Application of an adaptive model hierarchy to parametrized optimal control problems

Main Article Content

Hendrik Kleikamp

Abstract

In this contribution we apply an adaptive model hierarchy, consisting of a full-order model, a reduced basis reduced order model, and a machine learning surrogate, to parametrized linear-quadratic optimal control problems. The involved reduced order models are constructed adaptively and are called in such a way that the model hierarchy returns an approximate solution of given accuracy for every parameter value. At the same time, the fastest model of the hierarchy is evaluated whenever possible and slower models are only queried if the faster ones are not sufficiently accurate. The performance of the model hierarchy is studied for a parametrized heat equation example with boundary value control.

Article Details

How to Cite
Kleikamp, H. (2024). Application of an adaptive model hierarchy to parametrized optimal control problems. Proceedings Of The Conference Algoritmy, , 66 - 75. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/2145/1028
Section
Articles

References

[1] F. Ballarin, G. Rozza, and M. Strazzullo. Chapter 9 - Space-time POD-Galerkin approach for parametric flow control. In Emmanuel Trélat and Enrique Zuazua, editors, Numerical Control: Part A, volume 23 of Handbook of Numerical Analysis, pages 307–338, Elsevier, Amsterdam, The Netherlands, 2022.
[2] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck. Model order reduction assisted by deep neural networks (ROM-net). Advanced Modeling and Simulation in Engineering Sciences, 7(1):16, 2020.
[3] L. Dedè. Reduced basis method and error estimation for parametrized optimal control problems with control constraints. SIAM Journal of Scientific Computing, 50(2):287–305, 2012.
[4] R. DeVore, G. Petrova, and P. Wojtaszczyk. Greedy algorithms for reduced bases in Banach spaces. Constructive Approximation, 37(3):455–466, 2013.
[5] G. Fabrini, L. Iapichino, and S. Volkwein. Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems. IFAC-PapersOnLine: Proceedings of the 9th Vienna International Conference on Mathematical Modelling, 51(2):296–301, 2018.
[6] B. Haasdonk, H. Kleikamp, M. Ohlberger, F. Schindler, and T. Wenzel. A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. SIAM Journal on Scientific Computing, 45(3):A1039–A1065, 2023.
[7] J. S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems using neural networks. Journal of Computational Physics, 363:55–78, 2018.
[8] H. Kleikamp. Python code for “Application of an adaptive model hierarchy to parametrized optimal control problems”, 2024. https://doi.org/10.5281/zenodo.10669854.
[9] H. Kleikamp, M. Lazar, and C. Molinari. Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems. 2023. https://arxiv.org/abs/2307.15590.
[10] M. Lazar and E. Zuazua. Greedy controllability of finite dimensional linear systems. Automatica, 74:327–340, 2016.
[11] G. Santin and B. Haasdonk. Kernel methods for surrogate modeling. In P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, editors, Model Order Reduction, volume 2, De Gruyter, Berlin, Boston, 2021.
[12] T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger, and F. Schindler. Application of deep kernel models for certified and adaptive RB-ML-ROM surrogate modeling. Lecture Notes in Computer Science, pages 117–125, Springer Nature Switzerland, 2024.