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Introduction

Pricing �nancial derivatives belongs to actual topics on �nancial markets. As mar-
kets have become more sophisticated, more complex contracts than simple buy or
sell trades have been introduced. They are known as �nancial derivatives, derivative
securities or just derivatives. There exist many kinds of �nancial markets, e.g. stock
markets, bonds markets, currency markets or foreign exchange markets, commodity
markets or futures and options markets. On option markets derivative products are
traded.

A derivative is de�ned as a �nancial instrument whose value depends on (or
derives from) the values of other, more basic underlying variables. Very often the
variables underlying derivatives are the prices of traded assets. As an example,
an asset option is a derivative whose value is dependent on the price of a asset.
However, derivatives can be dependent on almost any variable.

A European call option is a contract with the following conditions: At a pre-
scribed time in the future, known as the expiration date, the holder of the option
may purchase a prescribed asset, known as the underlying asset for a prescribed
amount, the exercise price or strike price. For the holder of the option this contract
is a right, not an obligation. The other party of the contract, the writer, must sell
the asset if the holder chooses to buy it. Since the option is the right with no obliga-
tion for the holder, it has some value, paid for at the time of opening the contract.
The right to sell the option is called a put option. A put option allows its holder to
sell the asset on a certain date for a prescribed amount. The writer is then obligated
to buy the asset.

Options are used for hedging but also for speculations. Hedgers use derivatives
to reduce the risk that they face from potential future movements in a market
variable. Speculators use them to bet on the future direction of a market variable.
Arbitrageurs take o�setting positions in two or more instruments to lock in a pro�t.

One of the most common methods of valuing stock options is the Black�Scholes
method introduced in 1973. Economists Myron Scholes and Robert Merton and
theoretical physicist Fischer Black derived and analysed a pricing model by means
of a solution to a certain partial di�erential equation.

This thesis deals with the nonlinear models of Black�Scholes type, which are
becoming more and more important since they take into account many e�ects that
are not included in the linear model.

The main goals of the thesis can be summarized as follows:

• Review of existing nonlinear models. We review option pricing models of
the Black�Scholes type with a general function of volatility. They provide more
accurate values than the classical linear model by taking into account more
realistic assumptions, such as transaction costs, the risk from an unprotected
portfolio, large investor's preferences or illiquid markets.

• Novel nonlinear models. The main goals of the thesis is to derive models
with variable transaction costs. We extend the models by two more new
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examples of realistic variable transaction costs that are decreasing with the
amount of transactions. Using the Risk adjusted pricing methodology we
derive a novel option pricing model under transaction costs and risk of the
unprotected portfolio.

• Solving the model by Gamma equation. We show that the generaliza-
tions of the classical Black�Scholes model, including the novel model, can be
solved by transformation of the fully nonlinear parabolic equation into a quasi-
linear parabolic equation for which one can construct an e�ective numerical
scheme for approximation of the solution.

• Numerical scheme and experiments. The aim of this part is to propose
an e�cient numerical discretization of the Gamma equation, including, in
particular, the model with variable transaction costs. The numerical scheme
is based on the �nite volume approximation of the partial derivatives entering
the equation to be solved.

The structure of the thesis is as follows:
In Section 1 we recall and summarize the nonlinear Black�Scholes option pricing

models and the form of models with variable transaction costs. We review for ex-
ample the Jumping volatility model due to Avellaneda, Levy and Paras [4], Leland
model [26], the model with investor's preferences from Barles & Soner [6], the model
with linear decreasing transaction costs depending on volume of trading stocks pro-
posed by Avellaneda, Levy and Paras [4], non�arbitrage liquidity model developed
by Bakstein and Howison [5] and Risk Adjusted Pricing Methodology model pro-
posed by Kratka [22] and its generalization by Janda£ka and �ev£ovi£ in the work
[21].

The main Subsection 1.7 develops a general theory of models with variable trans-
action costs. The main idea is in de�ning the modi�ed transaction cost function C̃
when using the transaction costs measure, de�ned as the expected value of a change
of the transaction cost per unit time interval ∆t and price S. We also give the
properties of this function to con�rm its generality. Special cases of transaction
costs function and their modi�cation C̃ are also included. We mention the constant
transaction costs function used in the Leland model [26] and also the linearly de-
creasing one from the model studied by Amster et al. [1]. We present and analyse
two more new examples of realistic variable transaction costs that are decreasing
with the amount of transactions, particularly, the piecewise linear non�increasing
function and the exponentially decreasing function. By considering these functions,
we solved the di�culty with possibly negative transaction costs that arises in the
model proposed by Amster et al. [1].

Section 2 brings the main contribution in the form of a novel option pricing model
under the transaction costs and the risk of an unprotected portfolio. It is a model
with variable transaction costs with a general modi�ed function of transaction costs
C̃ and at the same time there is a possibility to control the risk of an unprotected
portfolio. We show that this novel model is a generalization of the Leland model
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[26], the model with linear decreasing transaction cost depending on the volume of
transaction [1] and also of the Risk adjusted pricing methodology model [22], [21].
We give also detailed analysis behind the optimization of hedging time.

Section 3 we introduce the Gamma equation proposed in [21] by Janda£ka and
�ev£ovi£ as the main instrument to solve the nonlinear models including the novel
one. The method includes the derivation of the Gamma equation, transformation
of the initial and boundary conditions and also backward transformation of the
solution.

The advantage of using the transformation to the Gamma equation lies in the
fact that we can use an e�cient numerical scheme, introduced in Section 4. The con-
struction of numerical approximation of a solution to Gamma equation is based on
the derivation of a system of di�erence equations to be solved at every discrete time
step. We give also the Mathematica code for the model with variable transaction
cost. Finally we consider the modelling of a bid�ask spread and perform extensive
comparisons.

1 Motivation for Studying Nonlinear Models

Analysing real market data we can see there is a need of nonlinear models, where
σ > 0 is now not constant, but is a function of the option price V itself. We
focus on case, where volatility σ depends of second derivative ∂2

SV of the option
price (hereafter referred to a Γ), the price of an underlying asset S and the time to
expiration τ = T − t, as �ev£ovi£, Stehlíková and Mikula state in [30], i.e.

