, ze pripustné riadenie a jeho odozva konverguju k bodu (0, 0). Nech to neplati.
Potom existuje ¢ > 0 také, ze pre vSetky 7' > 0 existuje ¢ > T také, ze ||(x¢,us)|| > €. Pretoze
{1}, je pripustné a rad > 72, f{ (24, u;) podla predpokladu konverguje, tak je ohraniceng,
z &oho vyplyva, ze vyraz ki (I — A)_1 [xo—xN] je pre kazdé N ohraniceny. Pretoze kvadraticka

forma Q(x,u) je zaporne definitna, tak pre kazdé T' > 0 existuje t > T a n také, Ze plati:

Ql(xt7ut) S n < 0

7 ¢oho vyplyva, ze Jy diverguje, ¢o je spor s predpokladom. O

V nasledujicej vete podame dokaz o tom, ze pre kazdé x( existuje jediné optimalne
riadenie a jeho odozva pre tlohu (UlQ) s iéelovou funkciou f2(x,u) = ki'z +1Tu+ Qy(z,u),
kde aspon jeden z vektorov k1, [1 je nenulovy. Navyse ukdzeme, Ze optiméalne riadenie a odozva

su pre tato tlohu a tlohu (UlQ ) s tcelovou funkciou f(x,u) = Q;(z,u) rovnaké.

Veta 3.8. Nech aspon jeden z vektorov ki, 11 je nenulovy. Nech je splneny predpoklad Q3.
Nech matica I—A je requldrna. Nech dvojica matic (A, B) je stabilizovatelnd a nech matica Aq
je reguldrna. Potom pre kaZdé xq eristuje jediné optimdlne riadenie a jeho odozva pre ulohu

(UIQ) a st rovnaké ako pre ulohu (UIQ) s tcelovou funkciou f{(x,u) = Qy(z,u).

Dokaz. Nech z( je Iubovolné. Vieme, Ze za tychto predpokladov existuje jediné optimélne
riadenie a jeho odozva pre tlohu (UlQ ) s tcelovou funkciou fY(z,u) = Q;(z,u) vyjadrené
vztahmi (3.17) a (3.18):

ug = 11y

Ti4+1 — (A + BZl)a;t

Vieme dalej, Ze nutné podmienky optimality vyjadrené vztahmi (2.23), (2.26) a (2.27)
pre 3 =1 st pre tlohu (UlQ) s ucelovou funkciou f2(x,u) = k¥ + I¥u + Q;(z,u) rovnaké
ako pre tlohu (UlQ) s i¢elovou funkciou f2(x,u) = Qq(z,u).

Nech w = {u;},2 je pripustné riadenie a x = {z;},°, jeho odozva pre tlohu (U 1Q ) s tcelo-

vou funkciou f{(z,u) = ki 2+1Tu+Q; (x, u). Vezmime si ¢lastocény stcet radu Y 5o f2 (¢, ue):

N
In =Y [, ur)

t=0
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7 dokazu predchadzajucej vety vieme, ze plati:

N
In =k (I = A) eo — zna] + Y Qu (e, )

=0
Vieme, %e pre kazdd pripustnt odozvu, pre ktort rad Y %, f2(x,us) konverguje, plati
x; — 0 pre t — oco. Z toho vyplyva, Ze suprémum dosiahneme len pre tie pripustné riadenia
a ich odozvy, ktoré su optimdlne pre tlohu (UIQ ) s tigelovou funkciou fY = Q;(z,u). Kedze
také riadenie a jeho odozva st jediné, tak pre tlohu (UIQ ) s tcelovou funkciou flo = k‘ifzn +
llTu + Q; (z,u), existuje jediné optimalne riadenie a jeho odozva a st rovnaké ako optiméalne

riadenie a jeho odozva pre tlohu (UIQ ) s telovou funkciou f{(x,u) = Q,(x,u). O

Ozna¢me hodnotovu funkciu pre tlohu (UlQ ) s ucelovou funkciou f{) (z,u) = k?m + llTu +
Q: (2, u), ako WIQ, teda:

WlQ(acO) = su(p )Z KLy 4 1Fug + Qq (e, ug) (3.23)
wen(z0) 1—(

kde m(zp) je mnozina pripustnych riadeni pre tuto tlohu.

Veta 3.9. Nech aspon jeden z vektorov ki, 11 je nenulovy. Nech je splneny predpoklad Q3.
Nech matica I — A je reguldrna. Nech dvojica matic (A, B) je stabilizovatelnd a nech matica

Ay je requldarna. Potom hodnotovi funkciu WlQ mozeme vyjadrit nasledujicim vztahom:
WE(zo) = kT (I — A) ag + Vi (x0) (3.24)

Dokaz. Nech zg je Tubovolné. Nech w = {u;};°, je optimélne riadenie a x = {z:};~, jeho
odozva. Potom z predchadzajtcej vety vieme, Ze optimalne riadenie a jeho odozva st pre llohu
(UlQ) s tcelovou funkciou f{(z,u) = kI'z + 1fu + Q(z,u), rovnaké ako pre tlohu (UlQ)
s i¢elovou funkciou f9(z,u) = Qq(z,u).

Mame:

N
. _ 3T -1 .
Jim Ty = k(= A) g + ngnoogql(xt,ut)

kde Jy znadi ¢iastoény sucet radu y .~ K g + 1Fuy + Qq (e, uy).

Pre optimélne riadenie a jeho odozvu dostavame:

WE(zo) = kT (I — A) ag + Vi (x0)
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Tato veta nam vlastne hovori , Ze kym kvadratickd hodnotova funkcia pre tilohu (UlQ )

s ticelovou funkciou f{(z,u) = Qq(x,u) je pre kazdé x € R™ urcéena formulou:

1
VlQ(x) = ixTWN:

tak kvadratickd hodnotova funkcia pre tlohu (UlQ ) s téelovou funkciou f2(x,u) = ki +

ITu+ Qy(z,u), sa od nej ligi v linedrnom ¢lene a ak si oznacime:
d=kTa1 -4 (3.25)
tak sa pre kazdé x € R™ d4 vyjadrif vztahom:

1
WlQ (2) = 2l 2 + §$TW1$
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Kapitola 4

Linearne-kvadraticka uloha s

diskontom

V tejto kapitole sa budeme venovat tilohdm linedrne kvadratického programovania s diskont-
nym faktorom. Ukazeme si v nej, Ze na dostato¢ne malom okoli bodu 1 mé matica systému
nutnych podmienok pre 5 # 1 spektrum vlastnych hodnoét rovnako rozlozené ako symplek-
tickd matica Mi. V dalSom sa potom v dvoch podkapitolach budeme zaoberat linearne-
kvadratickou tlohou s G¢elovou funkciou bez linedrnych ¢lenov a nasledne linearne-kvadratic-
kou tilohou, v ktorej vystupuje icelova funkcia s linedrnymi élenmi. Cielom oboch podkapitol
bude néjst predpoklady, za ktorych existuju optimdlne riadenie a jeho odozva, ukéazat, kedy

st jediné a k ¢omu konverguju a naformulovat pre ne vztahy, ktorymi sa riadia.

V dalsom pre celt kapitolu predpokladajme, Ze st splnené predpoklady Q1 a Q2. Nech
B € O. Uvazujme talohu (U 52 ). Teda tlohu:

[e.9]
sup ng(wt,ut)
=0

{“t}?io

Tir1 = F(xu ut)
Ty € R"
u; € R™

ro — dané

Ozna¢me si:

Qp(z,u) = %(xTPgw + xTqu +ul Qpz + u' Ryu) (4.1)
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Potom mo6zeme funkciu fg zapisat nasledujicim sposobom:
fg(:n, u) = k:gaz + lgu + Qp(w, u) (4.2)

Z druhej kapitoly vieme, Ze optiméalne riadenie pre ulohu (U, ﬁQ ) (ak existuje) musi vyho-

vovat systému rovnic (2.31), (2.32):

Ty = Apzi+ Bpth
Py = Pﬁxt‘i‘ﬂAgwt—i—l

Predpokladajme, Ze matica A je regularna. Vieme, Ze matice A g spojite zavisia od para-
metra (3 a teda existuje okolie bodu 1, ozna¢me ho O’, také, ze pre 3 z tohto okolia je matica
A tiez regularna. Potom pre § z tohto okolia vyjadrime premennt ;41 z druhej rovnice
tohto systému:

l 1 —1

Y1 = —ﬁ(Ag)_lPﬁwt + B(Ag) (o

Dosadenim do prvej rovnice dostavame:
-1 -1
zi41 = [Ag — Ba(AL) Pgla, + B(AfL)

Celkovo méame:

zn = [Ag—Bg(AL) 'Pyla + By(AD) (4.3)
1/Jt+1 —%(A%)_lPﬁwt + %(Ag)_ll/}t (4.4)

Teda sme odvodili systém nutnych podmienok pre optimalne riesenie tlohy (U BQ ) s tcéelovou
funkciou fg(x, u) = kgx + lgu + Qp(, u).

Oznacme maticu sustavy rovnic (4.3), (4.4) ako Mg, tj.:

(M

“LAD 'Ry (AD)

O matici M; vieme, Ze je symplektickd, z ¢oho vyplyva, Ze je regularna. Vieme o nej
tiez, ze jej vlastné hodnoty lezia mimo jednotkovej kruznice, presnejsie polovica (teda n) ich
lezi vnutri a druha zvonka jednotkovej kruznice. Kedze matice Mg spojite zavisia od 3, tak
pre dostato¢ne malé okolie bodu 1 je matica Mg pre (3 z tohto okolia taktiez reguldrna a jej
vlastné hodnoty lezia rovnako mimo jednotkovej kruznice, pricom polovica (n) ich lezi zvnutra

a druha polovica zvonka jednotkovej kruznice a navyse n-rozmerny invariantny priestor:
E5 = {(z,v) € R" x R"|¢) = Lga}
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kde matica Lg je typu n x n, zodpovedajici vlastnym hodnotdm matice Mg leziacim vnutri
jednotkovej kruznice sa rovnako ako pre [ = 1 projektuje na priestor ¢ = 0. Oznac¢me toto
okolie ako O”.

Nech p(Mp) oznacuje pre kazdé § € O” maximalnu hodnotu z absolitnych hodnét vlast-
nych hodnot matice My leziacich vnitri jednotkovej kruznice. Nech Ag = p(Mpg) + ¢, kde ¢
je lubovolna dostatocne mald kladna konstanta, taka, ze plati:

1

e > % >1 (4.5)

Mnozinu tych 3 € O”, pre ktoré existuje ¢ také, ze plati (4.5) oznac¢me O".
Dalej oznacujme prienik O, 0" a O ako O, potom vietky 3 z tohto okolia bodu 1 budd
pre nas zaujimavé pre dalSie odvodzovanie a sustredime na ne nasu pozornost.
Poznamenajme eSte, ze pre 3 € 9) je za predpokladu Q3 kvadraticka forma Qﬁ(x,u)

zaporne definitna.

4.1 Ucelova funkcia bez linearnych ¢lenov

Tato podkapitola sa venuje uloham typu (U BQ ) s ticelovou funkciou Qg(z,u). Teda tlohdm,
v ktorych st kg, [z nulové. Na tvod si v nej dokazeme, ze za predpokladu stabilizovatel-
nosti dvojice matic (A, B) a predpokladu Q3 existuje pre tuto tlohu pre kazdé xy optimalne

riadenie.

