• Google Scholar
  • Publons
  • List of publications by topic

    Textbooks

  • M. Hamala, M Trnovská: Nelineárne programovanie (Nonlinear programming), EPOS, 2015
  • Data Envelopment Analysis

  • M.Halická, M Trnovská (2021): A unified approach to non-radial graph models in data envelopment analysis: common features, geometry, and duality, European Journal of Operational Research 289 (2), 611-627
  • M Halická, M Trnovská (2019): Duality and profit efficiency for the hyperbolic measure model, European Journal of Operational Research 278 (2), 410-421
  • M Trnovská, M Halická (2019): Nonlinear data envelopment analysis models for technologies with undesirable outputs International Journal of Decision Support Systems 4 (2), 130-142
  • M Halická, M Trnovská: (2018) Negative features of hyperbolic and directional distance models for technologies with undesirable outputs, Central European Journal of Operations Research 26 (4), 887-907
  • M Halická, M Trnovská (2018): The Russell measure model: Computational aspects, duality, and profit efficiency European journal of operational research 268 (1), 386-397
  • Convex conic optimisation - duality theory, interior-point methods

  • M Halicka, M Trnovska (2010): Limiting behaviour and analyticity of weighted central paths in semidefinite programming, Optimization Methods & Software 25 (2), 247-262
  • M Trnovská (2010): Limiting behavior and analyticity of two special types of infeasible weighted central paths in semidefinite programming., Acta Mathematica Universitatis Comenianae. New Series 79 (1), 111-127
  • M Trnovska (2005): Strong duality conditions in semidefinite programming, Journal of Electrical Engineering 56 (12), 1-5
  • Applications of convex optimisation

  • S Kilianová, M Trnovská (2016): Robust portfolio optimization via solution to the Hamilton–Jacobi–Bellman equation, International Journal of Computer Mathematics 93 (5), 725-734
  • D Ševčovič, M Trnovská (2015): Solution to the inverse Wulff problem by means of the enhanced semidefinite relaxation method, Journal of Inverse and Ill-posed Problems 23 (3), 263-285
  • D Ševčovič, M Trnovská (2015): Application of the Enhanced Semidefinite Relaxation Method to Construction of the Optimal Anisotropy Function, IAENG International Journal of Applied Mathematics 45 (3), 227-234
  • L Filová, M Trnovská, R Harman(2012): Computing maximin efficient experimental designs using the methods of semidefinite programming, Metrika 75 (5), 709-719
  • R Harman, M Trnovská (2009): Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices, Mathematica Slovaca 59 (6), 693-704