σ̂ = σ̂(S∂2
SV, S, τ). (1)

On the one hand, in case of the constant σ > 0 in (37) represents the classical
Black�Scholes equation derived by Black and Scholes in [7]. On the other hand, if
σ > 0 is a function of a solution, equation (37) represents the nonlinear generalization
of the Black�Scholes equation.

The motivation for studying the nonlinear Black�Scholes equation (37) with
volatility having a general form of (1) arises from traditional option pricing models
taking into account non�trivial transaction costs due to buying and selling assets,
market feedbacks and illiquid market e�ects due to large traders choosing given
stock�trading strategies, risk from a volatile (unprotected) portfolio or investors
preferences, etc. There is an increase of interest in studying nonlinear Black�Scholes
model, because it takes into account more realistic assumptions, that can impact
volatility, drift and price of an asset.

One of the basic nonlinear models is the Leland model [26] which including trans-
action costs arising by hedging the portfolio with call or put options. This model
was later extended by Hoggard, Whalley and Wilmott [19] for more general option
types. Another nonlinear model is a model adjusted with jumping volatility known
from Avellaneda and Paras [3]. Models including feedback and illiquid market ef-
fects due to large traders choosing given stock�trading strategies was developed by
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Frey and Patie [16], Frey and Stremme [17], During and et al. [13], Schönbruchen
and Wilmott [31]. There is also a nonlinear generalization proposed by Barles and
Sonner[6] for the description of imperfect replication and investor's preferences. An-
other model that takes into account risk from unprotected portfolio is proposed by
Kratka [22] and Janda£ka and �ev£ovi£ in [21], [30].

One of the models dealing with transaction costs is model proposed by Grossinho
and Morais [18]. The model proposed by Avellaneda, Levy and Paras [4] is aligned
with the Barles and Soner model [6] where it is assumed that investor's preferences
are characterized by an exponential utility function. The next is the Risk adjusted
pricing methodology (RAPM) model proposed by Kratka [22] and its generalization
by Janda£ka and �ev£ovi£ in the work [21]. Last but not least is the model with
linear decreasing transaction costs depending on volume of trading stocks [1] by
authors Amster, Averbuj, Marian and Rial with transaction costs as a function of
the amount of traded assets.

In this section we will go into more detail through the Leland model [26] and
Risk Adjusted Pricing Methodology (RAPM) model proposed by Kratka [22] and
its generalization by Janda£ka and �ev£ovi£ in the work [21]. We will also use the
variable transaction costs in the model following Amster, Averbuj, Mariani and Rial
[1].

In section 1.1 - 1.6 we review some of the known nonlinear models. The aim of
this work is modelling in Section 1.7, with comparison to the model proposed by
Amster et al. and RAPM model.

1.1 Jumping Volatility Model

Avellaneda, Levy and Paras [4] proposed a model for the description of incomplete
markets and uncertain but bounded volatility. In their model we have

σ̂2(S∂2
SV, S, τ) =

{
σ2

+, if S∂2
SV > 0,

σ2
−, if S∂2

SV < 0.
(2)

where σ− and σ+ represent volatility of the asset, where option is in the long position
or short position respectively.

1.2 Leland Model

The Leland model published in paper [26] has been further generalized to more
complex options strategies by Hoggard, Whalley and Wilmot in [19]. We present
the derivation of a more general model in Section 1.7, of which the Leland model is
just a special case.

Nonlinearity in the di�usion coe�cient is in the form

σ̂2(S∂2
SV, S, τ) = σ2

(
1− Le sgn

(
S∂2

SV
))

=

{
σ2(1− Le), if S∂2

SV > 0,
σ2(1 + Le), if S∂2

SV < 0,
(3)
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where Le = C0

σ
√

∆t

√
2
π
is the Leland number and σ is constant historical volatility,

C0 > 0 is a constant transaction cost per unit dollar of transaction in the assets
market and ∆t is the time�lag between portfolio adjustments.

1.3 Model with Investor's Preferences

Barles & Soner derived in [6] a particular nonlinear adjusted volatility of the form

σ̂2(S∂2
SV, S, τ) = σ2

(
1 + Ψ

(
a2erτS2∂2

SV
) )
, (4)

where a > 0 includes a risk aversion of investor and also proportional transaction
cost.

1.4 Model with Linear Decreasing Transaction Costs Depend-

ing on the Volume of Trading Stocks

Amster, Averbuj, Mariani and Rial in their work [1] assume that the costs behave as
a non�increasing linear function, depending on the trading stocks needed to hedge
the replicating portfolio. They proposed the model, where the transaction costs
are not proportional to the amount of the transaction, but the individual cost of
the transaction of each share diminishes as the number of traded shares increases.
Therefore transaction cost function is given by

C(ξ) = C0 − κξ, (5)

where ξ is the volume of trading stocks, i.e. ξ = |∆δ| and C0, κ > 0 are constants
depending on the individual investor. The number of bought or sold assets depends
on the one�time step change of δ, i.e. stocks hold in the portfolio. The main idea
is decreasing transaction cost with increasing amount of transaction. It can be seen
as a discount for a large deal attractive for large investors.

1.5 Liquidity Model

Bakstein and Howison in their paper [5] A Non�Arbitrage Liquidity Model with
Observable Parameters in 2003 introduced the model including three of the already
mentioned models namely the classical B�S, Leland and model proposed by Amster
et al.. They developed a parametrised model for liquidity e�ects arising from the
trading in an asset. Here σ̂2 is the following quadratic function of Γ = ∂2

SV :

σ̂2(S∂2
SV, S, τ) = σ2

(
1 + γ̄2(1− α)2 + 2λS∂2

SV + λ2(1− α)2
(
S∂2

SV
)2

+

+ 2

√
2

π
γ̄ sgn

(
S∂2

SV
)

+ 2

√
2

π
λ(1− α)2γ̄

∣∣S∂2
SV
∣∣) (6)
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1.6 Risk Adjusted Pricing Methodology Model

The next example of the Black�Scholes equation with a nonlinearly depending
volatility we present is the RAPM model (Risk adjusted pricing methodology model)
proposed by Kratka in [22] and revisited by Janda£ka and �ev£ovi£ in [21]. The
volatility is in the following form:

σ̂2(S∂2
SV, S, τ) = σ2

(
1− µ

(
S∂2

SV
) 1

3

)
, (7)

where σ > 0 is a constant historical volatility of the asset price return and

µ = 3(C2
0R/2π)

1
3 , (8)

where C0, R ≥ 0 are non�negative constants representing cost measure and the risk
premium measure, respectively.