Veta 4.1. Nech § € 9) je take, Ze B # 1. Nech kg = lg = 0. Nech je splneny predpoklad Q3.
Nech dvojica matic (A, B) je stabilizovatelna. Potom pre kazdé xo existuje pre tulohu (UﬁQ)

optimalne riadenie.

Dokaz. Dokaz je takmer identicky s dokazom pre vetu 3.3 z predchadzajtcej kapitoly.
Nech z¢ je lubovolné. Nech 3 € 9) je lubovolné, také, ze 3 # 1. Nech w = {u;};2 je pripustné
riadenie a x = {z¢};- jeho odozva. Ozna¢me mnozinu pripustnych riadeni z pociatku zy ako
7(zg). Oznacme dalej:
o0
Op = sup Zﬁth(wt,Ut)
wem(zo) 1—q
Stabilizovatelnost dvojice matic (A, B) ndm zaruc¢uje, Ze o je kone¢né ¢islo. Dalej z de-
finicie supréma existuje takd postupnost pripustnych riadeni spolu s ich odozvami (teda
postupnost postupnosti {{(z, uf)}2 )32, kde af = x0 a 2, = F(af,uf)), 7o plat:

o0

> 8'Qu(af,uf) /og

t=0
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pre k — oc.

Pre tito postupnost fixujme ¢, potom postupnost {(z}, uf)}zozo je ohranicend a teda exis-
tuje z nej vybrand konvergentna podpostupnost. Ozna¢me si pre kazdé ¢ limitu konvergentne;j
podpostupnosti ako (x},uf).

Skonstruujme konvergentni postupnost postupnosti rovnako ako v dokaze vety 3.3, do-
staneme {{(azfj , ufj )}iZo}520 vybrant podpostupnost z postupnosti {{(@F, uf)}e2 o122, ktord
konverguje k postupnosti {(x},u;)}72, bodovo, pricom plati, ze z{; = xo a vdaka spojitosti
funkcie F tiez: xf, | = F(xf,uf).

Oznacme si: .

Sr =Y 8'Qglaf,uf)
t=0
a limitu (pokial existuje) ako:

*_1: *
S = lim S
n—oo

Prezna¢me spétne indexy k; na k, potom Sﬁ znaci:

Sy = B'Qulat,uf)

t=0
a Sk
Sk = lim Sk
n—oo
Mame:

lim S(]jo =03

k—o00
Pretoze Qﬁ(az,u) je zéporne definitnd kvadratickd forma a 5 > 0, tak pre kazdé k je
postupnost {S¥}° | nerasttica, pricom plati, Ze Sk < 0 pre kazdé n. Rovnako tak postupnost
{55122, je nerasttca, pricom plati, ze S} < 0 pre kazdé n. Ukdzeme, Ze pre kazdé n plati:
Sy > 0g.

Nech to neplati, potom existuje také ng a € > 0, ze pre kazdé n > ng:
S; <og—¢€
7Z toho ale vyplyva, Ze existuje také kg, Ze pre kazdé k > kg plati:

k 9
Sn0<0'5—§

pretoze vsak {Sﬁ o o je pre kazdé k nerasttca postupnost, tak mame pre kazdé k > ko a

pre kazdé n > ng:
k £
S, < og— 3
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Z toho dalej pre kazdé k > kq:

3
S§O<O'Ig—§

¢o je spor s predpokladom, ze limy_o, S* = og.
Takze méame nerasticu postupnost S, ktora je zdola ohrani¢ena hodnotou o3 a teda je
konvergentné a rovnako aj S3, > 0. Zaroven mame S35, < o0, pretoze og je suprémum.

Z toho vyplyva, ze S% = o. O

Poznamka 4.1. Poznamenajme, Ze wvedend veta plati aj pre 3 z okolia O, ¢o je (v zmysle

inklizie) Sirsie okolie ako O.

V nasledujticej vete si ukdzeme, Ze existuje jediné optimélne riesenie systému rovnic (4.3),

(4.4), ktoré konverguje k bodu (0,0) pre t — oo.

Veta 4.2. Nech € 9) je take, Ze 3 # 1. Nech kg = lg = 0. Nech je splneny predpo-
klad Q3. Nech matica Ay je reguldrna. Nech dvojica matic (A, B) je stabilizovatelnd. Potom
existuje jediné optimdlne riesenie systému rovnic (4.3), (4.4), ktoré konverguje k bodu (0,0)

pre t — 0.

Dékaz. Zvolme Tubovolné 3 € O také, ze B # 1. V predchadzajiicej vete sme si ukazali,
ze pre kazdé takéto [ a pre kazdé xg existuje optiméalne riadenie a jeho odozva pre tlohu
(Ug2 ). KedZe postupnost odoziev je optimélna, tak musi vyhovovat systému rovnic (4.3),
(4.4) s maticou Mg. T4 ma vSak n vlastnych hodnét leziacich vnutri jednotkovej kruznice a
n vlastnych hodnét leziacich zvonka jednotkovej kruznice, z ¢oho vyplyva, Ze rieSenie tohto
systému musi konvergovat k bodu (0,0). V opa¢nom pripade by existovala konstanta ¢ > 0
taka, ze pre kazdé ¢ by platilo:

c

[(@e, ¥e)ll = = [[(zo, vo)|

Ag

Pretoze na O plati (4.5), tak by bol rad >, ﬁtQﬁ(azt, ut) divergentny, ¢o je spor.

Zaroven dostavame, ze pre priestor Eg definovany v predoslom plati:

E5 = {(z0,%0) € R™ x R"|(z(z0,%0), ¢t(z0,0)) — (0,0) pre t — oo}

kde (x¢(xo, 10), ¥(x0, 10)) je rieSenie systému rovnic (4.3), (4.4) vychadzajice z bodu (xo, ¥yp).
Takze pre kazdé x; je 1, urCené jednoznacne vztahom vy = Lgz; a teda existuje jediné

optimélne rieSenie systému rovnic (4.3), (4.4), ktoré konverguje k bodu (0, 0). O

V dalsom odvodime vztahy pre optimalne riadenie a jeho odozvu.
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Veta 4.3. Nech (§ € 9) je take, Ze B # 1. Nech kg = lg = 0. Nech je splneny predpoklad Q3.
Nech matica Ay je requldrna. Nech dvojica matic (A, B) je stabilizovatelnd. Potom optimdlne

riadenie u; mozeme vyjadrit jednoznacne ako linedrnu funkciu stavu ;.

Dokaz. Veta vyplyva z predchadzajiaceho tvrdenia.
Pretoze pre u; plati vztah (2.28):

u = —Ry'Qpry — SR B iy (4.6)
a pretoze z predchadzajicej vety vieme, Ze na priestore Eg mozeme vyjadrif ¢, jednoznacne
formulou:
Y = Lgxy (4.7)
tak po dosadeni (4.7) do vztahu (4.4) mame:
vrrn = 5l-(A5) P+ (AD) " Loley (48)
Dosadenim (4.8) do (4.6), dostaneme:
w = —[R5'Qp + R;'BT(AL) " (Ls — Py)la, (4.9)
Oznacme:
Zy = ~IR;' Qs + R3'BT(A]) " (Ly — Pp) (4.10)
Potom mame:
u = Zgxy (4.11)
O

Dosledok 4.1. Nech (§ € 9) je take, Ze 3 # 1. Nech kg = lg = 0. Nech je splneny predpoklad
Q3. Nech matica A je requldrna. Nech dvojica matic (A, B) je stabilizovatelna. Potom odozvy

na optimdlne riadenie spliiaji diferencni rovnicu:
Ti41 = (A+ BZg)xy (4.12)
kde (A+ BZjg) je stabilnd matica.
Dékaz. Pretoze stav v nasledujicej periéde musi spliat:
Tiy1 = Axy + By
tak pre odozvu na optimalne riadenie dostavame vztah:
Ti41 = (A+ BZg)xy

Pretoze pre kazdé xy optiméalne riadenie a jeho odozva konverguju k nule, tak matica (A +

BZg) musi byt stabilna. O
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Ozna¢me hodnotovt funkciu pre tlohu (U BQ ) s icelovou funkciou fg (7,u) = Qg(w,u) ako
VﬁQ, teda:

o0

VﬁQ(xo): sup ZQﬁ(xt,ut) (4.13)

wem(zo) 1—q
kde 7(z¢) zna¢i mnozinu pripustnych riadeni pre tuto tlohu. Opéf mozeme ukazaf, ze hod-

notova funkcia VﬁQ je kvadraticka.

Veta 4.4. Nech (8 € 9) je také, Ze B # 1. Nech kg = lg = 0. Nech je splneny predpoklad Q3.
Nech matica Ay je reguldrna. Nech dvojica matic (A, B) je stabilizovatelnd. Potom hodnotovd

funkcia VBQ pre ulohu (UﬁQ ) je kvadratickd funkcia premennej x.

Dokaz. 7 predchadzajuceho vieme, Ze za tychto predpokladov existuje jediné optimalne ria-

denie a jeho odozva, pre ktoré platia vztahy (4.11), resp. (4.12):

uy = Zgﬂj‘t
Tiy1 = (A—I—BZg):Et

Zo vztahu (4.12) pre optiméalny stav v nasledujucej periéde mame:
z; = (A+ BZg)'xg (4.14)

Vezmime si ¢iastoény sucet radu Y ;2 5'Q 3(7t, ut) s optimalnym stavom a riadenim:

N
In =Y B'Qu(xs,u)

t=0
Potom:
N
1 t T T AT T
In = Z 55 [(xt Pary + 23y Qﬁut + uy Rgut)]
t=0
Po dosadeni (4.11):
N
In =Y 58" Powe + 20" Qf Zga + 2" Z] Ry Zga)]
t=0

Dosadme dalej (4.14), dostaneme:

N
1 t
JN - 5 Zﬂt[(xoT(AT + ZgBT) Pg(A + BZg)tx()—i-
t=0
+220" (AT + ZTBTY' QL Z4(A + BZg) xo+

+(AT + ZE BT ZE Ry Z5(A + BZg) o))
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Odtial:
N

1 t
JN = §x0T[Z BUAT + ZEBT) (Ps +2Q% Zs + Z5 R3Zs) (A + BZg)"|zg
t=0

prejduc k limite pre N — oo méame:

N

1 t
V(o) = swo” [ B (AT + Z§ B) (Ps + 2Q% Zs + Z5 RpZ3)(A + BZg)'|xg
2 t=0
Oznacme:
Ws =Y BYAT + ZEBY) (Ps +2Q% Zs + ZE Ry Z5)(A + BZs)! (4.15)
t=0
Potom:
1
VﬁQ(l’o) = 5960TW5960 (4.16)
O

4.2 Ucelova funkcia s linearnymi ¢lenmi

V tejto sekcii sa budeme venovaf tlohe (U g ) s kvadratickou ucelovou funkciou, v ktorej
vystupuju linearne ¢leny. V rovnako nazvanej sekcii v predchadzajucej kapitole sme pri do-
kazovani existencie a jednoznacnosti vyuzivali predpoklad regularnosti matice I — A. Tento
predpoklad bude potrebny aj tu, pricom ho rozsirime i na matice I — 3A pre vhodné j3.

Plati, ze ak matica I — A je regularna potom existuje okolie bodu 1 také, Ze pre (8 z tohto
okolia je matica I — A regularna. Ozna¢me prienik tohto okolia s O ako 0.

