Application of Modified Subjective Surface Method to 3D Cell Membrane Image Segmentation

Main Article Content

Markjoe Olunna Uba Karol Mikula Zuzana Krivá Nguyen Hanh Thierry Savy Eléna Kardash Nadine Peyriéras


In this paper, we study $3$D cell membrane image segmentation where the segmented surface is reconstructed by the use of $3$D digital cell membrane image information and information that is obtained from thresholded $3$D image in a local domain. The segmentation method is based on evolution of surface that is governed by a nonlinear PDE, the modified subjective surface equation. A semi-implicit finite volume scheme was used for the numerical discretization of the proposed model. The method was applied to real data representing $3$D microscopy images of cell membrane within the zebrafish pectoral fin.

Article Details

How to Cite
Uba, M., Mikula, K., Krivá, Z., Hanh, N., Savy, T., Kardash, E., & Peyriéras, N. (2020). Application of Modified Subjective Surface Method to 3D Cell Membrane Image Segmentation. Proceedings Of The Conference Algoritmy, , 51 - 60. Retrieved from


[1] S. Corsaro, K. Mikula, A.Sarti, F. Sgallari, Semi-implicit co-volume method in 3D image segmentation, SIAM J. Sci. Comput., vol. 28, num. 6, p. 2248-2265, 2006.
[2] A. P. Dhawan, Image Segmentation, in Medical Image Analysis, IEEE, 2011, pp.229-264, doi:10.1002/9780470918548.ch10.
[3] L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differential Geom., 33 (1991), 635–681. doi:10.4310/jdg/1214446559.
[4] A. X. Falcao, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch, and R. de Alencar Lofufo, User-steered image segmentation paradigms: Live-wire and live-lane, Graphics Models and Image Processing, 60(4):223–260, 1998.
[5] E. Faure, T. Savy, B. Rizzi, C. Melani, O. Drblı́ková, D. Fabregès, R. Špir, M. Hammons, R. Čunderlı́k, G. Recher, B. Lombardot, L. Duloquin, I. Colin, J. Kollár, S. Desnoulez, P. Affaticati, B. Maury, A. Boyreau, J. Nief, P. Calvat, P. Vernier, M. Frain, G. Lutfalla, Y. Kergosien, P. Suret, M. Remešı́ková, R. Doursat, A. Sarti, K. Mikula, N. Peyriéras, P. Bourgine, An algorithmic workflow for the automated processing of 3D+time microscopy imaging of developing organisms and reconstruction of their cell lineage, Nature Communications, 7 (2016), 8674.
[6] M. Kass, A.Witkin, and D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision, 1(4):321-331, 1988.
[7] K. Mikula, N. Peyriéras, M. Remešı́ková and O.Stašová Segmentation of 3D cell membrane images by PDE methods and its applications, Computers in Biology and Medicine, Vol. 41, No. 6 (2011) pp. 326-339.
[8] K. Mikula and M. Remešı́ková, Finite volume schemes for the generalized subjective surface equation in image segmentation, Kybernetika, Vol. 45, No. 4 (2009) pp. 646-656.
[9] P. Perona and J. Malik,Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629–639. doi:10.1109/34.56205.
[10] A. Sarti, R. Malladi and J. A. Sethian, Subjective Surfaces: A Method for Completing Missing Boundaries, PNAS, Vol. 12, Num. 97, pp. 6258-6263, 2000.
[11] A. Sarti, R. Malladi and J. A. Sethian, Subjective Surfaces: A Geometric Model for Boundary Completion, International Journal of Computer Vision, Vol. 46 Num. 3, pp. 201-221, 2002.
[12] M. O. Uba, K. Mikula, Z. Krivá, H. Nguyen, T. Savy, E. Kardash, N. Peyriéras, 3D Cell Image Segmentation by Modified Subjective Surface Method, Tatra Mountains Mathematical Publications, (2020) 75, 147-162. doi: 10.2478/tmmp-2020-0010.
[13] L. Vincent and P. Soille, Watersheds in Digital Spaces: an Efficient Algorithm Based on Immersion Simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583–598, 1991.
[14] C. Zanella, M. Campana, B. Rizzi, C. Melani, G.Sanguinetti, P. Bourgine, K. Mikula, N.Peyriéras, A.Sarti, Cells Segmentation from 3-D Confocal Images of Early Zebrafish Embryogenesis, IEEE Transactions on Image Processing, Vol.19, No.3 (2010) pp. 770-781.