1.7 Models with Variable Transaction Costs

The aim of this section is to present a new approach taking into account variable
transaction costs in a more general form of a decreasing or non�increasing func-
tion of the amount of transactions, |∆δ|, per unit of time ∆t, i.e. C = C(|∆δ|).

One of the key assumptions of the Black�Scholes analysis is the continuous re-
hedging of a portfolio. In connection with the transaction costs for buying and
selling the underlying asset, continuing hedging would lead to an in�nite number
of transactions and unbounded total transaction costs. The Leland [26], and Hog-
gard, Whalley and Wilmott [19], models are based on a simple, but very important
modi�cation of the Black�Scholes model, which includes transaction costs and re-
arranging of the portfolio at discrete times. Since the portfolio is maintained at
regular intervals, this means that the total transaction costs are limited.

The assumptions of our new model are in general the same as for the Black�
Scholes model with the following extensions. Some of the conditions are adapted
from Wilmott, Dewynne and Howison [32] and �ev£ovi£, Stehlíková and Mikula [29]:

Modelling variable transaction costs for large investors

Large investors can have some kind of discount, because of large transaction
amounts. The more they purchase in one transaction, the less will they pay for
one traded underlying asset. In general, we will assume that the cost C per one
transaction is a non-increasing function of the amount of transactions, |∆δ|, per
unit of time ∆t, i.e.

C = C(|∆δ|). (9)

This means that the purchase of ∆δ > 0 or sales of ∆δ < 0 shares at a price of S,
we calculate the additional transaction cost per unit of time ∆t:

∆TC ≡ S

2
C(|∆δ|)|∆δ| (10)

units;
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1.7.1 Constant Transaction Costs Function

This subsection contains a case of the constant transaction costs function and its
modi�cation C̃ introduced in the previous section. We refer to classical function of
Leland model [26] from Section(1.2) and also assumption [C4] in Subsection 1.7.

In the Leland model the function of transaction costs C has the form:

C(ξ) ≡ C0, for ξ ≥ 0, (11)

where C0 > 0 denotes constant transaction costs.
The modi�ed transaction costs function of the Leland model is:

C̃(ξ) ≡ C0

√
2

π
, for ξ ≥ 0, (12)

where C0 > 0 denotes the constant transaction costs of the original Leland model.
Both of them are shown in Figure 1. They are depicted for the parameter value
C0 = 0.02.

CHΞL

C
�
HΞL

0.00 0.02 0.04 0.06 0.08
0.000

0.005

0.010

0.015

0.020

Ξ

C
HΞ
L,

C�
HΞ
L

Figure 1: Constant transaction costs functions by Leland model.

1.7.2 Linear Decreasing Transaction Costs Function

In the model proposed by Amster et al. [1], which was introduced in Subsection 1.4,
the function C is linear and decreasing:

C(ξ) ≡ C0 − κξ, for ξ ≥ 0, (13)

where C0 > 0 denotes constant transaction costs and κ ≥ 0 is the rate at which
transaction costs decrease (measured per one transaction).

The modi�ed transaction costs function of the model proposed by Amster et al.
has the form:

C̃(ξ) ≡ C0

√
2

π
− κξ, for ξ ≥ 0, (14)

where constants C0 and κ are the same as in the original model.
A disadvantage of the function (13) lies in the fact that it may attain negative

values provided the amount of transactions |∆δ| exceeds the critical value ξ = |∆δ| =
C0/κ. For illustration see Figure 2. In the �gure there are functions depicted for
parameter values C0 = 0.02 and κ = 0.5.
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-0.02
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C
HΞ
L,
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Figure 2: Linear decreasing transaction costs functions.

1.7.3 Piecewise Linear Non�Increasing Transaction Costs Function

In this section we present a reasonable example of realistic transaction costs that are
also decreasing with the amount of transactions as in model studied by Amster. The
bene�t is the elimination of the problem of negative values of the linear decreasing
costs function. We de�ne the following piecewise linear function.

De�nition 1.1. We de�ne a piecewise linear non�increasing transaction costs func-
tion as

C(ξ) =


C0, if 0 ≤ ξ < ξ−,
C0 − κ(ξ − ξ−), if ξ− ≤ ξ ≤ ξ+,
C0, if ξ ≥ ξ+.

(15)

where we assume C0, κ > 0, and 0 ≤ ξ− ≤ ξ+ ≤ ∞ to be given constants and
C0 = C0 − κ(ξ+ − ξ−) > 0.

This is the most realistic function, because for some small volume of traded
stocks one constant amount C0 is paid, when the volume is signi�cant, there starts
to be a discount depending on higher volume and �nally some another small constant
payment C0 when there are very large trades.

CHΞL

C
�
HΞL

0.00 Ξ- Ξ+ 0.15 0.30
0.000

0.010

0.025

C0

C0 C0
2

Π

C0
2

Π

Ξ

C
HΞ
L,

C�
HΞ
L

Figure 3: A piecewise linear transaction costs function C and its modi�cation C̃.

This function also covers classical transaction costs functions and it satis�es all
assumptions we need when modelling and optimizing in Section 2.2. It is easy to
see that this example includes all of the previous observations because in the case
of:
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• if ξ− = ξ+ = 0 then the function C is constant, that means it is the same as
in the Leland model ;

• if ξ− = 0 and ξ+ =∞ then the function C is linearly decreasing, i.e. the same
as in the model studied by Amster.

In the next part we will present the detailed derivation of the modi�ed transaction
costs function C̃ for this type of piecewise linear non�increasing function C. For
comparison of original C and modi�ed C̃ function see Figure 3. These functions are
depicted for parameter values C0 = 0.02, κ = 0.3, ξ− = 0.05 and ξ+ = 0.1.