V prvej vete tejto Casti pre 8 € O dokazeme, Ze pre kazdé z( existuje jediné optimalne
riadenie a jeho odozva pre tlohu (Ug) s ucelovou funkciou fg(a:, u) = k‘gx + lgu + Qp(z, u).
NavySe ukdzeme, Ze optimalne riadenie a odozva st pre tito tlohu a pre ulohu (U BQ ) s tcéelovou

funkciou fg(x,u) = Qg(z, u) rovnaké.

Veta 4.5. Nech 3 € O. Nech 3 € O je také, Ze 3 # 1. Nech aspon jeden z vektorov kg, lg
je nenulovy. Nech je splneny predpoklad Q3. Nech matica I — A je reguldrna. Nech dvojica
matic (A, B) je stabilizovatelnd a nech matica Ay je regularna. Potom pre kaZdé xo existuje
jediné optimdlne riadenie a jeho odozva pre tulohu (UﬁQ) a su rovnaké ako pre tlohu (UﬁQ)

s ucelovou funkciou fg(x,u) = Qs(w,u).

Dokaz. Nech zq je lubovolné. Vieme, Ze za tychto predpokladov existuje jediné optimaélne

riadenie a jeho odozva pre ulohu (U 52 ) s tcelovou funkciou fg(x,u) = Qg(z,u) vyjadrené
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vztahmi (4.11) a (4.12):

uy = Zgﬂj‘t
Tiy1 = (A—I—BZg):Et

Dalej vieme, Ze nutné podmienky optimality vyjadrené vztahmi (2.23), (2.26) a (2.27) st
pre tlohu (U g ) s ucelovou funkciou fg (x,u) = k‘gaz + lgu + Qg(z,u) rovnaké ako pre tlohu
(Ug) s ucelovou funkciou fg(az, u) = Qg(z,u). Navyse za predpokladu 8 € O je matica [ —3A
reguldrna a teda plati vztah (2.22) medzi kg a lg:

ls = —BBT(I — BAT) 'kg

Nech w = {u;};2, je pripustné riadenie a x = {¢},-, jeho odozva pre ulohu (U, ﬁQ )
s ucelovou funkciou fg(a;,u) = k‘gaz + lgu + Qp(z,u). Vezmime si ciastoény sucet radu
I 5t[k‘§$t + lgut + Qe u)):

N
Jn = Zﬁt[k§$t + lgut + Qﬁ(l’t,’LLt)]
t=0

Dosadme za lg vztah (2.22), potom mame:

N N
In = Y Bkl — B = BA) T Bu] + ) B'Qp(wr, ur)
=0

t=0

N N
In =Y BEEI = BA) NI — BA)z, — BBu] + > B Qu(xe ue)
t=0

t=0

N N
In = Y BRG(I = BA)  w — Brea] + Y 6'Qplar, ue)
1=0

t=0

N
= K5I = BA) wo — BN ania] + D A Qplar ur)

t=0
Aby mohla byt postupnost {z;},°, pripustnou odozvou, pre ktort rad  ;°, " fg(;vt,ut)
konverguje, musi byt ohrani¢en a teda SNz — 0 pre N — oo. Z toho vyplyva, Ze suprémum
dosiahneme len pre tie pripustné riadenia a ich odozvy, ktoré st optimélne pre tlohu (U, ﬁQ )
s ucelovou funkciou fg(a;,u) = Qg(r,u), kedZe také riadenie a jeho odozva st jediné, tak
pre tlohu (Ué2 ) s tcelovou funkciou fg(ac, u) = kgaz—i-lgu—i—Q (7w, u) existuje jediné optimélne
riadenie a jeho odozva a su rovnaké ako optimalne riadenie a jeho odozva pre tulohu (U, 5Q )

s ucelovou funkciou fg (z,u) = Qp(r,u). O

40



Ozna¢me hodnotovu funkciu pre tlohu (U BQ ) s ucelovou funkciou fg(aj, u) = k;gg; + lgu +
Qp(z,u) ako WﬁQ, teda:

WBQ(:E()) = sup Z ﬁt[k‘gznt + lgut + Qp(w, u)] (4.17)

wem(z0) 1—q

kde 7(z¢) je mnozina pripustnych riadeni pre tuto ulohu.

Veta 4.6. Nech 3 € O je take, Ze B # 1. Nech aspon jeden z vektorov kg, lg je nenulovy.
Nech je splneny predpoklad Q3. Nech matica I — A je reguldrna. Nech dvojica matic (A, B)
je stabilizovatelnd a nech matica A1 je reguldrna. Potom hodnotovi funkciu WBQ maozeme

vyjadrit nasledujicim vztahom:
W (x0) = kj (I — BA) ™ ag + V2 (o) (4.18)

Dokaz. Nech zg je Tubovolné, také, ze § # 1. Nech w = {us};~, je optimalne riadenie a
x = {z+};=, jeho odozva. Potom z predchadzajicej vety vieme, Ze optimalne riadenie a jeho
odozva st pre ulohu (U g ) s tcelovou funkciou fg (x,u) = k;‘?l’ + lgu + Qgp(x, u) rovnaké ako
pre pre tlohu (Ug) s tcelovou funkciou fg(w, u) = Qg(w,u).

Mame:
N
. T -1 . ¢
]\}1_1)110 In =kz(I — BA)" z0 + ]\}I_Igo ;_0 B'Qp(w, ur)

kde Jy znadi iastocny sucet radu Y72 B'[kfxr + [fus + Qpla, ur)].

Pre optimélne riadenie a jeho odozvu dostavame:

W (wo) = k5 (I — BA) o + Vi (o)

O

Tato veta nam vlastne hovori , Ze kym kvadratickd hodnotova funkcia pre tlohu (U BQ )
s ucelovou funkciou fg(a:, u) = Qg(w,u) je pre kazdé = € R™ uréend formulou:

1
VﬁQ(x) = §wTWﬁw

tak kvadratickd hodnotova funkcia pre tlohu (U, ﬁQ ) s ucelovou funkciou fg(w,u) = k‘gw +

lgu + Qg(z,u) sa od nej lisi v linedrnom ¢lene a ak si oznacime:
2f =k (I — A~ (4.19)

tak sa pre kazdé x € R™ d4 vyjadrif vztahom:

1

WBQ(:L') = zgzn + §JETW5:E
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Kapitola 5

Extremalne riesenia pre pévodnu

ulohu

V tejto kapitole sa budeme zaoberaf extremélnymi rieSeniami pre ulohu (Ug), tj. rieSeniami,
ktoré vyhovuji nutnym podmienkam optimality, ale nemusia byt optimalnymi. Budeme uva-

zovat (3 Tubovolné z okolia O vratane bodu 1.

V dalsom pre celt kapitolu predpokladajme, Ze st splnené predpoklady Q1 a Q2. Nech
B € O. Uvazujme teda systém tloh (Ug) pre § z tohto okolia:

sup Z 5tfﬁ(xt, ut)
t=0

{“t}?io

Tep1 = F(xe, w)
r, € R?
u € R™
To — dané
kde ako v predoslom f3 je C" funkcia, pricom r > 3.
V kapitole 2 sme si ukézali, ze pre 8 € O a teda aj pre 3 € O existuje také okolie bodu

(0,0,0), ze od systému nutnych podmienok (2.34) mozeme prejst k zredukovanému systému
(2.37), (2.38):

Tiy1 = Agl’t + ﬁBﬁ?/)t_H +¢. v. T,
Ui = Pgui+ AL +& v

Riesenia, ktoré vyhovuji systému podmienok (2.34), resp. systému (2.37), (2.38) budeme

nazyvat extremélnymi. PretoZze uvedené systémy st len nutnymi podmienkami optimality, ne-
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znamena to, ze extremalne rieSenia su aj optimalnymi. Za predpokladu, Ze optimélne rieSenie
existuje, tak extremalne riesenie je aj optimalnym.
Predpokladajme, Ze matica A, je reguldrna, potom aj matice Ag st pre 8 € O reguldrne.

Plati nasledujuca veta.

Veta 5.1. Nech [ je z O. Nech matica Ay je requldrna. UvaZujme rovnicu (2.38) zo systému

nutngych podmienok optimality:

1/Jt = Pgl’t + 6A£¢t+1 +cé v (51)
Potom ezistujii také 1 > 0 a g2 > 0, Ze pre kazdé 3 € O rovnica (5.1) urcuje jediné C" 1
zobrazenie 41 : B[(0,0),e1] — B[0, 3] také, Ze ¢+1(0,0) = 0, pricom plati:

1
g

Dokaz. Nech 8 € O je Tubovolné. Oznacme:

_ 1 _
(AD) " Py + —(AD) i+ ¢ v (5.2)

Yep1(ze, ) = 3

O(w¢, P, Y1) = —Vs + Py + 5A§¢t+1 +dé. v.r.
Potom plati:
$(0,0,0) = 0
Funkcia ® (x4, 1, V¢41) je spojita aj spojite diferencovatelna. Dalej plati:

9%(0,0,0)
8¢t—i—1

¢o je podla predpokladov reguldrna matica. TakZe st splnené vSetky podmienky vety o im-

T
= ﬁAﬁ

plicitnej funkcii, ¢o dokazuje tvrdenie. O

Z predchédzajucej vety vyplyva, ze lokdlne v okoli bodu (0,0,0) mozeme 1 vyjadrit
jednoznacne ako spojitu funkciu premennych (x4, ;). Dosadme toto vyjadrenie (5.2) do rov-

nice (2.37), dostaneme:

-1 -1 .
Ti41 = [Ag—Bg(Af) Pgluy +Bg(Af) ¢ +E vt (5.3)
1 -1 1 -1 .
Yyl —B(AE) Pgx; + E(A%) Wy + ¢ V. T (5.4)

Oznacéme y; = (x4,v) a funkciu na pravej strane predchadzajiceho systému ako G,
potom mozeme pisat:
yer1 = Gp(y) (5.5)

Alebo tiez:
Yir1 = Mpayy + €. v. 1. (5.6)
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Predpokladajme, Ze s splnené nasledujuce predpoklady: predpoklad Q3, matica I — A je
reguldrna, matica A, je reguldrna a dvojica matic (A, B) je stabilizovatelna. Potom pre kazdé
B z O o matici Mg plati, Ze je regularna a teda invertovatelnd a jej vlastné hodnoty lezia
rovnako ako pri matici M7 mimo jednotkovej kruznice, pricom polovica (n) ich lezi zvnutra a
druhaé polovica zvonka jednotkovej kruznice. Navyse n-rozmerny invariantny priestor Eg zod-
povedajici vlastnym hodnotdm matice My leziacim vnutri jednotkovej kruznice sa rovnako
ako pre 8 = 1 projektuje na priestor ¢ = 0.

Oznacme si:
Wg(O) = {y € Q|G (y) — 0 pre t — 0o a G'(y) € Q pre kazdé t > 0} (5.7)

kde G*(y) je zloZené zobrazenie pozostavajtce z t-krat aplikovaného zobrazenia G na y a Q
je okolie bodu 0. V tomto pripade predstavuje bod 0 nulovy§ vektor z priestoru R?".

Podla vety 1.4.2 z [15] pre  dostato¢ne malé Wﬁs (0) je C"~1 varietou, ktord sa nazyva
lokalna stabilnd varieta bodu 0 a plati, Ze dotykovy priestor k Wﬁs (0) v bode 0 je Eg a

trajektorie vSetkych bodov neleziacich na Wg (0) opustia . Dalej plati nasledujiice tvrdenie:

Veta 5.2. Nech 8 je z O. Nech siu dalej splnené nasledujiice predpoklady: predpoklad Q3,
matica [ — A je requldrna, matica Ay je requldrna a dvojica matic (A, B) je stabilizovatelnd.

