On robustness of flux reconstructions - discontinuous Galerkin method

Main Article Content

Miloslav Vlasák

Abstract

We deal with the numerical solution of the Poisson equation. The equation is discretized with the aid of the incomplete interior penalty discontinuous Galerkin method. Guaranteed a posteriori upper bound based on the flux reconstruction can be derived. The main aim of this paper is to show that the robustness of a certain simple reconstruction depends at most on p^{1/2} in one dimension, where p is the discretization polynomial degree. The theoretical results are verified by numerical experiments.

Article Details

How to Cite
Vlasák, M. (2020). On robustness of flux reconstructions - discontinuous Galerkin method. Proceedings Of The Conference Algoritmy, , 240 - 248. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1580/832
Section
Articles

References

[1] M. Ainsworth, J. T. Oden: A procedure for a posteriori error estimation for hp finite element methods. Comput. Methods Appl. Mech. Engrg. 101 (1992), pp. 73–96.
[2] M. Ainsworth, J. T. Oden: A posteriori error estimation in finite element analysis. Pure Appl. Math., Wiley and Sons, New York (2000).
[3] M. Ainsworth, B. Senior: An adaptive refinement strategy for hp-finite-element computations. Appl. Numer. Math. 26 (1998), pp. 165–178.
[4] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.
[5] I. Babuška, T. Strouboulis: The finite element method and its reliability. Numer. Math. Sci. Comput., Oxford University Press, New York (2001).
[6] D. Boffi, F. Brezzi, M. Fortin: Mixed finite element methods and applications. Springer Series in Computational Mathematics 44, Berlin: Springer (2013).
[7] D. Braess, V. Pillwine, J. Schöberl: Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1189–1197.
[8] V. Dolejšı́ and M. Feistauer, Discontinuous Galerkin method. Analysis and applications to compressible flow., Cham: Springer, 2015.
[9] K. Eriksson, D. Estep, P. Hansbo, C. Jonson: Computational differential equations. Cambridge University Press, Cambridge (1996).
[10] A. Ern, A. F. Stephansen, M. Vohralı́k: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1) (2010), pp. 114–130.
[11] A. Ern, M. Vohralı́k: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2) (2015), pp. 1058–1081.
[12] J. M. Melenk, B. Wohlmuth: On residual-based a posteriori error estimation in hp–FEM. Advances Comput. Math. 150 (2001), pp. 311–331.
[13] L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains., Arch. Ration. Mech. Anal., 5 (1960), pp. 286–292.
[14] W. Prager, J. L. Synge: Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), pp. 241–269.
[15] S. I. Repin: A posteriori estimates for partial differential equations. Radon Ser. Comput. Appl. Math., Walter de Gruiter, Berlin (2008).
[16] S. K. Tomar, S. I. Repin: Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems. J. Comput. Appl. Math. 226(2) (2009), pp. 952–971.
[17] R. Verfürth: A posteriori error estimation techniques for finite element methods. Numer. Math. Sci. Comput., Oxford University Press, Oxford (2013).