Proposition 1.1. The modi�ed transaction costs function C̃ of piecewise linear
function (15) is given by:

C̃(ξ) = C0

√
2

π
− 2κξ

∫ ξ+
ξ

ξ−
ξ

e−x
2/2

√
2π

dx, for ξ ≥ 0. (16)

Proposition 1.2. Let C̃(ξ) be a function de�ned by equation (16). Then the C̃(ξ)
has the following properties:

(i) C̃(0) = C0

√
2
π
;

(ii) C̃ ′(ξ) = −2κ
∫ ξ+

ξ
ξ−
ξ

f(x)dx+ 2κ
[
ξ+
ξ
f
(
ξ+
ξ

)
− ξ−

ξ
f
(
ξ−
ξ

)]
< 0 for ξ > 0;

(iii)

C̃ ′(0) =

{
−κ, if ξ− = 0,

0, if ξ− > 0;

(iv) C̃ ′′(ξ) = 2κ
[
ξ3+
ξ4
f
(
ξ+
ξ

)
− ξ3−

ξ4
f
(
ξ−
ξ

)]
> 0, i.e. C̃ is a convex function if ξ− = 0;

(v) C̃ need not be convex if ξ− > 0 (see Figure 3);

(vi) C̃ ′′(0) ≡ 0.

Proposition 1.3. The function C̃ de�ned in equation (16) satis�es

C0

√
2

π
≤ C̃(ξ) ≤ C0

√
2

π
and (17)

lim
ξ→∞

C̃(ξ) = C0

√
2

π
> 0, (18)

where C0 = C0 − κ(ξ+ − ξ−) > 0 from De�nition 1.1.

Proposition 1.4. Let C̃ be de�ned by equation (16) with properties (i)-(vi), then
for all ξ ≥ 0

C̃(ξ)− ξC̃ ′(ξ) +
ξ2

2
C̃ ′′(ξ) ≥

√
2

π

[
C0 − κ(ξ+ − ξ−)

]
> 0. (19)

We have introduced a universal and reasonable example of a realistic transaction
costs function in the form of a piecewise linear function whether ξ− is zero or not.
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1.7.4 Exponentially Decreasing Transaction Costs Function

As an another example of transaction costs that are decreasing with the amount of
transactions we can consider the following exponential function of the form

C(ξ) = C0 exp(−κξ), for ξ ≥ 0, (20)

where C0 > 0 and κ > 0 are given constants. Its modi�cation:

C̃(ξ) = C0

√
2

π
+
∞∑
n=0

C0

n!
(−κξ)n2

n
2

+1

√
2π

Γ
(n

2
+ 1
)
, for ξ ≥ 0, (21)

where constants are the same as in original. In Figure 4 these functions are depicted
for parameter values C0 = 0.02 and κ = 100.

CHΞL

C
�
HΞL

0.00 0.02 0.04 0.06 0.08
0.000

0.005

0.010

0.015

0.020

Ξ

C
HΞ
L,

C�
H

Figure 4: Exponential decreasing transaction costs functions.

This �gure was constructed by C̃ of another form than (21). It is because in
the case of Tailor's formula the number of elements should be �nite and it can
cause numerical problems. The value of the function for a high variable ξ goes
either to +∞ or to −∞. For this reason we realized another expression for modi�ed
transaction costs function of the form:

C̃ =C0

√
2

π
φ(−
√

2κξ), for ξ ≥ 0, where (22)

φ(x) =1 + xe
x2

4 (erf(x/2) + 1)

√
π

2
. (23)

2 A Novel Option Pricing Model under Transaction

Costs and Risk of the Unprotected Portfolio

The aim of this section is to present a novel nonlinear generalization of the classical
Black�Scholes equation that incorporates both variable transaction costs and the
risk arising from a volatile portfolio.
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By adding the measures rTC and rV P we obtain a total measure of the risk rR
given by the following relation

rR = rTC + rV P .

The total risk premium rR is a function of ∆t, i.e. the time�lag between two con-
secutive portfolio adjustments. As both rTC as well as rV P depend on the time�lag
∆t so does the total risk premium rR.

In the derivation of the new nonlinear model, we take into account the variable
transaction costs and risk of the unprotected portfolio.

We again assume that the underlying stock price pays dividends (q 6= 0) and
follows a geometric Brownian motion dS = (ρ− q)Sdt+ σSdw. The di�erence is in
the change of the portfolio, here of the form:

∆Π = ∆V + δ∆S + δqS∆t− rRS∆t, (24)

where rR is total risk rR = rTC + rV P . This risk includes transaction costs in
addition to the level of risk of the unprotected portfolio. They are being considered
because a large rearranging interval ∆t leads to smaller transaction costs, at the
same time, however, the investor is in danger, because the portfolio is for a long
time unprotected.

The transaction cost measure rTC is due to a variable transaction cost C =
C(|∆δ|) the same as we de�ned in equation rTCS∆t = S

2
α C̃(α), where α =

σS |∂2
SV |
√

∆t. The measure rV P of risk following from the unprotected portfolio we
adopt in the form rV P = 1

2
Rσ4S2 (∂2

SV )
2

∆t. To simplify notation we use

Γ = ∂2
SV. (25)

The �nal equation for the new model then is

∂tV +
1

2
σ̂2(SΓ,∆t)S2∂2

SV + (r − q)S∂SV − rV = 0, (26)

with volatility having form

σ̂2(SΓ,∆t) = σ2

(
1− C̃(σ|SΓ|

√
∆t)

sgn(SΓ)

σ
√

∆t
−Rσ2SΓ∆t

)
. (27)

It is a generalization of the model with decreasing transaction costs studied by
Amster et al., hence the model includes variable transaction costs, for example,
piecewise linear non-increasing or exponentially decreasing, from section 1.7 in the
form of a general function of transaction costs C̃. At the same time there is a
possibility to control the risk of an unprotected portfolio. That means including the
last term with the risk premium coe�cient R, the model is in combination also with
the RAPM model. In this form the nonlinear volatility (27) is with unprescribed
time�lag interval ∆t, but in Subsection 2.2 we will show how to �nd this optimal
hedging time.
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For the purpose of the numerical analysis it is convenient to introduce the fol-
lowing function

β(H, x, τ) ≡ 1

2
σ̂2(SΓ, S, t)SΓ, (28)

where H := SΓ, x = lnS/E, τ = T − t.
More speci�cally, in our case of the RAPM based model, the function β of the

novel nonlinear model reads as follows:

β(H) =
σ2

2

(
1− C̃(σ|H|

√
∆t)

sgn(H)

σ
√

∆t
−Rσ2H∆t

)
H. (29)

2.1 Special Cases of the Novel Model

In this section we give some special cases of the new model. We see that the new
model is a generalization of some known nonlinear models. For di�erent choices of
C̃ and R we obtain the following special forms.