Potom WﬁS(O) mozeme vyjadrit nasledujicim sposobom.:
W5 (0) = {y = (,9) € Q) = hy(x)} (5.8)
kde hg(x) = Lgx + ¢. v. ..

Dokaz. Nech 3 € O je Iubovolné. Vieme, Ze priestor Eg mozeme vyjadrit nasledujicim

sposobom:
Ef ={y = (z,9)|¢ = Ly}

Urobme transforméciu premennych (x¢,1):

Tt Gt
=C
(0)-e()
Gi+1 1 Gt Gt
=C, " MgC =A
<§t+1> 7 ﬁﬁ(ﬁt) 6(&)

kde pre maticu Ag plati:
M§ 0
Ag=|( 7
0 M g
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a matice M 5 , M g su Jordanove kanonické formy prislichajiuce k vlastnym hodnotam matice
Mg s |A| <1, resp. |A| > 1.
Ak ¢ = Lgx, tak dostaneme:

Oznacéme:
11 12
21 22
G5 Cp

Potom mame:

z = Ch'G (5.9)
a:
Lgxy = C3¢, (5.10)
KedZe pre kazdé ( existuje jediné z, tak z (5.9) vyplyva, Zze matica Cél je regularna, a teda
dostavame:
G =[CH e (5.11)
Dosadenim (5.11) do (5.10) mame:
Ly =C2CH™ (5.12)

Vieme, ze za predpokladov vety existuje lokalna stabilna varieta Wg (0). Na stabilnej variete

plati, ze £ = gg((), kde funkcia gg je taka, ze ngT(lcl) — 0, 6g§éo — 0 pre ( — 0, z ¢oho vyplyva,
ze:
Iy Gt
(o 95(Ct)
A teda:
xr = Ch' G+ C3gp(¢) (5.13)
Py = C3 ¢+ CFgp(Gr) (5.14)

Nésledne mozeme potom podla vety o implicitnej funkcii z rovnice (5.13) vyjadrit ¢; jedno-
znacne ako funkciu xy:
G=[CH e e v, (5.15)

Dosadenim (5.15) do (5.14) dostédvame:

b= CH O a4 8 v (5.16)
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Pretoze plati (5.12), tak Wﬁs (0) mozeme vyjadrit nasledujicim spdsobom:

W5 (0) = {y = (x,9) € Qf¢p = h(x)}
kde hg(x) = Lgx + ¢. v. r. O

Predchadzajtca veta hovori, ze ak (xg, ), kde ¥g = hg(xo), lezi v WBS(O), potom celd
trajektoria (x¢(zo,10), ¥(zo, o)) lezi v Wﬁs(O) a konverguje do bodu (0, 0). Teraz si povieme

nieco o vztahu pre extremélne riadenie a jeho odozvu.

Veta 5.3. Nech 3 je z O. Nech su dalej splnené nasledujice predpoklady: predpoklad Q3,
matica I — A je requldrna, matica Ay je requldrna a dvojica matic (A, B) je stabilizovatelnd.
Nech (zg,10) € Q, potom extremdlne riadenie mozZeme vyjadrit jednoznacne ako funkciu
stavovej premennej x; vztahom:

U = Zgxy + €. v. T (5.17)
Dokaz. Pretoze pre u; plati vztah (2.36):
uy = —R5'Qpuy — BR; BTy + ¢ v 1. (5.18)

a pretoze z predchadzajucej vety vieme, Ze na priestore Wﬁs mozeme vyjadrif ¢; jednoznacne
formulou:

by = Lgwy + & v. 1. (5.19)
tak po dosadeni (5.19) do vztahu (5.4) mame:
1

-1 -1 y
Vg1 = B[—(A%) Ps+ (Ag) Lglay +¢. v. r. (5.20)
Dosadenim (5.20) do (5.18), dostaneme:
U = ZﬁZEt +¢. v.r.

O

Dosledok 5.1. Nech 3 je z O. Nech st dalej splnené nasledujice predpoklady: predpoklad Q3,
matica I — A je requldrna, matica Ay je requldrna a dvojica matic (A, B) je stabilizovatelnd.

Nech (z9,%0) € Q, potom odozvy na extremdlne riadenie spliaji diferencni rovnicu:
41 = (A+ BZg)zy + ¢ v. 1. (5.21)

kde (A+ BZjg) je stabilnd matica.
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Dékaz. Pretoze stav v nasledujicej periéde musi spliat:
Tiy1 = Axy + By

tak dosadenim vztahu (5.17) za u; pre odozvu na optimalne riadenie dostdvame vztah (5.21).
Pretoze pre kazdé xy optiméalne riadenie a jeho odozva konverguju k nule, tak matica (A +

BZg) musi byt stabilna. O

Doteraz sme hovorili len o extremalnych rieSeniach, pretoZe ukéazat existenciu optimélneho
rieSenia pre tlohu (Up) je velmi tazké. Neskor ukazeme, za akych predpokladov optimalne
rieSenie pre tlohu (Ug) existuje. Pre tcely nasledujicej vety vSak mozeme predpokladaf, Ze
existuje a teda extremalne rieSenie je stcasne aj optimalnym. KedZe na variete Wﬁs (0) je je-
diné, tak aj optimalne riesenie je jediné. V nasledujtcej vete si odvodime vztah pre hodnotovi
funkciu tlohy (Ug).

Ozna¢me hodnotovi funkciu pre tlohu (Ug) s tcelovou funkciou fg(x, u) ako WBP , teda:

W;(l’o) = Sup Zﬁtfg(xt,ut) (522)
wem(z0) y—q

kde 7(z¢) zna¢i mnozinu pripustnych riadeni pre tuto ulohu.

Veta 5.4. Nech 3 je z O. Nech su dalej splnené nasledujice predpoklady: predpoklad Q3,
matica I — A je requldrna, matica Ay je requldrna a dvojica matic (A, B) je stabilizovatelnd.
Nech (xq,10) € Q a nech pre ulohu (Ug) existuje optimdlne riadenie, potom mozZeme Wé)(a:())
vyjadrit vztahom:

Wﬁp(xo) = WﬁQ(xo) + ¢ v (5.23

)
Dokaz. 7 predchédzajiceho vieme, ze za tychto predpokladov existuje na variete Wﬁs (0)
jediné extremalne riesenie dévajuce jediné extremélne riadenie, pre ktoré platia vztahy (5.17),

resp. (5.21):

up = Zgri+C ov.T.

41 = (A+BZg)xy+¢ v.r.

KedZe predpokladéame existenciu optimélneho rieSenia, tak extremélne rieSenie je optimal-

nym. Zo vzfahu (5.21) pre optimélny stav v nasledujtcej periéde mame:
zy = (A+ BZg)'wo + & v. 1. (5.24)

Vezmime si ¢iastocny sucet radu > ,o 3'€3(2¢, us) s optimalnym stavom a riadenim:
N
Iy = B, u)
=0
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Potom:

N
1 .
Jny = Z ﬁt [k’gﬂj‘t + lgut + §(£EtTPﬁﬂj‘t + 233}71@%%«/ + utTRﬁut) “+C. V. I‘.]
t=0

Po tprave:

N

Iy = k5 (I = BA) Hwo — B ania] + ) BN Qp(anw) +E v x]
t=0

Venujme sa teraz funkcii Qg(x, u)+¢. v. r.. Ozna¢me ju K (z,u). Dosadme za u; vztah (5.17),
dostaneme:
K(x,u) = o) (Pg +2Q5 Zs + Z5 R Zg)wy + €. v. 1.

Pretoze pre x; plati (5.24), mame:
K (20, u) = 23 (AT + ZE BT (Ps +2Q% Z5 + ZE R3Z3)(A + BZg)'Jwg + & v. 1.
Prejdac potom k limite pre N — oo pre Jy a pouzijuc oznacenie (4.15), dostavame:
W5 (z0) = k} (I — BA) 2o + 2 Wamo + 8. v. 1.

A teda mame:
W4 (o) = W§ (o) + & v. 1.

O

7 predchadzajiceho vidime, Ze ak by existovalo optimalne riadenie a jeho odozva a teda aj
optimélne riesenie systému rovnic (5.3), (5.4), tak by sa vztah pre toto riadenie lisil od vztahu
pre optimélne riadenie tuloh (U 52 ) len v ¢lenoch vyssieho ako prvého radu a rovnako to plati aj
pre vztah (5.21) pre optimalnu odozvu. Zarovern hodnotova funkcia by sa lisila od hodnotovej
funkcie pre tlohu (U g ) s tcéelovou funkciou k‘gx + l%u + Qg(z,u) len v ¢lenoch vyssieho ako
druhého radu.

Spominali sme vsak, Ze ukazaf existenciu optimalneho riadenia je pre tlohu (Ug) velmi
néaroc¢néa uloha. Nasledujtce dve kapitoly by ¢iastocne mohli uspokojit nasu zvedavost v tomto

smere.
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Kapitola 6

Rovnica dynamického
programovania a jej riesenie

metodou postupnych aproximacii

6.1 Rovnica dynamického programovania

Tato kapitola predstavuje zhrnutie prace [7] a posluzi ako odrazovy mostik pre dalsie odvo-

dzovanie v nasledujuicej kapitole.

Uvazujme autonémnu tlohu optiméalneho programovania na nekone¢nom c¢asovom hori-

zonte s diskrétnym ¢asom. Oznacujme tato ulohu ako (P3):

sup Zﬁtfo(ﬂﬁt,ut)

{ue}iZo t=0
Tep1 = F(xe,uy) (6.1)
;€ X CR" (6.2)
w, € U CR™ (6.3)
xo € X (6.4)

kde 8 € (0,1), fO: R*"xR™ — R, F : R" xR — R" st dané funkcie a x¢ je dany pociatocny
stav.

Pripustné riadenie w = {u;};2, pre tto dlohu a jeho odozva x = {z;};°, musia spliiat
podmienky (6.2), resp. (6.3).

Pre kazdé x € X oznacme:

I'z)={ueUlF(zx,u) € X} (6.5)
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potom je zrejmé, ze podmienky (6.2) a (6.3) sa daju ekvivalentne prepisat ako: uy € I'(xy)
pre vietky ¢ = 0,1,2,... Teda moézeme povedaf, Ze w je pripustné riadenie pre tlohu (Ps)

préave vtedy, ked so svojou odozvou y pre vietky t = 0,1, 2, ... spliia:
U € F(:Et)

Pre dany podiatoény stav zo € X mozeme tiez definovaf m(xg) ako mnozinu riadeni

pripustnych zo stavu xg, tj.:
m(wo) = {{ur}Zg|ue € T(wt), w41 = F(wr,up);t = 0,1,2, ...}
Teraz zavedieme predpoklad, ktory ndm zabezpedi, aby 7(zg) # 0 pre kazdé 2o € X:

Predpoklad P1: I'(x) # () pre kazdé z € X

Budeme esfe vyzadovat, aby aj limita v Gcelovej funkcii skuto¢ne existovala. Zavedieme

dalsi predpoklad:

Predpoklad P2: Pre kazdé 2y € X a pre kazdé w € m(z) existuje
n
. t £0
g%;ﬁﬂ%w

Poznamenajme, Ze predpoklad P2 sa da zabezpecit napriklad podmienkou ohrani¢enosti
funkcie f° a poziadavkou, aby 8 € (0,1) (t4 je vsak splnend, lebo vystupuje uz v zadani
ulohy).

