Numerical Simulation of NAPL Vapor Transport in Air

Main Article Content

Ondřej Pártl Michal Beneš Peter Frolkovič

Abstract

We present a mathematical and numerical model for non-isothermal, compressible flow of a mixture of two ideal gases subject to gravity. The mathematical model is based on balance equations for mass, momentum and energy combined with the ideal gas equation of state. The numerical model is based on the method of lines; the spatial discretization is carried out by means of the control volume based finite element method, and for the time integration, the Runge-Kutta-Merson method is used. Finally, we present preliminary results of numerical experiments that illustrate the ability of our numerical scheme.

Article Details

How to Cite
PÁRTL, Ondřej; BENEŠ, Michal; FROLKOVIČ, Peter. Numerical Simulation of NAPL Vapor Transport in Air. Proceedings of the Conference Algoritmy, [S.l.], p. 214-223, feb. 2016. Available at: <http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/410>. Date accessed: 20 sep. 2017.
Section
Articles

References

[1] K. Baber, K. Mosthaf, B. Flemisch, R. Helmig, S. Mu ̈thing, and B. Wohlmuth, Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow, IMA Journal of Applied Mathematics, 77 (2012), pp. 887–909.

[2] J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier Science, 2001.

[3] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Second ed., Cambridge University Press, 1952.

[4] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, First ed., North-Holland Publishing Company, 1972.

[5] D. Folkes, W. Wertz, J. Kurtz and T. Kuehster, Observed Spatial and Temporal Dis tributions of CVOCs at Colorado and New York Vapor Intrusion Sites, Ground Water Monitoring & Remediation, 29 (2009), pp. 70–80.

[6] V. Giovangigli, Multicomponent Flow Modeling, First ed., Birkhuser Boston, 1999.

[7] H. Gómez, I. Colominas, F. Navarrina, and M. Casteleiro, A mathematical model and a numerical model for hyperbolic mass transport in compressible flows, Heat and Mass Transfer, 45 (2008), pp. 219–226.

[8] J. Hovorka, R. F. Holub, V. Zd ˇ ́ımal, J. Bendl and P. K. Hopke, The mystery ”Well”: A natural cloud chamber?, Journal of Aerosol Science, 81 (2015), pp. 70–74.

[9] O. A. Neves, E. C. Romao, J. B. Campos-Silva, Numeric simulation of pollutant dispersion by a control-volume based on finite element method, International Journal for Numerical Methods in Fluids, 66 (2011), pp. 1073–1092.

[10] R. Ouzani, M. Si-Ameur, Numerical study of hydrogene–air mixing in turbulent compressible coaxial jets, International Journal of Hydrogene Energy, 40 (2015), pp. 9539–9554.

[11] O. Pártl, Computational Studies of Bacterial Colony Model, American Journal of Computational Mathematics, 3 (2013), pp. 147–157.

[12] S. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.