2.1.1 Model with Linear Decreasing Transaction Costs Depending on

the Volume of Trading Stocks

Similarly, by setting:

• the transaction costs as a non�constant C 6= const, for example is linearly
decreasing, i.e.

C (|∆δ|) = C0 − κ|∆δ|,

• the risk premium coe�cient arising from unprotected portfolio equal to zero,
i.e. R = 0 and

• by given time�lag ∆t,

the volatility function σ̂2 given by (27) reduces to nonlinear volatility

σ̂2(SΓ,∆t) = σ2 (1− Le sgn(SΓ) + κSΓ) , (30)

where Le = C0

σ
√

∆t

√
2
π
is the Leland number (compare with the model proposed by

Amster et al. in Section 1.4).

2.1.2 RAPM Model with Variable Transaction Costs with Fixed Time�

Lag Interval

We obtain an another example by setting

• the transaction costs as a non�constant C 6= const, for example, a linearly
decreasing function from model proposed by Amster et al., i.e.

C (|∆δ|) = C0 − κ|∆δ|,

14



• the risk premium coe�cient arising from an unprotected portfolio not equal
to zero, i.e. R 6= 0 and

• the time�lag ∆t given.

Then the volatility function σ̂2 given by (27) reduces to a nonlinear volatility of the
form:

σ̂2(SΓ,∆t) = σ2

(
1−

(
C0

σ
√

∆t

√
2

π
sgn(SΓ) +Rσ2SΓ∆t

)
+ κSΓ

)
. (31)

It is a combination of volatility from the model proposed by Amster et al. and the
RAPM Model with an unprescribed time�lag interval.

2.2 RAPM Based Models with the Optimal Choice of Hedg-

ing Time ∆t

Our task is now to minimize the total risk of the portfolio to �nd the optimal time
∆t when rehedging the portfolio. Clearly, in order to minimize transaction costs,
we have to take a larger time�lag ∆t. On the other hand, a larger time interval
∆t means higher risk exposure for the investor, because an increase in the time�lag
interval ∆t between two consecutive transactions leads to a linear increase of the
risk from a volatile portfolio.

In the �rst part of this section we will review the basic idea proposed by Jan-
da£ka and �ev£ovi£ in the RAPM model [21] for constant transaction costs and
in the second part we will give a general approach when the variable transaction
costs function will be taken into account. We postulate the basic assumptions on
admissible transformed functions of transaction costs C̃.

2.2.1 Classical RAPM Model

In this subsection, we will discuss the choice of an optimal time interval between two
consecutive portfolio adjustments according to Janda£ka and �ev£ovi£ in the paper
[21]. The name of the model is the Risk adjusted pricing methodology (RAPM)
model.

The coe�cient rTC is given by the formula

rTC =
C0|Γ|σS√

2π

1√
∆t

(32)

(cf. [19, equation 3]).
Next we recall the expression for the risk premium rV P . The risk from the volatile

portfolio is of the form

rV P =
1

2
Rσ4S2Γ2∆t.
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where R ≥ 0 is non�negative constant representing the level of risk of the unpro-
tected portfolio.

By increasing the time�lag interval ∆t between portfolio adjustments, we can
decrease transaction costs. Therefore, in order to minimize transaction costs, we
have to take larger time�lag ∆t. On the other hand, a larger time interval ∆t means
higher risk exposure for the investor, because an increase in the time�lag interval
∆t between two consecutive transactions leads to a linear increase of the risk from
a volatile portfolio.

Now move to solution of this problem of minimizing the value of the total risk
premium rR = rTC + rV P .In order to �nd the optimal value of ∆t, we have to
minimize the following function:

∆t 7→ rR = rTC + rV P =
C0|Γ|σS√

2π

1√
∆t

+
1

2
Rσ4S2Γ2∆t. (33)

A graph of the total risk premium as a function of the time�lag ∆t is depicted in
the Figure 5. The unique minimum of the function is attained at the time�lag

∆topt =
K2

σ2|SΓ|2/3
, where K =

(
C0

R

1√
2π

)1/3

. (34)

Therefore the minimal value of the function ∆t 7→ rR(∆t) we have

rR(∆topt) =
3

2

(
C2

0R

2π

)1/3

σ2|SΓ|4/3. (35)

Finally by taking the optimal value of the total risk coe�cient rR, we get the

Dtopt

Dt

rR

Figure 5: The function of total risk premium ∆t 7→ rR(∆t) = rTC + rV P attains its
unique minimum at the point ∆topt, i.e. optimal time�lag between two consecutive
portfolio adjustments.

following generalization of the Black�Scholes equation

∂tV +
1

2
σ2S2∂2

SV + (r − q)S∂SV − rV − rRS = 0, (36)
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can be written as the following nonlinear parabolic equation:

∂tV +
σ2

2
S2
(

1 + µ
(
S∂2

SV
)1/3
)
∂2
SV + (r − q)S∂SV − rV = 0, (37)

where µ = 3(C̄2R/(2π))
1
3 and Γp with Γ = ∂2

SV and p = 1/3 stands for the signed
power function, i.e., Γp = |Γ|p−1Γ. We note that the equation is a backward parabolic
PDE if and only if the function

β(H) =
σ2

2
(1 + µH1/3)H (38)

is an increasing function in the variable H := SΓ = S∂2
SV . It is satis�ed if µ ≥ 0

and H ≥ 0.

2.2.2 Optimal Choice of Hedging Time ∆t in the Novel Model

Our task now is minimization of the total measure of risk. We will choose ∆t as the
arg min of rR = rR(t), i.e.

min
∆t>0

rR = min
∆t>0

(rTC + rV P ).