Pre kazdé k = 0,1,2, ... definujme funkciu Ji : X x m(x9) — R ako:

k

Te(wo,w) =D B fO (s, uy)

t=0
S vyuzitim predpokladu P2 mézeme tiez definovat funkciu J : X x m(zg) — R nasledovne:
J(xo,w) = lim Jg(zo,w)
k—o0
Napokon definujme hodnotovt funkciu V* : X — R ako:

V*(zg) = sup J(zo,w)

wem(xo)

Uvazujme dalej funkcionélnu rovnicu v nasledujicom tvare:

Vi(x) = Z?F){fo(w’u) + BVI[F(z,u)]} (6.6)

Potom podla [7] platia tieto tvrdenia:
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Veta 6.1. Nech st splnené predpoklady P1 a P2, potom hodnotovd funkcia V* splia (6.6).

Veta 6.2. Nech si splnené predpoklady P1 a P2. Ak'V je riesenim (6.6) a splia pre kazdé
xo € X a pre kazdé w € m(xg):

tlim BV (2) =0 (6.7)
potom V =V, tj. V' je hodnotovou funkciou.

Veta 6.3. Nech st splnené predpoklady P1 a P2. Nech w* € w(xg) je optimdlne riadenie

pre pociatocny stav xg. Potom pre t = 0,1,2,.. plati:
Vi (ap) = fO(af,up) + BV [F (2], uf)] (6.8)

Veta 6.4. Nech siu splnené predpoklady P1 a P2. Nech w* € 7(xg) je pripustné riadenie
z pociatocného stavu o splriajice vztah (6.8) a podmienku:

lim sup S'V*(z}) <0 (6.9)

t—o00

Potom w* je optimdlne riadentie pre ulohu (Pg).

V predchadzajicom sme definovali I'(z) = {u € U|F(z,u) € X} pre kazdé x € X, dalej

mozeme definovat este i I'*(z) C I'(z) ako:
I*(z) = {u € D(x)|V*(x) = fO>x,u) + BV*[F(x,u)]} (6.10)

Potom veta (6.3) hovori, ze pre kazdé optimalne riadenie plati, Ze u; € I'*(x;) pre kazdé
t =0,1,2,... a veta (6.4) vravi, Ze pokial Tubovolné riadenie pre kazdé ¢t = 0,1,2, ... spliia

uy € I'*(z;) a podmienku (6.9), potom je optimalne.

6.2 Metoda postupnych aproximacii

V tejto Casti sa pozrieme na to, ako riesit rovnicu dynamického programovania (6.6) pre tlohu
(Pg). Rovnica (6.6) je funkcionalna rovnica, v ktorej ako neznama vystupuje funkcia V.
Preto sa budeme zaoberat predpokladmi, ktoré nidm zabezpeéia existenciu a jednoznacnost
hodnotovej funkcie ako riesenia tejto rovnice.

Klasicky pristup k tomuto problému je metéda postupnych aproximacii. Zacneme tak, ze
si vezmeme pociatoéni volbu, nejaka funkciu Vy. Potom definujeme novi funkciu V; dani

formulou:

Vi(z) = Zl;%)){fo(w,w + BVO[F (z,u)]}

Pokial Vi(x) = Vy(x) pre kazdé = € X, potom V} je rieSenim (6.6).
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Predpokladajme, ze Vi (z) # Vp(z), potom pouzijeme V3 ako novi volbu a zadefinujeme
dalsiu funkciu V5 dant:

Va(z) = ng){f%,u) + BVA[F (z,u)]}

Takto mozeme definovat postupnost funkcii {V}}7° , rekurentne dant vztahom:

Vi (z) = Zl;?){fo(%U) + BV F (2, u)]} (6.11)

pre k =0,1,2,... A mozeme dufat, ze konverguje k funkcii V' vyhovujicej (6.6). Ak by sme
navyse ukazali, Ze limy_, o, Vi je rovnaka pre vSetky pociato¢né Vj, bola by jedinou funkciou
splitajiicou (6.6).

Definujme teda pre kazda funkciu V' : X — R nova funkciu TV : X — R ako:

TV (z) = 2111%) ){fo(aj, u) + BV [F(x,u)|} (6.12)

Potom rekurentny vztah mozeme prepisat do tvaru:
Viet1(z) = TVi()

Ked to mamé takto zapisané, vidime, Ze je potrebné najst tak(i mnozinu funkcii C, ktort
operator 1" zobrazuje do seba, a Ze najdenie pevného bodu zobrazenia T, tj. funkcie V € C
takej, ze V' =TV, je ekvivalentné néjdeniu rieSenia (6.6). Metéda postupnych aproximaécii je
sposob ako konstruovat tento pevny bod.

Teraz si zavedieme niekolko definicii:

Definicia 6.1. Mnozinova funkcia I' : X — U sa nazgva polospojita zdola v bode x € X, ak
I'(x) je neprdzdna a ak pre kazdé u € I'(z) a kaZdi postupnost {x,}52; bodov z X s limitngm
bodom x € X existuje prirodzené ¢islo N > 1 a postupnost {u,}52, takd, Ze u, € I'(xy)
pre kazdé n > N a u, — u. (Ak T'(2) je neprdazdna pre kazdé z € X, potom je vidy mozné
vziat N =1.)

Definicia 6.2. MnoZinovd funkcia T : X — U sa nazyva polospojita zhora v x € X, ak T'(x)
je neprdzdna a pre kaZdi postupnost {x,}22, bodov z X s limitngm bodom x € X a kaZdi
postupnost {u,}>2 taki, Ze u, € I'(z,) pre kaZdé n ezistuje konvergentnd podpostupnost

postupnosti {u, }5°;, ktorej limita u je z I'(x).

Definicia 6.3. Mnozinovad funkcial' : X — U sa nazyva spojita vx € X, ak je v x polospojita

zhora i zdola. T' : X — U sa nazyva spojita na X, ak je spojita v kazdom x € X.
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I' definované v (6.5) je mnozinova funkcia na X. Rovnako tak I'* definované v (6.10). My
budeme I" nazyvat koreSpondencia a I'* optimélna koreSpondencia.

Definiciu spojitosti mnozinovej funkcie vyuzijeme v nasledujicich predpokladoch:

Predpoklad P3: Mnozina X C R" je konvexna a I' : X — U je spojitd na X a pre kazdé

x € X neprazdna a kompaktna.
Predpoklad P4: Funkcia f° je ohrani¢ena a spojita.

Predpoklad P5: Funkcia F' je spojita.

Za platnosti predpokladov P3 a P4 platia i predpoklady P1 a P2. Vieme, ze za pred-
pokladov P1 a P2 platia vety (6.1), (6.2), (6.3) a (6.4) z prvej Casti. A podla [7] plati toto

tvrdenie:

Veta 6.5. Nech si splnené predpoklady PS8, P4 a P5 a nech C(X) je priestor spojitych
ohranicenych funkcii f : X — R so suprémovou normou, oznacujme ju ||-||. Potom operdtor
T zobrazuje priestor C(X) do seba, tj. T : C(X) — C(X), T md jeding pevny bod V € C(X)
a pre kazdé Vy € C(X) plati:

IT*Vo = VI < B¥[IVo — V| (6.13)

pre k = 0,1,2,... Naviac pri danom V je I'* : X — U polospojitd zhora na X a pre kaZdé
r € X kompaktna.

Désledok 6.1. Nech platia predpoklady P3, P4 a P5, potom jediné riesenie Bellmanovej
rovnice (6.6) v priestore C(X) je hodnotovd funkcia pre ulohu (Pg).

Dokaz. Vieme, 7Ze za tychto predpokladov existuje jediné riesenie funkcionalnej rovnice (6.6)
v priestore C'(X). Pretoze plati predpoklad P4, tak je splneny i predpoklad P2. Treba este
ukazat, 7e lim; . 'V (z;) = 0 pre kazdé x¢g € X a pre kazdé w € w(xp). Ale to plati, pretoze
funkcia V e C(X) a 5 € (0,1). O

Désledok 6.2. Nech platia predpoklady P3, P4 a P5, potom kaZdé pripustné riadenie z po-

Giatocného stavu xq spliajice vztah (6.8) je optimdlne.

Dokaz. Uvedené tvrdenie je priamym dosledkom predchadzajiceho désledku.
Za platnosti predpokladov P3, P4 platia predpoklady P1 a P2. Treba este splnit podmienku
(6.9):

lim sup BV (z}) <0

t—oo

kde V' je hodnotova funkcia pre tlohu (Pg). Z predchadzajiceho désledku vsak vieme, Ze to

je splnené. O
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Vidime, Ze ked st splnené predpoklady P3, P4 a P5, tak funkciondlna rovnica (6.6) ma
v priestore C'(X) jediné rieSenie a toto riesenie je zaroven hodnotovou funkciou pre tlohu (Pg).
A teda existuje optimalne riadenie {uj};°, pre tito ulohu, ktoré spolu so svojou odozvou
{z7}72, spliajt:
u; € I'(z7)
V dalSom sa teraz pozrieme na niektoré vlastnosti hodnotovej funkcie a optimalnej kores-

pondencie, ak platia nejaké dalSie predpoklady. Zavedme preto tieto tri nasledujice predpo-
klady:

Predpoklad P6: Mnozina U C R™ je konvexna a f° je rydzokonkavna, tj. pre kazdé
(x,u), (', u') € X x U a pre kazdé 0 € (0,1) plati:

FOl0(,u) + (1= 0) (@', u)] > 0f%(x,u) + (1 - 0) fO(a' )
Predpoklad P7: T je konvexnd v zmysle, Ze pre kazdé 6 € [0,1] a pre kazdé z, 2" € X plati:
Ak u € I'(x) au' € T'(z'), potom [fu + (1 — 0)u'] € T[0z + (1 — 0)2']

Predpoklad P8: F je linedrne zobrazenie a teda pre kazdé (z,u), (z/,u') € X x U a
pre kazdé o, € R plati:

F[Oé(:L',’LL) +ﬁ($,’u,)] = OéF(l’,u) + ﬁF(m',u')

Potom, opit podla [7], plati toto tvrdenie:

Veta 6.6. Nech st splnené predpoklady P3 aZ PS. Nech V splia (6.6) a T* spliia (6.10).

Potom V' je rydzokonkdvna a I'* je spojita jedno-hodnotovd funkcia.

Teda sme si ukézali, Ze ak navyse platia predpoklady P6, P7 a P8, tak optimalna ko-
reSpondencia I'* je vlastne obyéajnou (jedno-hodnotovou) funkciou, ktortt budeme v dalsom
pre rozliSenie oznacovat v*. Ide o tzv. riadiacu funkciu alebo sa tiez nazyva optimélna spétna
vizba.

Poznamenajme, ze ak predpoklad P8 zmenime v tom, %e budeme pozadovat miesto line-

arneho zobrazenia linedrnu nehomogénnu funkciu:
F(x,u) = Az + Bu+c

kde A, B st dané redlne matice prislusnych typov a c¢ vektor konstant, tak veta (6.6) ostane
v platnosti.

Nasledujtce tvrdenie ako i vSetky dalsie tvrdenia v tejto ¢asti st dokdzané v [7].
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Veta 6.7. Nech st splnené predpoklady P3 aZ PS8. Nech V spliia (6.6) a v* spliia (6.10).
Nech C'(X) je mnoZina ohranicengch, spojitych, konkdvnych funkcii f : X — R a nech
Vo € C'(X). Nech Vi, a vy st pre k =0,1,2,... definované vztahmi:

Virpn = TV

(z) = argmaxuer(x){fo(x, u) + BVi[F(z,u)]}
Potom 7y, — ~v* bodovo. Ak X je kompakt, tak v — ~* rovnomerne.