It can be also viewed as the argument of maximum of the variance function (29)
σ̂ = σ̂2(SΓ,∆t), this means

max
∆t>0

σ̂2(SΓ,∆t) = max
∆t>0

σ2

(
1− C̃

(
σ|SΓ|

√
∆t
) sgn(SΓ)

σ
√

∆t
−Rσ2SΓ∆t

)
,

i.e. �nding the time interval where C̃
(
σ|SΓ|

√
∆t
) sgn(SΓ)

σ
√

∆t
+Rσ2SΓ∆t attains its

minimum value:

∆t∗ = arg min
∆t>0

(
C̃
(
σ|SΓ|

√
∆t
) sgn(SΓ)

σ
√

∆t
+Rσ2SΓ∆t

)
. (39)

In the following de�nition, we will postulate the basic assumptions on admissible
transformed functions of transaction costs C̃. These assumptions will enable us to
use such functions for the generalization of a risk adjusted model for pricing the
derivatives of the underlying assets.

De�nition 2.1. Let C : R+
0 → R be a transaction costs function. We say C is an

admissible transaction costs measure if the following conditions are satis�ed for the
modi�ed transaction costs function C̃ = E

[
C(ξ|Φ|)|Φ|

]
:

(H1) C̃(0) > 0, C̃ ′(ξ) ≤ 0 for all ξ ≥ 0 and

(H2) C̃(ξ)− ξC̃ ′(ξ) + ξ2

2
C̃ ′′(ξ) ≥ 0 for all ξ ≥ 0.
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As an example we can consider a piecewise linear transaction costs function from
Subsection 1.7.3.

Proposition 2.1. The function ϕ(τ) attains its unique positive minimum ∆t∗ > 0
provided that the function C is admissible transaction costs function.

Proposition 2.2. The optimum value ∆t = τ 2
∗ is attained where ξ∗ = bτ∗ solves the

equation
C̃(ξ∗)− C̃ ′(ξ∗)ξ∗ = νξ3

∗ , (40)

where

ν :=
2R

H2
=

2R

S2Γ2
.

For the maximum value of variance we obtain the following relation

σ̂2(SΓ,∆t∗) = σ2(1− ϕ(τ∗)) = σ2

(
1− C̃(ξ∗)

H

ξ∗
− R

H
ξ2
∗

)
.

which can be inserted into the modi�ed Black�Scholes equation

∂tV +
1

2
σ̂2(SΓ,∆t∗)S

2∂2
SV + (r − q)S∂SV − rV − rRS = 0. (41)

The expression σ̂2(SΓ,∆t∗) emerging in (41) has the form

σ̂2(SΓ,∆t∗) = σ2 (1− ψ(SΓ)) ,

where the function ψ = ψ(H) is de�ned in an implicit way

ψ(SΓ) = C̃(ξ∗)
H

ξ∗
+
R

H
ξ2
∗ . (42)

We already know, that for given H = SΓ, we have the unique solution ξ∗ of the
implicit equation (40). This equation can be cast into an equivalent form

H2
(
C̃(ξ∗)− C̃ ′(ξ∗)ξ∗

)
= 2Rξ3

∗ . (43)

Finally, by inserting the expression for rRS into the modi�ed Black�Scholes
equation (41), we obtain the following RAMP equation, which takes into account
the variable transaction costs

∂tV +
1

2
σ2S(SΓ− SΓψ(SΓ)) + (r − q)S∂SV − rV = 0.

If we de�ne an auxiliary function

β(H) =
σ2

2
(1− ψ(H))H, (44)

then the modi�ed Black�Scholes equation becomes

∂tV + Sβ (H) + (r − q)S∂SV − rV = 0. (45)

The advantage of this novel model is that many of the known models are included,
for example the Leland model, and the model studied by Amster et al.. We can
extend analysis by using a more realistic piecewise linear non�increasing function.
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Example 1. For the linear decreasing transaction costs function given by the model
studied by Amster, i.e. C(ξ) = C0 − κξ, the function can be expressed analytically.
The equation (43) has the following form

H2 (C0 − κξ∗ − (−κ)ξ∗) =
π2R

2
ξ3
∗ ,

and therefore, similarly as in the classical RAMP model

ξ∗ =

(
C0

2R

√
2

π
H2

) 1
3

.

By inserting ξ∗ into (42), we obtain for the function ψ(H) the following relation

ψ(H) =

(√
2

π

C0

ξ∗
− κ

)
H +

R

H
ξ2
∗ = µH

1
3 − κH,

where µ = 3(C2
0R/(2π))

1
3 and and Hp with H = S∂2

SV and p = 1/3 stands for the
signed power function, i.e., Hp = |H|p−1H. Thus the function β has the form

β(H) =
σ2

2

(
1− µH1/3 + κH

)
H.

Note, that function β is increasing for µ3

κ
< ( 27

8
√

2
)2 ≈ 5.6953125.

3 Gamma Equation

In this section, we introduce the Gamma equation proposed in the article [21] by
Janda£ka and �ev£ovi£ (see also �ev£ovi£, Stehlíková and Mikula [30, p. 174]). The
goal is to present the transformation of the the nonlinear Black�Scholes equation
into a quasilinear parabolic equation.

Let us consider the previously mentioned modi�ed nonlinear Black�Scholes equa-
tion with the nonlinear volatility of a general type included in the β function

∂tV + Sβ(H) + (r − q)S∂SV − rV = 0, S > 0, t ∈ (0, T ), (46)

where the form of the function β(H), H = SΓ depends on the model we use.
The idea how to analyse and solve this equation is based on the transformation

method. We consider the standard change of independent variables, as usual in the
classical Black�Scholes theory [7]:

x := ln(S/E), x ∈ (−∞,∞), and τ := T − t, τ ∈ (0, T ). (47)

The transformation of the space, x = ln(S/E), stretches the domain to the whole
set of real numbers. Substituting τ = T − t transforms the backward parabolic
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di�erential equation to a forward one. Since the equation (46) contains the term
SΓ = S∂2

SV it is convenient to use the following transformation:

H(x, τ) := SΓ = S∂2
SV (S, t). (48)

After this transformation β can be a function of H, x and τ , i.e. β = β(H, x, τ).
The so�called Γ equation can be obtained if we compute the second derivative

of the equation (46) with respect to x according to Janda£ka and �ev£ovi£ [21] (see
also �ev£ovi£, Stehlíková and Mikula in [30], Mikula and Kútik in [23] and [24]).