Este sa pozrieme na to, ako zabezpecit kompaktnost a spojitost korespondencie I" v pred-
poklade P3, teda na to, ¢o musi platit pre mnoziny X a U, resp. pre graf korespondencie,

aby boli spominané vlastnosti splnené.

Veta 6.8. Nech X C R" je uzavretd mnozina, nech U C R™ je kompaktnd mnozina. Nech

st splnené€ predpoklady P1 a P5. Potom I'(x) je pre vSetky x € X kompaktnd.

Poznamenajme, Ze tato veta plati aj bez predpokladu P1, pretoze i prazdna mnozina je
kompakt.

V dalsom sa budeme zaoberat spojitostou korespondencie I'. Bude nés zaujimat, za akych
predpokladov je I' polospojita zhora a zdola. Na to vyuzijeme nejaké vlastnosti jej grafu, teda
mnoziny:

G={(z,u) e X xUluel'(zx)}

Veta 6.9. Nech plati predpoklad P1 a nech G je graf korespondencie I'. Nech G je uzavretd
mnozina a nech pre lubovolni ohranic¢ent mnozinu XcXx je mnozina P()? ) tiez ohranicend.

Potom koreSpondencia ' je polospojita zhora a pre kazdé x € X je mnozina I'(x) kompaktnd.

Veta 6.10. Nech plati predpoklad P1 a nech G je graf korespondencie I'. Nech G je konvernd
mmnoZina, nech pre lubovolni ohranicent mnoZinu Xcx existuje ohranicend mnozina UcuU
takd, Ze pre vsetky x € X plati: T'(x) U # () a nech pre kazdé x € X existuje € > 0 také, Ze

mnozina Blx,e| (X je uzavretd a konvexnd. Potom je korespondencia I' polospojitd zdola.
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Kapitola 7

Existencia hodnotovej funkcie a

optimalneho riadenia

V tejto podkapitole sa budeme zaoberaf tlohou (Ug) naformulovanou na zaciatku kapitoly
2. Ukazeme, ze za platnosti urcitych predpokladov ma tato tloha jedini hodnotovt funkciu

a ze optimélna koreSpondencia je spojitou jedno-hodnotovou funkciou stavu.

Uvazujme teda tlohu (Up):

max iﬂtfo(xt,ut)
{ue}iZo =0
Tpp1 = F(xg,up)
;€ X CR"
w € U CR™

z9 € X

kde (3 je tentokrat z (0,1).

Ide vlastne o ulohu (Pg) s linedrnou funkciou F' a s podmienkou, Ze tcelova funkcia I
je rydzokonkavna (rydzu konkavnost ucelovej funkcie predpokladame navyse oproti predcha-
dzajicemu) a trikrat spojite diferencovatelna. Len poznamenajme, ze pre tvrdenia dokdzané
v tejto kapitole si vystacime so spojitou rydzokonkavnou funkciou fO.

Nech Vj znaci hodnotovt funkciu pre tato tlohu a prislusné 3. Urobme predpoklad:

Predpoklad P10: Mnoziny X a U st konvexné a kompaktné.

Potom pre takto definované funkcie f a F budu platif nasledujice dve vety. Najprv si

vsak dokézeme lemu, ktord ndm pomoze pri dokazovani ich platnosti.
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Lema 7.1. Nech plati predpoklad P1 a P10. Nech f° je spojitd riydzokonkdvna funkcia a nech
F je linedrna v oboch argumentoch. Potom T'(x) definovand v (6.5) je spojita a pre kazdé

r € X kompaktnd a konvernd.

Dokaz. Na dokaz kompaktnosti a spojitosti potrebujeme, aby boli splnené predpoklady viet
(6.8), resp. (6.9) a (6.10). Konvexnost ukédzeme priamo.

Pretoze mnoziny X a U st kompaktné a funkcia F’ je linedrna a teda aj spojita, si splnené
predpoklady vety (6.8) a teda pre kazdé x € X je I'(z) kompaktna. Z toho tiez vyplyva, ze
graf korespondencie G je uzavretd mnozina. UkaZzeme, preco:

Pretoze X a U st kompaktné, tak st uzavreté a ohranicené. Nech postupnost {(zg, ux)}re
z G je konvergentna s limitnym bodom (x,u). Pre kazdé k = 1,2, ... plati, ze uy € I'(z), tj.
ug € U je také, ze F(xp,ur) € X. Pretoze funkcia F' je spojita, plati:

lim F(xzg,ux) = F(klingo xk,klirglo u) = F(z,u)

k—oo

KedZe X je uzavretd, tak F(x,u) € X. Pretoze U je uzavretd, tak u € U. Z toho vyplyva, ze
u € T'(x) a teda (z,u) je z G. Graf G je teda uzavretd mnozina.

Navyse pre Tubovolnti ohrani¢ent mnozinu XcX je mnozina I‘()/f ) taktieZ ohranicena,
lebo je podmnozinou mnoziny U, ktord je ohranicend. Su teda splnené i predpoklady vety
(6.9).

Ukézeme dalej, ze st splnené predpoklady vety (6.10). Najprv ukadzeme, Ze I' je konvexna.
Z toho potom bude vyplyvat, Ze i jej graf G je konvexnd mnoZina.

T je pre linedrnu funkciu F' definované ako I'(x) = {u € U|[Az + Bu + ¢| € X}. Pre lu-
bovolné 6 € [0,1] a pre kazdé z,2/ € X ak u € I'(z) a v/ € I'(2/), tak [Az + Bu+c] € X a
[A2" + Bu' + ¢] € X. Chceme ukazat, ze [fu + (1 — 0)u'] lezi v T'[0z + (1 — 0)2’]. Plati:

Alfz + (1 —0)2'] + Bl0u+ (1 — 0)u'] + ¢ = [Ax + Bu+ ] + (1 — 0)[Az’ + Bu' + ]
Pretoze mnozina X je konvexna, tak:
{0[Az + Bu+c]+ (1 — 0)[A2" + Bu' + ]} € X

A teda [u+ (1 — 0)u'] € T[0z + (1 — 6)2/].

Dalej plati, Ze pre Iubovolnt ohrani¢enti mnozinu XcXx existuje ohrani¢end mnozina
UcuU taka, ze pre vSetky = € X plati: T'(z) N U # (), a totiz samotné U.

Posledny predpoklad vety (6.10), ze pre kazdé = € X existuje ¢ > 0 také, Ze mnozina
B(x,e)( X je uzavretd a konvexnd, je splneny vdaka kompaktnosti a konvexnosti mnoziny
X.

Takze I' je kompaktna a polospojita zhora i zdola a teda je spojité. O
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Veta 7.1. Nech plati predpoklad P1 a P10. Nech f° je spojitd riydzokonkdvna funkcia a nech
F je linedrna v oboch argumentoch. Potom operdtor T definovany v (6.12) zobrazuje priestor
C(X) do seba, tj. T : C(X) — C(X), T ma jediny pevny bod Vg € C(X) a pre kaZdé
Vo € C(X) plati:

IT*Vo — Vsl < 8% Vo — Vs

pre k =0,1,2,.... Naviac pri danom Vg je optimdlna korespondencia I'*, definovand v (6.10),

kompakitnd a polospojitd zhora.

Dokaz. Ukézeme, Ze st splnené predpoklady vety (6.5).

Predpoklad P3 pozaduje, aby bola mnozina X konvexnd, to je splnené, pretoze sme spra-
vili predpoklad P10. Dalej pozaduje, aby I' bola spojit4 a pre kazdé z € X kompaktna. To
vyplyva z predchédzajicej lemy (7.1). PretoZe plati predpoklad P1, tak I je pre kazdé z € X
neprazdna.

Predpoklad P4 pozaduje, aby bola funkcia f° spojita a ohrani¢ena. Pretoze o funkcii f°
predpokladame, Ze je spojitou rydzokonkavnou funkciou navysSe definovanou na kompakte
X x U, tak st obe podmienky splnené.

A rovnako je splneny aj predpoklad P5, pretoze funkcia F' je linearna a teda i spojita.

Takze st splnené vsetky predpoklady vety (6.5), ¢o dokazuje tvrdenie. O

Z predchadzajucej podkapitoly z dosledku (6.1) vieme, Ze jediné rieSenie rovnice (6.6) je
hodnotova funkcia pre tlohu (P3) a teda je nou aj pre tlohu (Ug). A z dosledku (6.2), ze

kazdé pripustné riadenie také, ze uy € I'*(x;), je optimdlne pre tuto tulohu.

Veta 7.2. Nech plati predpoklad P1 a P10. Nech f° je spojitd riydzokonkdvna funkcia a nech
F je linedrna v oboch argumentoch. Nech Vg spliia (6.6) a T'* splria (6.10). Potom V3 je

rydzokonkdvna a I'* je spojitd jedno-hodnotovd funkcia.

Dokaz. Ukazeme, Ze st splnené predpoklady vety (6.6).

Z dokazu predchadzajucej vety (7.1) vieme, Ze st splnené predpoklady P3, P4, P5. Treba
teda ukazaf, Ze st splnené i predpoklady P6, P7, P8. Pretoze U je konvexna a funkcia f°
rydzokonkéavna, tak je splneny predpoklad P6. Z lemy (7.1) mame, ze I' je konvexnd a teda
je splneny i predpoklad P7. A z poznamky za vetou (6.6) vyplyva, Ze veta (6.6) plati aj
pre linedrnu nehomogénnu funkciu F'. Vsetky predpoklady vety (6.6) st splnené, ¢o dokazuje

tvrdenie. O

Z predchadzajucich dvoch viet vidno, ze pokial riesime tlohu (Us) na konvexnych a kom-
paktnych mnozinach, nielenze sa metédou postupnych aproximécii (za predpokladu, ze Star-

tovacia funkcia Vy € C’(X)) dopracujeme k hladanej hodnotovej funkcii, ktora je taktiez
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rydzokonkévna, ale sticasne ziskame aj optiméalnu korespondenciu I'*, ktora je spojitou jedno-

hodnotovou funkciou stavu.

V kapitole 2 sme spominali, ze mnoziny X, U st polozené ako celé R", resp. R™, tj.
X =R" a U = R™. Pretoze vSak tuto tlohu riesime lokalne v okoli rovnovazneho (Z3,7g),
za istych dal$ich predpokladov moézeme tieto mnoziny zzit na kompaktné a konvexné okolia
rovnovazneho T, resp. ug.

Predpokladajme, Ze st splnené predpoklady Q1 a Q2. Zvolme 3 z O.
Predpokladajme dalej, ze dvojica matic (A4, B) je stabilizovatelna, potom existuje matica Zg
takd, ze matica A+ BZg je stabilnd. Oznacme si Hg = A+ BZ3. Potom teda Hp je stabilna.
Nech dalej A = max; |\;| oznac¢uje maximum spomedzi absoltitnych hodnét vlastnych hodnoét
matice Hg. Potom existuje o > 0 také, ze A<a<l.