Theorem 3.1. Function V = V (S, t) is a solution to (46) if and only if H = H(x, τ)
solves

∂τH = ∂2
xβ(H) + ∂xβ(H) + (r − q)∂xH − qH, (49)

where β is a composed function

β = β(H(x, τ), x, τ).

4 Computational Results

The purpose of this section is to derive a robust numerical scheme for solving the
Γ equation. The construction of numerical approximation of a solution H to (49) is
based on a derivation of a system of di�erence equations corresponding to (49) to be
solved at every discrete time step. We give also the Mathematica source using the
model with variable transaction cost. Next we show the modelling of the bid�ask
spread and perform extensive comparisons of the solutions of the models.

4.1 Numerical Scheme for the Full Space�Time Discretiza-

tion and for Solving the Γ-Equation

In this section we present the numerical scheme adopted from the paper by Jan-
da£ka and �ev£ovi£ [21] in order to solve the Γ equation (49) for a general function
β = β(H, x, τ) including, in particular, the case of the model with variable trans-
action costs. The e�cient numerical discretization is based on the �nite volume
approximation of the partial derivatives entering (49). The resulting scheme is
semi�implicit in a �nite�time di�erence approximation scheme.

For numerical reasons we restrict the spacial interval to x ∈ (−L,L) where L > 0
is su�ciently large. Since S = Eex it is now a restricted interval of underlying stock
values, S ∈ (Ee−L, EeL). From a practical point of view, it is su�cient to take
L ≈ 1.5 in order to include the important range of values of S.

For the purpose of construction of a numerical scheme, the time interval [0, T ]
is uniformly divided with a time step k = T/m into discreet points τj, where j =
0, 1, ...,m, τj = jk. We also take the spacial interval [−L,L] with uniform division
with a step h = L/n, into discreet points xi = ih, where i = −n, . . . , n.
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Now the homogeneous Dirichlet boundary conditions on new discrete values rep-
resenting the initial condition are H0

i = H̄(xi) where xi = ih.
The numerical algorithm is semi�implicit in time. Notice that the term ∂2

xβ,
where β = β(H(x, τ), x, τ) can be expressed in the form

∂2
xβ = ∂x (β′H(H, x, τ)∂xH + β′x(H, x, τ)) ,

where β′H and β′x are partial derivatives of the function β(H, x, τ) with respect to H
and x, respectively:

∂xβ = β′H∂xH + β′x, (50)
∂2
xβ = β′H∂

2
xH + β′′HH(∂xH)2 + 2β′′xH∂xH + β′′xx. (51)

In the discretization scheme, the nonlinear terms β′H(H, x, τ) and β′x(H, x, τ) are
evaluated from the previous time step τj−1 whereas linear terms are solved at the
current time level.

Such a discretization leads to a solution of linear systems of equations at every
discrete time level.

The next steps are as follows, at �rst, we replace the time derivative by the time
di�erence, approximate H in nodal points by the average value of neighbouring
segments, then we collect all linear terms at the new time level j and by taking
all the remaining terms from the previous time level j − 1 we obtain a tridiagonal
system for the solution vector Hj = (Hj

−n+1, . . . , H
j
n−1) ∈ R2n−1:

ajiH
j
i−1 + bjiH

j
i + cjiH

j
i+1 = dji , Hj

−n = 0, Hj
n = 0 , (52)

where i = −n+ 1, . . . , n− 1 and j = 1, . . . ,m.
The coe�cients of the tridiagonal matrix are given by

aji = − k

h2
β′H(Hj−1

i−1 , xi−1, τj−1) +
k

2h
r ,

cji = − k

h2
β′H(Hj−1

i , xi, τj−1)− k

2h
r ,

bji = 1− (aji + cji ) ,

dji = Hj−1
i +

k

h

(
β(Hj−1

i , xi, τj−1)− β(Hj−1
i−1 , xi−1, τj−1)

+β′x(H
j−1
i , xi, τj−1)− β′x(H

j−1
i−1 , xi−1, τj−1)

)
.

It means that the vector Hj at the time level τj is a solution to the system of linear
equations Aj Hj = dj, where the (2n− 1)× (2n− 1) matrix Aj is de�ned as

Aj =


bj−n+1 cj−n+1 0 · · · 0

aj−n+2 bj−n+2 cj−n+2

...
0 · · · 0
... · · · ajn−2 bjn−2 cjn−2

0 · · · 0 ajn−1 bjn−1

 . (53)
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To solve the tridiagonal system in every time step in a fast and e�ective way, we
can use the simple LU � matrix decomposition. The key idea is in decomposition of
a matrix A into a product of two matrices, i.e., A = L.U, where L is lower and U is
an upper triangular matrix respectively (for more details see example [30, Chapter
10]).

The option price V (S, T − τj) can be constructed from the discrete solution Hj
i

as follows:

(call option) V (S, T − τj) = h

n∑
i=−n

(S − Eexi)+Hj
i ,

(put option) V (S, T − τj) = h
n∑

i=−n

(Eexi − S)+Hj
i ,

for j = 1, . . . ,m.

4.2 Numerical results for the nonlinear model with variable

transaction costs

In this section we present the numerical results for the approximation of the option
price. Recall that we solve nonlinear models of the Black�Scholes type, particularly,
the novel option pricing model under transaction costs and risk of the unprotected
portfolio.

Into the numerical scheme enters the β(H) function derived given in (29) as:

β(H) =
σ2

2

(
1− C̃(σ|H|

√
∆t)

sgn(H)

σ
√

∆t
−Rσ2H∆t

)
H,

where C̃ is the modi�ed transaction cost function. For numerical experiments we
take the coe�cient of risk premium equal to zero, i.e., R = 0. Hence we notice
that the nonlinearity arises from the transaction costs. Hence we take the optimal
hedging time, ∆t, as �xed. Though, it is possible to do the numerical experiments
for the case R > 0 and ∆t is optimal, however we will not do the optimization for
the hedging time ∆t.