Skonstruujme novii normu v R™ ako:

lzlln =Y — I Hjz| (7.1)
=0
kde [|-|| je Tubovolna norma v R". D4 sa ukazat, Ze norma definovana v (7.1) spliia vietky
vlastnosti normy. NavySe mame:
1Hpzlln = il 2]
=0
— 1
i+1
SO SELTE)
=0
= (Y )
i=1
= 1
< (X | Hpal)
=0
= ozl

Nech vo = Kol|zo — Ts||n, kde Ky > 1 je Iubovolna dostatoéne velka konstanta. Pre dany

podiatoény stav zg definujme mnozinu X nasledujicim spésobom:
X ={z e R"|[|lz — Zg[ln <0} (7.2)

Nech 0o = sup,ex{K1|Zsg(x —Tp)||}, kde K1 > 1 je Iubovolna dostatocne velka kon-

stanta. Pre dany pociatoény stav xy definujme tiez mnozinu U ako:
U ={u e R"[[|u—7ug| < oo} (7.3)
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Ziskali sme kompaktné a konvexné mnoziny. NavysSe si v nasledujicej vete ukazeme, Ze

pre takto definované mnoziny je splneny predpoklad P1.

Veta 7.3. Nech mnoziny X a U su definované vztahmi (7.2), resp. (7.3). Potom je splneny
predpoklad P1.

Dokaz. Predpoklad P1 je splneny vtedy, ked pre kazdé x € X volime u € U tak, aby platilo:
[A(z —Zg) + Bu —ug)lln <70

Ukazeme, Ze to je splnené. Nech x je lubovolné leziace v X. Zvolme si u, tak, ze u — g =
Zg(x —Tg). Potom u lezi v U.
Méme:

A(x — Tﬁ) + B(u - ﬂg) = A(x — Tﬁ) + BZg(J} — Tﬁ) = Hﬁ(x — Tﬁ)

Dalej dostavame:

[Hp(x = Tp)lln < ez = Tplln < aro <0

¢o dokazuje tvrdenie. O

Mnoziny X a U definované v (7.2), resp. (7.3) spliajt predpoklady P1 a P10, tj. predpo-
klady viet 7.1 a 7.2 a teda pre ne existuje jedinad rydzokonkavna hodnotova funkcia riesiaca
(6.6) a optiméalna korespondencia, ktora je jedno-hodnotovou funkciou stavu. Inymi slovami
existuje pre ne optimalne riadenie ako funkcia stavovej premenne;j.

Dé sa ukazaf (vid. veta [6]), ze hodnotova funkcia je pre tlohu (Ug) za predpokladov
spojitej diferencovatelnosti tcéelovej funkcie f© a plnej hodnosti matice B diferencovatelma
a jej prva derivéacia sa rovna prvej derivacii funkcie fO v kazdom bode zvnitra X. Kolektiv
autorov [6] vSak pracuje s ulohou (Ug) ako s tilohou hladania supréma na mnozine nekonec-
nych postupnosti, kde sa riadiacou premennou stava stav v nasledujiicej periéde generovany
z prislusnej korespondencie. Tym sa samozrejme zuzuje trieda tiloh, s ktorou chceme pracovat.

Preto pre tcely prace predpokladajme, Ze hodnotova funkcia V3 je diferencovatelnd. Po-
tom rovnica dynamického programovania pre tato funkciu vyzera nasledovne:

Va(x) = sup {f(z,u) + BV[F(z,u)]}
uel(z)
Poznamenajme, Ze stcet funkeil fO(z,u) + BV3[F(z,u)] je spojitd funkcia a kedZe I'(z) je
pre kazdé x € X kompaktnd, tak maximum sa dosahuje a teda vlastne hladdme maximum
tejto funkcie.
Nech maximalizujtce u lezi vo vnitri mnoziny I'(z), potom derivécia pravej strany podla u

sa musi rovnat 0:

~Of%x,u)
B ou

OV [F(x,u)] OF (z,u)
ox ou

o + 8 (7.4)
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Pokial potom derivujeme rovnicu dynamického programovania podla premennej z, tak do-

stéavame:

OVs(z)  0f%z,u) OV F(x,u)] OF (z,u)
oxr  Ox +5 Ox ox

Tu vSak nardzame na eSte vicsiu fazkost. Hodnotova funkcia je definovana pre kazdé

(7.5)

x € X, vo vSeobecnosti je v8ak fazké zabezpecit predpoklad, aby maximalizujice u lezalo
vo vnutri mnoziny I'(z).

Tento predpoklad je nevyhnutny na zabezpecenie splnenia nutnych podmienok optimality,
bez neho nutné podmienky optimality neplatia, resp. nie je mozné ich odvodit (vid. [3]).

Na strankach nasledujtcej kapitoly sa pozrieme nato, ¢i mozno ukdzat existenciu opti-

malneho riadenia inym spdsobom nez je pristup z tejto kapitoly.
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Kapitola 8

Existencia optimalneho riadenia pre

povodnu ulohu

Uvazujme teda systém uloh (Ug), kde § € O (vratane 1). V dalsom pre celt kapitolu pred-
pokladajme, Ze st splnené predpoklady Q1 a Q2. Uelovt funkciu fs mozeme rozpisat nasle-
dujtcim spdsobom:

fa(x,u) = k‘%w + lgu + Qgp(w,u) +¢. v. 1.

Oznacme:

Q= {(z,u) e R" x R™ | |[z]| <, [Ju]| <n} (8.1)

Uvazujme najprv = 1 a oznacme tlohu (Uj), ktort rieSime na okoli © bodu (0,0) ako

Ui(zg,n), kde z¢ je dany pociatoény stav tejto tlohy.

Veta 8.1. Nech 3 = 1. Nech k1 = Il = 0. Nech st dalej splnené nasledujice predpoklady:
predpoklad @3, matica I — A je reguldrna, matica A je requldrna a dvojica matic (A, B) je
stabilizovatelnd. Potom existuje n; > 0 a e > 0 také, Ze pre kazdé ||xo|| < € existuje optimdine

riadenie pre ulohu Uy(xg,m) a je rovn€ jedinému extremdlnemu riadeniu z bodu xg.

Dokaz. Nech je splneny predpoklad Q3, potom existuje 7, > 0 také, ze na okoli €2 defino-
vaného v (8.1) s n = n; je funkcia fj(z,u) rydzokonkdvna a plati: f(z,u) < 0 pre kazdé
(z,u) z Q. Pri dokazovani existencie optimalneho riadenia sa obmedzime na postupnosti pri-
pustnych riadeni a ich odoziev z tohto okolia, z ¢oho vyplyva, Ze kazda takato postupnost
{(xt,us)}720} je ohranicena. Z toho ale vyplyva, ze rovnakym spésobom ako v dokaze vety
3.3 mozno skonstruovat optimélne riadenie a teda optiméalne riadenie na mnozine Q existuje.
Este musime ukézat, Ze sa rovna jedinému extreméalnemu riadeniu z bodu .

Zvolme 7y < n;. Potom existuje v < 0 také, ze fj(z,u) < ~, ak n; > ||z|| > 72 alebo
m = |lul| = n2.
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Ozna¢me mnozinu pripustnych riadeni z pociatku xg ako 7(x¢).
Pretoze dvojica matic je stabilizovatelnd, tak existuje matica Z takd, ze A + BZ je sta-
bilné matica. A teda pre xy dostatoéne malé existuje v m(zg) stabilizujice pripustné riadenie

u; = Zxy a jeho odozva. Oznac¢me:
o
V(zo) = Zfl(ﬂft, Zxy)
t=0

Dalej existuje také ¢ > 0, kde £ < 15, Ze pre stabilizujtce riadenie a jeho odozvu plati:

Yo > Y

pre ||zo|| < e.
Z toho vyplyva, ze pre optimalne riadenie a jeho odozvu {(x},u;)}22, pre tlohu Uy (zg, 2)
musi pre kazdé ¢ platit:

il < m2, lugll <2

Takze hodnoty optiméalneho riadenia st vnitornymi bodmi mnoziny |[u|| < 77 a preto musia
spliat nutné podmienky optimality vyjadrené v (2.34) pre 3 = 1.
Navyse z vety (5.2) vyplyva, Ze ak ¢ je dostatoéne malé, potom existuje jediné extreméalne

riadenie a jeho odozva, pre ktoré plati:

2] < M2, |luel| < m2

¢o bolo treba dokézaf.

O

V nasledujtcich dvoch vetéach teraz ukézeme, za akych predpokladov konverguje pripustné
riadenie pre tilohu Uj(zg,m1) s téelovou funkciou fi(z,u) = kI x + ITu + Q(z,u) + & v. 1.

do 0 a kedy existuje optiméalne riadenie pre tiito tlohu a ¢omu sa rovna.

Veta 8.2. Nech 3 = 1. Nech aspori jeden z vektorov ki, 1y je nenulovy. Nech st dalej splnené
nasledujice predpoklady: predpoklad Q3, matica I — A je requldrna, matica Ay je requldrna a
dvojica matic (A, B) je stabilizovatelnd. Nech w = {us};= je pripustné riadenie a x = {x},2
jeho odozva pre ilohu Ui(xo,m1). Nech rad Y ;= fi(xe, ur) konverguje. Potom postupnost
{(xt,ur) }2 konverguge k bodu (0,0) pre t — oc.

Dokaz. Nech w = {w;};°, je pripustné riadenie a x = {x;};2, jeho odozva pre tlohu

Ui(xg,m1). Vieme, Ze za predpokladu regularnosti matice I — A plati vzfah (2.22) pre g = 1:

lh=-BT(1 - AT 'Ky
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A teda ucelovu funkciu mozeme upravit do podoby:
f1(zp, ) = kT (T — A) 7 Nay — 241) + Qq (@, w) + € v. 1.

Vezmime si ¢lastoény sacet radu Y .o £i (2, uy):

N

In = Z[/{([ - A)_l(ﬂft —xey1) + Qq(ze,ug) + ¢ v. 1]
=0

~+

Upravme:
N N
I = Zkﬁp(l—A) [Tt — T441] +ZQ1 xt,ut) + €. v. r.]
=0 =0

= k{([ - A)_l[xo - xN—i—l] + [Ql(xt,ut) + ¢. v. I'.]

WE

~+
Il
(=)

Chceme ukazat, ze pripustné riadenie a jeho odozva konverguju k bodu (0, 0). Nech to neplati.
Potom existuje &/ > 0 také, ze pre vetky T' > 0 existuje t > T také, Ze ||(z¢, ut)|| > €. Pretoze
{2:}32, je ohranicené, tak vyraz kI (I — A) '[zg — zn] je pre kazdé N ohraniCeny. Pretoze
funkcia Qq(x,u) + ¢. v. r. je na Q rydzokonkavna s maximom v bode (0,0) rovnym 0, tak

pre kazdé T' > 0 existuje t > T a K < 0 také, ze plati:
Qi (zt,u) +¢ v.r] <K <0
7 ¢oho vyplyva, ze Jy diverguje, ¢o je spor s predpokladom. O

Veta 8.3. Nech 3 = 1. Nech aspori jeden z vektorov ki, 11 je nenulovy. Nech st dalej splnené
nasledujuce predpoklady: predpoklad Q3, matica I — A je requldrna, matica A1 je requldrna a
dvojica matic (A, B) je stabilizovatelna. Potom existuje e > 0 také, Ze pre kaZdé ||xo|| < € exis-
tuje pre dlohu Uy (zg,m) jediné optimdlne riadenie a jeho odozva a si rovnaké ako pre ulohu

Ui(xg,m) s ucelovou funkciou Q(x,u) + ¢. v. r.

Dokaz. Z vety (8.1) vieme, ze za tychto predpokladov existuje ¢ > 0 také, ze pre kazdé
lxo|| < € existuje pre tlohu Uy (xg,n;1) s Géelovou funkciou fi(x,u) = Q(z,u)+¢. v. r. jediné
optimalne riadenie rovné extremalnemu riadeniu pre tito tlohu. Vieme tiez, ze extremalne
riadenia a ich odozvy st pre tlohu U;(xg, m1) s tcelovou funkciou fi (z,u) = Qq(z,u)+¢&. v. 1.
a pre tlohu Uy (wg,m1) s Gcelovou funkciou fi(z,u) = kiz + Fu + Q(x,u) + & v. r., kde
aspon jeden z vektorov ki, I; je nenulovy, rovnaké.