From the variable transaction costs functions we choose the piecewise linear non�
increasing function. In practise it means that for some small volume of traded stocks
one constant amount C0 is paid; when the volume is signi�cant, there starts to be a
discount depending on a higher volume and �nally there is another small constant
payment C0 when the trades are very large.

The piecewise linear non�increasing transaction costs function is de�ned as:

C(ξ) =


C0, if 0 ≤ ξ < ξ−,
C0 − κ(ξ − ξ−), if ξ− ≤ ξ ≤ ξ+,
C0, if ξ ≥ ξ+.

(54)
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Table 1: Parameter values used for computation of the numerical solution.

Parameter and Value
C0 = 0.02 T = 1.
κ = 0.3 E = 25
ξ− = 0.05 r = 0.011
ξ+ = 0.1 m = 200
∆t = 0.00383142 n = 250
σ = 0.3 h = 0.01
σmin = 0.112511 τ ∗ = 0.005
σmax = 0.265828 R = 0

where we assume C0, κ > 0, and 0 ≤ ξ− ≤ ξ+ ≤ ∞ to be given constants and
C0 = C0 − κ(ξ+ − ξ−) > 0.

The parameter values used in our computations are given in the Table 1.
According to Proposition 1.3 the function C̃ satis�es the following inequality

(17):

C0

√
2

π
≤ C̃(ξ) ≤ C0

√
2

π
.

In what follows, we show that this restriction holds also for the numerical solution.
That means, the solution of the nonlinear equation with variable transaction costs
C̃ will be always between the solution of the Black�Scholes equation with constant
transaction costs (i.e. the Leland model) with higher C0 and lower C0 respectively.
Values C0

√
2/π and C0

√
2/π correspond to the modi�ed transaction costs function

C̃ in the case when C̃ is constant.
For ∆t su�ciently small, we have from Proposition 1.3 that the equation to be

solved is parabolic. For any value of ξ+ and ξ−, the C̃(ξ) will lie between the values
C0

√
2/π and C0

√
2/π and the solutions will be ordered in this manner:

Vσ2
min

(S, t) ≤ Vvtc(S, t) ≤ Vσ2
max

(S, t) ∀S, t.

In the Table 2 we present the option values for di�erent prices of the underlying
asset achieved by a numerical solution.

In Figure 6 we present the graphs of solution Vvtc := V (S, t), as well as that
of ∆(S, t) = ∂SV (S, t), for various times t ∈ {0, T/3, 2T/3}. The upper dashed
line corresponds to the solution of the linear Black�Scholes equation with volatility

σ̂2
max = σ2

(
1− C0

√
2
π

1
σ
√

∆t

)
, where C0 = C0−κ(ξ+−ξ−) > 0, and the lower dashed

line corresponds to the solution with volatility σ̂2
min = σ2

(
1− C0

√
2
π

1
σ
√

∆t

)
.

Note that at the beginning the solution of nonlinear model is closer to the lower
bound and later moves closer to the upper one. It can be interpreted as follows: at
the beginning of the contract the holder of the portfolio is not required to perform
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Table 2: Bid Option values of the numerical solution of nonlinear model in compar-
ison to B�S with constant volatility.

S Vσ2
max

Vvtc Vσ2
min

20 0.709 0.127 0.029
23 1.752 0.844 0.421
25 2.768 1.748 1.258
28 4.723 3.695 3.474
30 6.256 5.321 5.327

many operations to hedge. Therefore he does not have high volumes of transactions
and pays the cost of C0. With the impending expiry time it is necessary to hedge
the portfolio and so trade in high volume, and so the investor pays lower transaction
costs, i.e. C0.

Conclusions

In this thesis we analysed recent topics on pricing derivatives by means of the solu-
tions to nonlinear Black�Scholes equations. We presented various nonlinear gener-
alizations of the classical Black�Scholes theory arising when modelling illiquid and
incomplete markets, in the presence of a dominant investor in the market, etc. We
did show that, in presence of variable transaction costs and risk from an unpro-
tected portfolio, the resulting novel pricing model is a nonlinear extension of the
Black�Scholes equation in which the di�usion coe�cient is no longer constant and
it depends on the option price itself.

In Section 2 we developed the theory of models with variable transaction costs.
The main idea was in de�ning the modi�ed transaction cost function C̃ when us-
ing the transaction costs measure. We also studied the properties of this function
to con�rm its generality. We presented and analysed two more new examples of
realistic variable transaction costs that are decreasing with the amount of transac-
tions, particularly, the piecewise linear nonincreasing function and the exponentially
decreasing function. By considering these functions, we solved the di�culty with
possibly negative transaction costs that arises in the model proposed by Amster et
al. [1]. We developed the Risk adjusted pricing methodology using variable trans-
action cost instead of constant. We analysed the optimal choice of hedging time as
a problem of maximizing the variance to cover the most negative scenario.

We have also shown how to solve the presented nonlinear Black�Scholes models
numerically. In particular, we solved the model with piecewise linear non�increasing
function of transaction costs. The main idea was in the transformation of the gov-
erning equation into the Gamma equation. Into this equation enters β(H) function
corresponding to the chosen model.
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Figure 6: Solution V (S, t) for t = 0, t = T/3, t = 2T/3 (left) and corresponding
∆(S, t) = ∂SV (S, t) of the call option.

25



In order to solve the Gamma equation we used an e�cient numerical discretiza-
tion. The numerical scheme was based on the �nite volume scheme. By numerical
solution we obtained the values of the options and showed that when the modi�ed
transaction costs function is bounded, then the solution of the novel nonlinear model
lies between the solutions of the Black�Scholes equation with constant transaction
costs of upper and lower bound.

In general it is di�cult to �nd an explicit solution of general nonlinear models
of the Black�Schholes type. An extension of this thesis can be in application of
other numerical schemes to deal with the problem of derivative pricing. To solve
Gamma equation it is possible to use the scheme of Casabán, Company, Jódar and
Pintos [10], the modern schemes by Niu Cheng�hu, Zhou Sheng�Wu [27] and also the
scheme designed by Kútik and Mikula [24]. There exist also some explicit solutions
for special type of nonlinear models that are known from Bordag and Frey in [8]
and [9] to compare the results. Another extension could be the consideration of the
other types of �nancial derivatives, for example American options.
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