Nech w = {u:};2, je pripustné riadenie a x = {x;};-, jeho odozva pre ulohu Uy (xg,m1) s

tigelovou funkciou fi (z,u) = k¥ 2 +1Tu+ Q;(z,u) + & v. r.. Vezmime si ¢iastoény sucet radu
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ZIZO £y (xt’ ut):

N
IN = Z fl(xm Ut)
t=0

7 dokazu predchadzajucej vety vieme, ze plati:

N

Iy = k(I —A) o — zni1] + Z[Ql(azt,ut) +¢& v.r]
=0

Pretoze xty — 0 pre N — oo, tak plati, Ze suprémum dosiahneme len pre tie pripustné
riadenia a ich odozvy, ktoré s optimélne pre tlohu Uy (xg, 1) s ucelovou funkciou fi(x,u) =
Q;(z,u) + ¢ v. r., kedZze také riadenie a jeho odozva st jediné a rovnaju sa extremalnemu

riadeniu a odozve, tak dostavame tvrdenie. O

Uvazujme teraz 3 € O rozne od 1. Potom plati nasledujtca veta [16] o existencii optimal-

neho riadenia pre tlohu (Ug):

Veta 8.4. Nech 8 € O rozne od 1. Nech kg = lg = 0. Nech Z = X x U je konvernd a
kompaktnd mnozina v R™ x R™ a nech funkcia f5 je rydzokonkdvna na Z. Nech & = {u}2,
je extremdlne riadenie a X = {Z;}72, jeho odozva pre tlohu s pociatocnym bodom xy € X
také, Ze (Ty,uy) lezi v Z pre kazdé t. Potom b, X je optimdlne riadenie a jeho odozva pre ulohu

(Ug) zizenii na Z.

7 predchéadzajuceho vieme, ze za predpokladu Q3 existuje také 7, Ze na okoli 2 defino-
vaného v (8.1) s n = n; je funkcia fg(x, u) rydzokonkdvna a teda veta (8.4) nam hovori, ze
pre tlohu (Up) zlzent na (2 existuje optimalne riadenie a jeho odozva s pociato¢nym zg ta-
kym, ze ||xg|| < m1. Dalej vieme, Ze za splnenia predpokladov Q3, regularnosti matice I — A,
matice A; a stabilizovatelnosti dvojice matic (A, B) existuje pre ulohu (Ug) a dostatocne
malé 7; jediné extremalne riadenie a teda toto riadenie je zaroven optimalnym.

Nech § € O rozne od 1. Oznacujme tlohu (Ug) zazeni na Q s n = n; ako Ug(xo,m).
V dalSej vete ukdzeme, ze pre tlohu Ug(xp,n1) s Gcelovou funkciou, v ktorej je aspoi je-
den z vektorov kg, [ nenulovy, existuje jediné optimélne riadenie a jeho odozva a rovnaja
sa optimalnemu riadeniu a jeho odozve pre tlohu Ug(zg,n1) s Gcelovou funkciou, v ktorej
kg =13 = 0.

Veta 8.5. Nech 3 € O rozne od 1. Nech aspon jeden z vektorov kg, lg je nenulovy. Nech
st dalej splnené nasledujice predpoklady: predpoklad Q3, matica I — A je requldrna, matica
A je regularna a dvojica matic (A, B) je stabilizovatelna. Potom existuje n1 > 0 také, Ze
pre kazdé ||xo| < m existuje pre dlohu Ug(xg,n1) jediné optimdine riadenie a jeho odozva a

su rovnaké ako pre vlohu Ug(wo,m1) s Ucelovou funkciou Qgz(x,u) + ¢. v. 7.
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Dokaz. 7 vety (8.4) vieme, ze za tychto predpokladov existuje 1y > 0 také, ze pre kazdé
[zo]] < m existuje pre tlohu Ug(zg,71) s Gcelovou funkciou f5(z, u) = Qg(w, u)+¢. v. r. jediné
optiméalne riadenie rovné extremalnemu riadeniu pre tuto tlohu. Vieme tiez, Ze extreméalne
riadenia a ich odozvy st pre ulohu Ug(z9,m1) s Gcelovou funkciou fg(z,u) = Qg(z,u)+¢. v. 1.
a pre ulohu Ug(xo, ) s ucelovou funkciou fz(z,u) = k‘gw + lgu + Qp(w,u) + €. v. 1., kde
asponi jeden z vektorov kg, lg je nenulovy, rovnaké. Navyse za predpokladu 8 € O je matica

I — A regularna a teda plati vzfah (2.22) medzi kg a lg:
Iy = —BBT(I — BAT) kg

Nech w = {w;};2, je pripustné riadenie a x = {z:};~, jeho odozva pre tlohu Ug(xo, )
s ucelovou funkciou fg(aj,u) = k:g:p + lgu + Qg(z,u) + €. v. r. Vezmime si Ciastocny sucet
radu ) 2, 3" [k:gxt + lgut + Qp(we, ug) + ¢ v. r.]:

N

IN = Zﬂt[/ﬁgxt + lgut + Qp(g, ug) + € v. 1]
t=0

Dosadme za lg vztah (2.22), potom mame:

N N

In = Zﬂtkg[xt - 5(1 - BA)_lBut] + Zﬂt[Qg(xt,ut) + C. V. I‘.]
=0 =0
N

= kg(f - ﬁA)_l[ﬂfo - ﬁN+133N+1] + Zﬁt[Qﬁ(azt,ut) +¢ v.r.]
t=0

Kazda postupnost {z;},;°, pripustnych stavov je ohrani¢end a teda BNxn — 0 pre N — oo.
7 toho vyplyva, ze suprémum dosiahneme len pre tie pripustné riadenia a ich odozvy, ktoré
st optimalne pre tlohu Ug(xg,n1) s Gcelovou funkciou fg(:n,u) = Qp(z,u) + ¢ v. r., kedze
také riadenie a jeho odozva su jediné, tak pre alohu Ug(zg, 1) s téelovou funkciou fg (x,u) =
k‘gaz + lgu + Qp(w,u) +¢. v. 1. existuje jediné optimalne riadenie a jeho odozva a st rovnaké
ako optiméalne riadenie a jeho odozva pre tlohu Ug(zg,n1) s Gcelovou funkciou fg (x,u) =

Qp(z,u) +¢. v.r. O
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Zaver

Motivaciou prace boli makroekonomické RBC modely a ich linearne-kvadratickd aproximaécia,
ktora je ako tloha optiméalneho programovania metédou postupnych aproximécii numericky
fahko riesitelna. Vychadzali sme pritom z préace [14] od dvojice autorov Blanchard, Kahn.
V tychto modeloch sa riesi tiloha maximalizacie celozivotného tzitku domacnosti za istych
podmienok na stav a na vlastnosti ucelovej a produkénej funkcie. My sme uvazovali ako fun-
kciu pre stav v nasledujtcej periéde linearnu funkciu a pre acelova funkciu sme predpokladali,
ze je trikrat spojite diferencovatelnd a jej Hessova matica je v rovnovaznom bode zéporne
definitna. Za tychto predpokladov je mozné spravit Taylorov rozvoj do druhého radu a teda
riesit linedrne-kvadratick(l ilohu miesto povodnej tlohy a navysSe je tcelova funkcia na do-
stato¢ne malom okoli rovnovazneho bodu rydzokonkavna. Predpoklad rydzej konkavnosti
je standardny predpoklad kladeny na tcelova funkciu. Ako druhy predpoklad sa kladie pod-
mienka dvakrat spojitej diferencovatelnosti, véi¢sinou vSak byva splneny aj silnejsi predpoklad
trikrat spojitej diferencovatelnosti. Na zaciatku prace sme sa venovali prikladu makroekono-
mického modelu, v ktorom sa vyuziva linearne-kvadraticka aproximaécia, a urobili rozsirenie
pre viacrozmerné premenné. V dalSom sme potom podali matematické spracovamie uvedene;j
problematiky. Uviedli sme definiciu rovnovaznej trojice a rozpisali nutné podmienky optima-
lity pre linedrne-kvadratickt aj pévodnt tlohu. Podrobne sme spracovali linearne-kvadraticka
tlohu s diskontom i bez diskontu, uviedli vety o existencii optimélneho riadenia, o vztahu
pre toto optimalne riadenie a jeho odozvu ako i hodnotova funkciu a ich dokazy. Nasledne
sme presli k ilohdm s pévodnou ucelovou funkciou s diskotnym faktorom a bez neho. Venovali
sme sa postupne extreméalnemu riadeniu a jeho odozve a potom jeho vztahu k optimalnemu
riadeniu a jeho odozve. Ukéazali sme existenciu optiméalneho riadenia, ktoré sa rovna extre-
mélnemu a je jediné. Tiez sme vyuzili niektoré poznatky z prace [7] na dokaz existencie a
jednoznacnosti hodnotovej funkcie pre tlohu s rydzokonkavnou ti¢elovou funkciou a linearnou
funkciou pre stav v nasledujtcej periéde.

Cielom prace bolo ukézat, ze pouzitie linedrne-kvadratickej aproximécie v makroekono-

mickych RBC modeloch je lokadlne dostatoc¢ne presné a teda opravnené. Pre deterministicky
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pripad sme ukazali, Ze za istych podmienok existuje pre tlohu s pdvodnou ucelovou funkciou
zuzenu na okolie rovnovazneho bodu jediné optiméalne riadenie a jeho odozva, rovné extre-
malnemu riadeniu a jeho odozve a vztah pren sa 1i$i od optimalneho riadenia pre linearne-
kvadraticku tlohu len v ¢lenoch vyssieho ako prvého radu. Sticasne sme ukazali, Ze hodnotové
funkcie sa opéit lisia len v élenoch vysSieho rddu, konkrétne druhého radu. NavySe obe opti-
malne riadenia a ich odozvy konverguju k rovnovaznemu bodu, ktory je pre obidve tulohy
rovnaky. Prinosom prace je spracovanie problematiky linedrnych ¢lenov vystupujacich v tce-
lovej funkcii a ddkaz toho, Ze optimalne riadenie je za istych predpokladov rovnaké pre tlohy
s ucelovou funkciou, v ktorej nevystupuju, resp. s nulové, ako i pre tlohy s ucelovou fun-
kciou, v ktorej st nenulové. V praci sme nasli vztah pre koeficienty vystupujice pri linedrnych
¢lenoch v hodnotovej funkcii ¢i uz pre ulohu s diskontom, ¢i bez neho.

Celkovo sa ndm podarilo splnit stanovené ciele a ukézat oprdvnenost pouzitia linearne-
kvadratickej aproximécie v RBC modeloch ako i konvergenciu optiméalneho riadenia a jeho
odozvy pre tuto tlohu k rovnovéaznemu bodu. NavySe sme ukézali, Ze za Tahko splnitelnych
predpokladov linearne ¢leny vystupujuce v ucelovej funkcii nemaju vplyv na optimalne ria-
denie a vzfah pre optimdlne riadenie pre tlohu s Ucelovou funkciou, v ktorej vystupuju, je

rovnaky ako pre optimélne riadenie pre tlohu s Gi¢elovou funkciou, v ktorej nevystupuju.
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